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Calculation of B(E2) ↓, spectroscopic quadrupole moments Q( J), and magnetic dipole moments
µ( J) for the yrast states in 196Pt by a projection formalism
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The three major electromagnetic transition quantities, B(E2) ↓,Q(J ), and µ(J ), are calculated for the yrast
band of 196Pt by a projection formalism. The valence nucleon space is divided into four sectors of normal and
abnormal parity states for neutrons and protons separately. The collective properties are evaluated in each of
the four sectors and summed. A comparison is made with the IBM and SO(6) results, and it is shown that the
projection calculations are performing equally well using only one fitted parameter and one normalization.
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I. INTRODUCTION

196Pt is considered to exemplify the SO(6) limit of the
interacting boson model (IBM) [1–3]. IBM is very successful
in the interpretation of the A = 180–200 mass region (also
known as the Pt-Os region) where a gradual change from
the strongly deformed rare-earth nuclei and the spherical
closed-shell Pb nucleus occurs, and where simple rotational
or vibrational models are not adequate. Moreover, shape
transitions are known to occur in this region, from prolate
shapes for the lighter mass nuclei to oblate shapes for heavier
ones. A wealth of experimental techniques have been applied
to the study of 196Pt, including Coulomb excitation, neutron
capture (n, γ ), and neutron inelastic scattering (n, n′ γ ). These
investigations resulted in a detailed and complex level scheme
up to Ex ≈ 3 MeV. The quadrupole moment of the first 2+
state was measured and found to be positive and, therefore,
196Pt is oblate.

In the SO(6) symmetry [1], the Hamiltonian eigenvalues
are described by a three-parameter analytical expression:

ESO(6)(σ, τ, L) = Aσ (σ + 4) + Bτ (τ + 3) + CL(L + 1),

(1)

depending on the quantum numbers σ, τ, and L of the SO(6)⊃
SO(5)⊃SO(3) chain. Cizewski et al. [4] successfully fitted
this formula to the low-lying states of 196Pt, thus providing
evidence that this nucleus is a good example of the SO(6)
symmetry. Moreover, in SO(6) not only the energy of the
states can be calculated but also the B(E2)s of the transitions
between those states and their quadrupole moments can be
determined. The assumed form of the electric quadrupole
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operator is

T E2 = eQ̂ = e([s† × d̃ + d† × s̃](2) + χ [d† × d†](2)), (2)

where s and d are the boson operators. In the strict SO(6)
limit χ ≡ 0, implying that all the quadrupole moments vanish.
This expectation conflicts with the experimental results where
a strong nonzero Q(2+

1 ) was measured. To solve this problem,
Casten and Cizewski [5] proposed to perturb the strict
SO(6) limit with a quadrupole-quadrupole interaction with
the following Hamiltonian:

H = ESO(6) + χQ̂ · Q̂, (3)

allowing in this way for nonzero values for χ while keeping the
energies close to the SO(6) limit. Later, Fewell [6] proposed
that, actually, the SU(5) limiting symmetry can give a good
description of the 196Pt nucleus. In the recent work of Tavucku
et al. [7] it was assumed that the SO(6) dynamical symmetry
is broken and a full IBM-2 calculation was performed. In
looking for the correct IBM-2 Hamiltonian parameters, those
of the SO(6) symmetry were taken as the starting values. As
expected, the final IBM-2 parameters were not too far from
those SO(6) starting values.

In the present work we calculate the values for B(E2)s,
electric quadrupole moments Q(J ), and magnetic dipole
moments µ(J ) in a projection formalism that is very distinct
from the IBM philosophy.

IBM owes its phenomenal success to its ability to reduce
the enormous configuration space of the shell model to a more
restricted one of the boson model (and also taking advantage of
symmetries). In the same spirit the projection model developed
in Refs. [8,9] considers only the valence nucleons in a major
shell and has a truncated configuration space compared with a
full shell model calculation. To compensate for the neglected
shells, one uses effective charges of a quite general form valid
for all nuclei. (Note that the IBM also uses effective charges
but they are adjusted for the nucleus being investigated.)
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Moreover, the major shell configuration space is divided into
four sectors, protons or neutrons, of normal or abnormal parity.
In this way we address directly the problem of the contribution
of abnormal parity states to the collectivity and deformation.
This vexing issue was often bypassed in other models [e.g.,
pseudo-SU(3) or the fermion dynamic symmetric model] by
assuming that the abnormal parity nucleons are coupled to
J = 0 and their contribution to collectivity and deformation is
zero or negligible. In contrast, we found in cases of synthetic
nuclear structures, contributions as high as those of the normal
parity nucleons coming from the abnormal parity nucleons.

