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Low-lying dipole modes in 26,28Ne in the quasiparticle relativistic random phase approximation
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The low-lying isovector dipole strengths in the neutron-rich nuclei 26Ne and 28Ne are investigated in the
quasiparticle relativistic random phase approximation. Nuclear ground-state properties are calculated in an
extended relativistic mean field theory plus Bardeen-Cooper-Schrieffer (BCS) method where the contribution of
the resonant continuum to pairing correlations is properly treated. Numerical calculations are tested in the case
of isovector dipole and isoscalar quadrupole modes in the neutron-rich nucleus 22O. It is found that in the present
calculation, low-lying isovector dipole strengths at Ex < 10 MeV in nuclei 26Ne and 28Ne exhaust about 4.9%
and 5.8% of the Thomas-Reiche-Kuhn dipole sum rule, respectively. The centroid energy of the low-lying dipole
excitation is located at 8.3 MeV in 26Ne and 7.9 MeV in 28Ne.
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I. INTRODUCTION

Nuclear giant resonances have been known for 50 years for
the dipole mode and for more than 30 years for the other modes.
But the research field was limited to excitations of nuclei
along the β-stability line [1–3]. Recently, radioactive ion beam
physics has become one of the frontiers in nuclear physics.
It offers the possibility of broadening the study of giant
resonance to weakly bound nuclei. Nuclei close to the drip
line present some unique properties: a small separation energy
of the valence nucleon, the smearing density distribution, and
a strong coupling between the bound state and the particle
continuum. These exotic properties attract more attention both
experimentally and theoretically. Low-lying electric dipole
modes may appear in these weakly bound nuclei, which are
called pygmy dipole resonances. Although they carry only
a small fraction of the full dipole strength, these states are
of particular interest because they are expected to reflect the
motion of the neutron skin against the core formed with an
equal number of protons and neutrons. Recent experiments
have shown that the increase of the dipole strength at low
energies in neutron-rich nuclei could affect the corresponding
radiative neutron capture cross section considerably [4], which
has significance in astrophysics. Over the past decade, much
experimental and theoretical effort has been dedicated to
investigating properties of the low-lying dipole mode in light
neutron-rich nuclei and, in particular, answering the question
of whether or not these dipole excitations can be attributed to
collectivity [5–16].

Recently, Beaumel et al. [17] have measured the inelastic
scattering of 26Ne + 208Pb using a 60 MeV/u 26Ne secondary
beam at RIKEN. This reaction is dominated by Coulomb ex-
citations and is selective for E1 transitions. The experimental
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data are now under analysis [18]. In subsequent work, they will
continue the experiment using a more neutron-rich projectile
28Ne. Therefore, the theoretical investigation of low-lying
dipole modes in 26Ne and 28Ne has practical significance.
26Ne and 28Ne are neutron-rich nuclei, whose Fermi surfaces
are close to the particle continuum. Therefore, the description
of these nuclei has to explicitly include the coupling between
bound states and the particle continuum. The contribution of
the particle continuum to the nuclear properties at low energies
can mainly be attributed to a few resonant states [19–23]. On
the other hand, it is well known that pairing correlations play
an important role in describing properties of open shell nuclei.
In order to depict the collective excitations of those nuclei,
pairing correlations have to be taken into account. Recently,
several theoretical works have been devoted to studying the
properties of low-lying dipole modes in the framework of the
quasiparticle random phase approximation (QRPA) [4,24–27].
Paar and his coworkers [28] have studied the evolution of the
low-lying dipole strength in Sn isotopes in the quasiparticle
relativistic random phase approximation (QRRPA) in the
configuration space formalism.

In this paper, we aim to investigate the properties of
low-lying dipole modes in the neutron-rich nuclei 26Ne and
28Ne in the QRRPA which is formulated in the response
function method. The QRRPA is an extension of the fully
consistent RRPA [29–31] and takes into account the effect of
pairing correlations. A consistent treatment of RRPA within
the relativistic mean field (RMF) approximation requires that
the configurations include not only the pairs formed from the
occupied Fermi states and unoccupied states but also the pairs
formed from the Dirac states and occupied Fermi states. It
has been emphasized in Refs. [29,30] that the inclusion of
configurations built from positive energy states in the Fermi
sea and negative energy states in the Dirac sea is essential
to give an accurate quantitative description of the excitation
energies of isoscalar giant multipole resonances as well as
to ensure current conservation and decouple the spurious
states. In the present calculations, we pay more attention to
the energy-weighted moment m1 and the centroid energy of
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the low-lying dipole strength as well as to the contribution
of states around the Fermi surface to the low-lying dipole
strength. Although some theoretical investigations show that
26Ne and 28Ne are deformed and strongly anharmonic [32–34],
a spherical symmetry is assumed in the present investigation.
In order to show the applicability of the method with a spherical
assumption, we also study the quadrupole excitations in these
nuclei and compare the calculated position and transition
strength of the lowest 2+ states with the experimental data.

In this work, the ground-state properties of the neutron-rich
nuclei 26Ne and 28Ne are calculated in the extended relativistic
mean field and