Each one of the four sectors is described by an intrinsic
state (IS) in the form of a Slater determinant, constructed
from single-particle deformed wave functions. States of good
(collective) angular momentum are projected out from these
ISs. The contribution of a given sector to a collective
property is obtained by considering its nucleons as active
and nucleons from other sectors as spectators. For the normal
parity sectors the pseudo-SU(3) symmetry is displayed by its
nucleons. For the abnormal parity sectors the treatment is
more complex and involves the decoupling of each nucleon
from its IS (Slater determinant), calculation of a single-
particle quantity (matrix element) in the presence of the other
sector’s nucleons, and summation over all the single-particle
contributions.

To use the IBM model one cannot start with a totally
unknown nucleus. A fairly detailed level scheme is necessary
to fit the parameters of the IBM Hamiltonian and to establish its
most probable (or closest) symmetry. In contrast, the projection
procedure can be initiated with very minimal information,
despite its large number of equations. Essentially, only the
specific numbers of protons and neutrons are necessary to
begin a calculation. Apart from the pseudo-SU(3) general
symmetry for the normal parity nucleons, no particular per
nucleus symmetries are implied or used. Also only a very
light dependence on the specific form of parametrization is
needed. These desirable features come at the price that the
projection formalism, at present, is limited to the yrast states
only, whereas the IBM is much more flexible, being able to
calculate in-band and intraband transitions.

II. FORMALISM

A projection formalism for even-even nuclei was developed
in Refs. [8,9]. Only a brief recapitulation is given here. We
consider only the valence nucleons in a major shell: for 196Pt
this will be the 50–82 shell for protons and the 82–126 shell for
neutrons. Each shell contains a number of states |jn〉 with the
same parity—the normal-parity (n) states—and an intruder
state |ja〉 with an opposite parity—the abnormal-parity (a)
state. For 196Pt the a states will be 0h 11

2
for protons and 0i 13

2
for

neutrons. The number of valence nucleons is split accordingly
into four subspaces: normal protons Nnπ , abnormal protons
Naπ , normal neutrons Nnν , and abnormal neutrons Naν . Using
Table VIII of Ref. [10] these numbers for 196Pt are 16, 12, 24,
and 12, respectively.

A. Intrinsic states (IS)

In the prolate axially symmetric field of a deformed nucleus,
each of the subspaces defined above is described by an intrinsic
state (IS) in the form of a single Slater determinant. For Nn

nucleons in the n states we have

FKn
(Nn) =

∣∣∣φα1
k1

φ
α2
k2

. . . φ
αNn

kNn

∣∣∣ , Kn =
Nn∑
i=1

ki, (4)

where φ
αi

ki
are deformed orbitals with k = 〈jz〉, the projection

of the angular momentum along the symmetry axis of the mean
field. The labels αi = 1, 2, . . . distinguish different orbitals
with the same ki value. φ

αi

ki
are asymptotically deformed in

the configuration space of the n states of the major shell.
They are obtained from an asymptotically deformed Nilsson
Hamiltonian and can be expanded in terms of the spherical n
states ψjnki

as

φ
αi

ki
=

∑
jn

c
αi

jnki
ψjnki

, i = 1, 2, . . . , Nn. (5)

These orbitals are ordered sequentially by decreasing
quadrupole moments

q
αi

ki
= 〈

φ
αi

ki

∣∣q2
0

∣∣φαi

ki

〉
, (6)

tabulated in Tables I–III of Ref. [8].
For Na nucleons in an a state, the IS will be

FKa
(Na) =

∣∣∣ψja
1
2

(−1)ja− 1
2 ψja− 1

2
ψja

3
2

. . .

×ψja
Na
2

(−1)ja− Na
2 ψja− Na

2

∣∣∣ , (7)

with Ka = Na/2 for odd Na and Ka = 0 for even Na . For
the a state there is a single intruder orbital and therefore only
spherical states ψjaki

appear in the IS.
For the a nucleons and oblate deformation, the occupied

orbitals will be ordered by decreasing values of ki starting
with ja (increasing values of the quadrupole moments):

FKa
(Na) =

∣∣∣ψja ja
(−1)ja−jaψja −ja

ψja (ja−1) . . .

×ψja (ja− Na
2 ) (−1)ja−(ja− Na

2 )ψja −(ja− Na
2 )

∣∣∣ .
(8)

These ISs of the four groups of nucleons are expanded in
terms of the states |Jα(Kα)〉 of good angular momentum and
projected from them

FKα
(Nα) =

∑
Jα

CJαKα
|Jα(Kα)〉, (9)

with the label α standing for nπ, aπ, nν, and aν. The CJK

coefficients are obtained by the projection procedure [8]

|CJK |2 = 2J + 1

2

∫
dJ

KK (β)〈FK (N )|e−iβJy |FK (N )〉 sin βdβ,

(10)
where dJ

KK (β) are the rotation functions.
The nucleons in n states obey the pseudo-SU(3) symmetry.

The yrast band of states with definite J contained in the
SU(3) representations [λ,µ] can be projected from the highest
weight intrinsic state F[λ,µ]. An intrinsic state with µ 	= 0
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is triaxial in shape and contains different K bands with K =
µ,µ − 2, . . . 1 or 0. We shall associate the yrast band with only
the K = 0 band. This band contains the states |J (K)〉 with J =
0, 2, 4, . . . , λ + µ. The specific SU(3) [λ,µ] representations

for a given Nn are given in Table VIII of Ref. [10]. The CJK

coefficients were calculated for the corresponding [λ + µ, 0]
representation using the algebraic formula of Vergados
[11]:

|CJK (λ, 0)|2 =


1
λ + 1 for J = 0,

(2J + 1) λ(λ − 1)(λ − 2) · · · (λ − J + 1)
(λ − J + 1)(λ − J + 3) · · · (λ + J − 1)(λ + J + 1) for J � 1.

(11)

The above expressions are for standard prolate deformation. In
196Pt we get [λ,µ] = [2,8] for normal protons and [6,12] for
normal neutrons; therefore, the calculated CJnKn

are for [10,0]
and [18,0] representations, respectively.

The expansion coefficients for the a nucleons CJaKa
were

calculated in Table II of Ref. [9] for an even number of nucleons
Na = 2, 4, 6, and 8 by direct integration of Eq. (10). In the
196Pt case there are 12 protons in 0h 11

2
and 12 neutrons in 0i 13

2
.

In the proton case, the intruder orbital is full (2j + 1 = 12)
and therefore CJaKa

= 1.0 for Ja = 0 and zero for the other
values of Ja . For the neutron ( 13

2 )12 configuration the CJaKa

are given by the simple expressions (K = 0)

C2
JK =

{
2
(

13
2

13
2

13
2 − 13

2

∣∣ J 0
)2

prolate,

2
(

13
2

1
2

13
2 − 1

2

∣∣ J 0
)2

oblate.
(12)

The results for the prolate deformation are presented in Table I
of this article and supplement the data of Ref. [9].

Using the ISs defined above for the various sectors, a
general formula for the electromagnetic transition matrix
elements in a given sector is presented in Appendix A.
The total matrix elements are a summation over the con-
tributions of all four sectors. The formula is subsequently
applied to the calculation of the electric quadrupole ma-
trix elements in Appendix B and magnetic dipole ones in
Appendix C.

TABLE I. Expansion coefficients CJK and reduced quadrupole
matrix elements for Na = 12 and ja = 13

2 in units of α2.

〈J ′‖Q̂‖J 〉
J |CJK |2 J → J J + 2 → J

0 0.142857 0.0 14.8842
2 0.464286 −16.5493 22.6309
4 0.300420 −16.2303 25.7350
6 0.822203 × 10−1 −10.0750 25.3569
8 0.977444 × 10−2 2.8694 21.5442

10 0.437475 × 10−3 23.3451 14.0948
12 0.480741 × 10−5 52.0483

B. B(E2)s and the spectroscopic quadrupole moments

A discussion on the matrix elements of the electric
quadrupole operator is given in Appendix B. The B(E2)s are
calculated from the nondiagonal matrix elements as follows:

B(E2 : J (K) → J ′(K)) = 5

16π

〈J ′(K)‖Q̂e‖J (K)〉2

2J + 1
,

(13)
whereas the spectroscopic quadrupole moments are obtained
from the diagonal ones as follows:

Q(J ) = (J J 2 0 | J J )√
2J + 1

〈J‖Q̂e‖J 〉. (14)

C. Magnetic moments

For the calculation of the magnetic dipole operator matrix
elements, we use only three sectors: two abnormal parity
sectors for the protons and neutrons, and one normal parity
sector including both the neutrons and protons. This approach
is dictated by the assumed form of the magnetic dipole operator
matrix elements in the normal parity sector. Detailed formulas
are given in Appendix C.

The total magnetic moment is obtained as a summation over
the three sectors as follows:

µ(J (K)) = µaπ (J (K)) + µaν(J (K)) + µn(J (K)). (15)

The parameter gn (see Appendix C) was fixed by looking for
the best agreement with experimental data.

D. Simulating oblate shapes
196Pt is considered oblate on the basis of the sign of

its Q(2+
1 ) quadrupole moment. The oblateness will manifest

itself via the reduced matrix elements 〈J ′
α(Kα)‖T (λ)

α ‖Jα(Kα)〉
between the states |Jα(Kα)〉 projected from the IS of the
Nα nucleons and, additionally, in Eq. (A4) via the coupling
coefficients A[JK; JαKα; JsKs] that depend on the expansion
coefficients CJK , which are different for the prolate and oblate
configurations.

In the present formalism oblate calculations for
〈J ′

α(Kα)‖Ê2‖Jα(Kα)〉 can be performed for the a nucleons
using Eqs. (8), (12), and (B5). As is evident from the formulas
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of Appendix C there is no prolate-oblate dependence for the
〈J ′

α(Kα)‖M̂1‖Jα(Kα)〉 matrix elements.
By extensive numerical calculations, we found that the

quadrupole operator reduced matrix elements (RMEQ) for the
a nucleons have the following symmetry relations:

RMEQprolate(Na) = −RMEQoblate(2ja + 1 − Na). (16)

These relations imply in particular that for a half-filled
shell, that is, Na = (2ja + 1)/2, the oblate RMEQ will be
exactly the prolate RMEQ with a change of sign. For the n
nucleons there is not a corresponding oblate formalism. Taking
the cue from the behavior of the a nucleons, the total oblate
reduced matrix elements for the Nn + Na nucleons [i.e., those
calculated with Eq. (A4)] are approximated as follows:

RMEQoblate(Nn + Na) = −RMEQprolate(Nn + Na). (17)

This change of sign has no influence on the B(E2) calculations
because of their dependence on the square of the matrix
elements, but it will influence the sign of the quadrupole
moments that depend on the matrix elements directly.

For the magnetic case, the total oblate reduced matrix
elements were approximated to be exactly those given by
the prolate calculations (this amounts to neglecting the oblate
dependence in the A coefficients).

III. RESULTS

A. B(E2 : J → J − 2)

The quadrupole matrix elements are symmetric for tran-
sitions between states differing by two units of angular
momentum, that is, 〈Jf ‖Q̂e‖Ji〉 = 〈Ji‖Q̂e‖Jf 〉; then Eq. (13)
implies in particular

B(E2 : J →J − 2) = B(E2 : (J − 2)→J )
2(J − 2) + 1

2J + 1
.

(18)

Experimental values for B(E2 : (J − 2) → J ) were taken
from Ref. [12] for the ground state band, producing the B(E2 :
J → J − 2) values shown in Table II. The uncertainities were
calculated assuming the maximum additive scenario, that is,
when a value is given as 0.658 + 29 − 69 it was interpreted as
0.658 ± 0.098.

We show in Table II projected B(E2) calculations for
the full length of the yrast band projected from the IS,
and also calculations based on the SO(6) symmetry of the
IBM Hamiltonian and of a full IBM-2 Hamiltonian. In the
latter calculation, no particular symmetry was assumed but
rather the IBM-2 Hamiltonian was fitted to the experimental
level scheme. The IBM-2 and SO(6) calculations were taken
from the works of Tavucku et al. [7] and Van Isacker [13].
Both the projected and the IBM-2 calculations are normalized
to the first B(E2 : 2+ → 0+) experimental value. For the
SO(6) normalization, see the next subsection. In Figs. 1(a)
and 1(b) we show these results graphically. It can be seen from
Fig. 1(b) that the projected calculations are doing somewhat
better than both the SO(6) and IBM-2 calculations. The
experimental value at J = 8 seems to imply a stronger

TABLE II. Experimental and calculated values of B(E2 :
J → J − 2) (in e2b2) for the yrast band in 196Pt.

Calculations

J Experimental values Projected IBM-2 SO(6)

2 0.274 ± 0.0012 0.274 0.274 0.286
4 0.405 ± 0.006 0.389 0.361 0.374
6 0.455 ± 0.067 0.424 0.366 0.381
8 0.532 ± 0.107 0.438

10 0.441
12 0.438
14 0.430
16 0.418
18 0.403
20 0.385
22 0.365
24 0.341
26 0.314
28 0.285
30 0.253
32 0.218
34 0.180
36 0.139
38 0.095
40 0.048

collectivity than predicted by any of the model calculations.
This particular measurement has a great uncertainty and,
therefore, this conclusion is questionable.

B. Spectroscopic quadrupole moments Q(J)

Calculations for the spectroscopic quadrupole moments are
presented in Fig. 2 and Table III. Experimental data for the 2+

1 ,
4+

1 , and 6+
1 levels were taken from Lim et al. [14], Gyapong

et al. [15], and Mauthofer et al. [16].
We also show the SO(6) calculations of Van Isacker [13].

The SO(6) functional forms for the B(E2) and Q(J ) are
f (N )e2χ2 and g(N )eχ , respectively. f (N ) and g(N ) are
algebraic functions of the number of bosons N (6 in the case of
196Pt), whereas e (the effective boson charge) and χ are IBM
parameters. The boson effective charge e was obtained from
the B(E2 : 2+

1 → 0+
1 ) as 0.152 e b, and χ was chosen to be

0.580 to fit experimental data, which contained four B(E2)
and one Q(2+

1 ) values. The B(E2) values are not sensitive to
the sign of χ because of their χ2 dependence. χ was chosen
to be positive on the basis of the experimental Q(2+

1 ) value
[f (N ) and g(N ) have positive values]. In this respect the
SO(6) calculations do not have a too much predictive power,
but rather they were fitted to give resonable results.

From Fig. 2 it is quite obvious that the values for the 4+
1 and

6+
1 levels are not solid. At 4+

1 there are two measurements in
strong disagreement and at 6+

1 there are two measurements
with large error bars. Only for the 2+

1 level are the measure-
ments of Lim et al. and Gyapong et al. close and consistent,
giving a solid positive value. Overall the quadrupole moments
data seem to be decreasing with the J increase, a trend
reproduced by the projected calculations, but contradicting the
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FIG. 1. (Color online) (a) Projected calculation for the full yrast
band vs experimental B(E2 : J → J − 2) values in 196Pt. (b) As
above, only for the region of existing experimental data. The shown
SO(6) and IBM-2 calculations are taken from Tavucku et al. [7] for
the 2+

1 , 4+
1 , and 6+

1 states, and from Van Isacker [13] for the 8+
1 state.

SO(6) calculations which are increasing, at least for the limited
range 2+

1 → 6+
1 . In view of the approximations made to get

the oblate RMEQ, the excellent agreement of the experimental
Q(2+

1 ) and the projected calculation is quite fortuitous.

TABLE III. Calculated values of Q(J ) and µ(J ) for the yrast
band in 196Pt.

J Q(J ) (b) µ(J ) (nm)

2 0.61993 0.84266
4 0.58749 1.256
6 0.53683 1.5674
8 0.49304 1.8272

10 0.45673 2.0544
12 0.42633 2.2587
14 0.40042 2.4457
16 0.37792 2.619
18 0.35802 2.7809
20 0.34012 2.9334
22 0.32375 3.0776
24 0.30852 3.2144
26 0.2941 3.3447
28 0.28017 3.4689
30 0.26641 3.5872
32 0.25241 3.6998
34 0.23768 3.8065
36 0.22138 3.9068
38 0.20209 3.9993
40 0.17674 4.0813

We calculated the curve labeled IBM-3 in Fig. 2 by using
the Hamiltonian parameters given by Tavucku et al. [7] and
the NPBTRN program of Otsuka. Unlike the positive χ value
used by Van Isacker [13], Tavucku et al. [7] fixed χ at a
negative value of −0.036, forcing negative values for the
spectroscopic quadrupole moments [IBM-2 calculations being
close to the SO(6), the above observations on the SO(6)
dependence on χ apply], missing the oblate character of 196Pt.
The notation IBM-3 stresses that these are not the original
IBM-2 calculations of Tavucku et al., hence any mistakes are
our responsibility. For this calculation one has to use boson

FIG. 2. (Color online) Projected calculation
of the quadrupole spectroscopic moment for
the yrast band in 196Pt. Experimental points
are taken from Lim et al. [14] (solid squares)
(averaged with Gyapong et al. [15] at 2+

1 ) and
from Mauthofer et al. [16] (hollow circles). The
SO(6) calculation is from Van Isacker [13]. The
curve labeled IBM-3 is an IBM-2 calculation
based on the Hamiltonian of Tavucku et al. [7]
and the effective boson charges of Van Isacker.
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FIG. 3. (Color online) Projected calculation of the magnetic
dipole moment for the yrast band in 196Pt. The experimental value
at 2+

1 is an average of Refs. [17–20], whereas the value at 4+
1 is an

average of values from Refs. [21,22]. The value of the parmeter gn

was fixed at 1.4. The IBM-3 curve was calculated as in Fig. 2 with
the g factors gn = 0.1 and gp = 0.9.

effective charges that were also taken from Tavucku et al. [7],
namely 0.154 e b for both s and d bosons.

C. Magnetic moments µ( J)

The only measured magnetic moments are for the 2+
1 and 4+

1
states. The experimental data were taken from Refs. [17–22].
Projected calculations are presented in Fig. 3 and Table III.
To obtain fair agreement, the parameter gn was chosen as 1.4.
The contribution of the abnormal protons is zero because the
0h 11

2
orbital is filled, the abnormal neutrons give a negative

contribution, and the n nucleons a positive one.
The curve IBM-3 was explained in the previous subsection.

Here there are two free parameters, the g factors, enabling
a perfect fit to the only two existing measurements. We
used gn = 0.1 and gp = 0.9. The IBM model predicts a
much stronger collectivity, at higher spins, compared with the
projected calculations. The available data do not permit us to
choose between the two models.

IV. CONCLUSIONS

This work presented a projected formalism calculation of
the collective properties of 196Pt and compared them with
existing experimental data and with IBM calculations. The
IBM is heavily dependent on parametrization, both in the
Hamiltonian and in the calculated quantities like B(E2) and
Q(J ), as was discussed above. In contrast, the projected
calculations are loosely dependent on parametrization. There is
a dependence on quite general forms of the effective charges
and effective orbital and spin g factors, and the SU(3) and
single particle quadrupole matrix elements are calculated with
harmonic oscillator wave functions. All these are general and
not specific to any nucleus. The only true parameter of the
calculations is gn used for the magnetic moment and, to a lesser

degree, the renormalization of the B(E2)s to the experimental
B(E2 : 2+

1 → 0+
1 ). In view of this light parameter depen-

dence, the projected calculations are performing very well.

APPENDIX A: MATRIX ELEMENTS IN A GIVEN SECTOR

To calculate the contribution of each group α of nucleons
to the quadrupole moments, B(E2)s and other collective
properties we note that than only the Nα nucleons contribute
actively to the matrix elements, while the remaining nucleons
influence the matrix elements only as Racah spectators. The
IS for the whole nucleus is

FK (N ) = FKα
(Nα)FKs

(Ns), (A1)

where α stands for the group of nucleons in question and
s stands for the rest of the nucleus (spectators). The rest
of the nucleus is considered to be described by a SU(3)
[λs, 0] representation with λs = ∑

β λβ where β runs on the
other three groups of nucleons different from α. This ansatz
rests on the observation made in Table III of Ref. [9] that
even for a-parity nucleons groups, there are equivalent SU(3)
representations λeq = Jamax describing very well the angular
momentum content of their IS: Ns = ∑

β Nβ,N = Nα + Ns

and similarly for K.
The above IS for the whole nucleus is expanded in

projected states of good angular momentum

FK (N ) =
∑

J

CJK |J (K)〉,

|CJK |2 = (NJK )−2 ,

NJK =
∑

Jα

∑
Js

|CJαKα
(Nα)CJsKs

(Ns)

× (JαKαJsKs |JK)|2
−1/2

, (A2)

where CJsKs
are calculated for the SU(3) [λs, 0] representation

with the Vergados formula given in Eq. (11). We further define
the expansion coefficients

A[JK; JαKα; JsKs] = NJKCJαKα
(Nα)CJsKs

(Ns)

× (JαKαJsKs |JK). (A3)

The matrix elements of an operator T (λ)
α of multipolarity

λ [not to be confused with the λ used to specify the SU(3)
representations], acting on the Nα nucleons of type α, between
the projected states |J (K)〉 of the whole nucleus, are obtained
using Eq. (1A-72a) of Bohr and Mottelson [23] for coupled
systems

〈J ′(K)‖T (λ)
α ‖J (K)〉 =

√
(2J ′ + 1)(2J + 1)

×
∑
J ′

α

∑
J ′

s

∑
Jα

∑
Js

A[J ′K; J ′
αKα; J ′

sKs]

×A[JK; JαKα; JsKs]

[
(−1)J

′
α+J ′

s+J+λ

×
{
Jα Js J

J ′ λ J ′
α

}
〈J ′

α(Kα)|∣∣T (λ)
α ‖Jα(Kα)〉δJ ′

s Js

]
. (A4)
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reducing the problem to the calculation of matrix elements of
the T (λ)

α operator between the projected states |Jα(Kα)〉 of the
Nα nucleons only.

APPENDIX B. ELECTRIC QUADRUPOLE OPERATOR

When T (λ)
α is the quadrupole operator, λ = 2, and T (2) =

Q̂e, with

Q̂e =
√

16π

5

Nα∑
i=1

r2
i Y 2

0 (θi, φi). (B1)

We distinguish two cases:
1. If α specifies an n-parity group (nπ, nν), then the

matrix elements are proportional to the following SU(3) matrix
elements

〈J ′
α(Kα)‖Q̂α‖Jα(Kα)〉 = 1.2〈[λα, 0] J ′

α‖Q̂α‖[λα, 0] Jα〉,
(B2)

where [λα, 0] is the SU(3) representation with λα = Jα max

the maximum angular momentum for the Nα nucleons. The
proportionality factor 1.2 was derived in Ref. [24]. The SU(3)
matrix elements have the simple form [11] (in units of α2 =
0.0101A1/3 the harmonic oscillator parameter)

〈[λ, 0] J ′‖Q̂‖[λ, 0] J 〉

=


2
√

(2J + 1)(J 0 2 0 |J 0)〈J‖r2‖J 〉 for J ′ = J

−2
√

(2J + 1)(J 0 2 0 |J − 2 0) ×
〈J − 2‖r2‖J 〉 for J ′ = J − 2

(B3)

with

〈J ′‖r2‖J 〉 =
{

2n + J + 3
2 for J ′ = J

−2
√

(n + 1)
(
n + J + 1

2

)
for J ′ = J − 2

(B4)
where n = (λ − J )/2.

2. If α specifies an a-parity group, then one has to decouple
the single-particle states from the Slater determinat of the IS
Eq. (7), calculate the single-particle contributions, and sum
over all the Na particles. This procedure was first outlined by
Gunye and Warke [25] and was discussed also by Hara and
Sun [26]. We applied it to our specific projection procedure
and it appears as Eq. (75) in Ref. [9]. It is reproduced here for
completeness:

〈(ja,Na); J ′K‖Q̂‖(ja,Na); JK〉

=
√

(2J ′ + 1)(2J + 1)

CJ ′KCJK

Na∑
i=1

Na∑
m=1

∑
I

(−1)i+m+ji+J ′+I+2

× cjm�m
(K)cji�i

(K)pI
K−�m,K−�i

(Na − 1)

× (I,K − �m; jm,�m|J ′K) (I,K − �i ; ji, �i |JK)

×
{
J ji I

jm J ′ 2

}
(nmlmjm‖q‖niliji). (B5)

The sums over i and m run over the nucleons in the initial
and final ISs. The index I is the angular momentum of the
Na − 1 spectator nucleons in the IS when one of the nucleons

is contributing to the reduced matrix element. The quantity
cji�i

(K) is the amplitude that the contributing nucleon in the
initial state has an angular momentum ji and projection �i [see
Eq. (5)]. Similarly, cjm�m

(K) is the corresponding amplitude
for the nucleon in the final IS. In our calculation, K = 0 and
ji = jm = ja . The amplitudes are cji ,|�i | = 1 and cji ,−|�i | =
(−1)ji−|�i |cji ,|�i |. The quantity pI

K−�m,K−�i
(Na − 1) is the

probability amplitude that the Na − 1 spectator nucleons in the
initial and final ISs are coupled to a total angular momentum
I, and it is given by

pI
K−�m,K−�i

(Na − 1)

= 〈
FK−�m

(ja,Na − 1)
∣∣P I

K−�i

∣∣FK−�i
(ja,Na − 1)

〉
, (B6)

where FK−�(ja,Na − 1) is the IS of the Na − 1 spectator
nucleons when the decoupled nucleon has a projection �, and
P I

K is the projection operator

P I
KFK = CIK |J (K)〉, (B7)

producing states of good angular momentum |J (K)〉 out
of the IS. The Clebsch-Gordan coefficients in Eq. (B5)
[written in the convention (j1,m1; j2,m2|JM)] represent the
coupling between the Na − 1 spectators and the contributing
nucleon. The matrix elements of the single-particle electric
quadrupole operator qµ = √

16π/5r2Y 2
µ are evaluated with the

radial quantum numbers ni = nm = 0 and the orbital angular
momenta ji = jm = ja − 1

2 .
The calculation is complex and involves applying the

projection procedure to all the minors of the determinant
specifying the IS. Results of the matrix elements in the
abnormal parity sector for Na = 2, 4, 6, and 8 particles were
presented in Table XIII of Ref. [9]. The procedure was prone
to numerical roundoff errors and, therefore, the calculations
were performed analytically using MAPLE. The evaluation
times were prohibitively long, making unfeasible calculations
beyond the Na = 8 particles.

In the 196Pt case there are 12 particles in h 11
2

and 12
particles in i 13

2
. Because the h 11

2
orbital is full, the particles can

couple only to J = 0 and the corresponding matrix element
〈0‖Q̂‖0〉 = 0, that is, there is no deformation due to the
abnormal protons. For the neutron case we employed a new
numerical procedure based on Bailey’s [27] multiprecision
package. It was found sufficient to use the double-double
precision (i.e., each variable is allocated 128 bits; same as
in a Cray machine) to obtain numerically stable and accurate
results. The prolate deformation calculations are presented in
Table I and supplement those of Table XIII in Ref. [9].

The total quadrupole matrix elemets are calculated from the
individual contributions of the four nucleon groups as follows:

〈J ′(K)‖Q̂e‖J (K)〉 =
∑

α

eα〈J ′(K)‖Q̂α‖J (K)〉 (B8)

with the effective charges eπ = [1 + (Z/A)]e and eν =
2.1(Z/A)e for both the n and a nucleons. The individual
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contributions in the right-hand side above are calculated with
Eq. (A4).

APPENDIX C: MAGNETIC DIPOLE OPERATOR

For the a-parity nucleons (α = aπ, aν), the reduced
matrix elements of the M̂1 operator are given exactly [28]
as

〈J ′
α(Kα)‖M̂1α‖Jα(Kα)〉

=
√

3

4π
gjα

√
Jα(Jα + 1)(2Jα + 1)δJ ′

α,Jα
(C1)

in units of nuclear magnetons µN = eh̄/(2Mpc). The gyro-
magnetic ratio is given by

gj = 1

2j (j + 1)

{
gl

[
j (j + 1) + l(l + 1) − 3

4

]
+ gs

[
j (j + 1) − l(l + 1) + 3

4

]}
(C2)

with the orbital and spin g factors (gl, gs) = (1, 5.58) for free
protons and (0, −3.82) for free neutrons. The spin j = ja

is the spin of the intruder orbital. In this work we used the
effective orbital and spin g factors (gl eff, gs eff) = (gl, 0.7gs).

For the n-parity nucleons we can assume only that the
magnetic dipole operator is proportional to the angular
momentum operator Ĵn:

M̂1n =
√

3

4π
gnĴn (C3)

giving the reduced matrix elements

〈J ′
n(Kn)‖M̂1n‖Jn(Kn)〉

=
√

3

4π
gn

√
Jn(Jn + 1)(2Jn + 1)δJ ′

n,Jn
, (C4)

which formally resemble Eq. (C1), but here gn is a free
parameter with no special meaning.

The nucleon space is divided into only three sectors:
abnormal protons (aπ ), abnormal neutrons (aν), and normal
parity nucleons (including the normal protons and the normal
neutrons) (n), making the calculations dependent on only one
parameter (gn). The magnetic moment for a given sector is

µα(J (K)) =
√

4π

3
(J J 1 0 |J J )

〈J (K)‖M̂1α‖J (K)〉√
2J + 1

,

(C5)
with the right-hand reduced matrix elements calculated from
Eq. (A4).
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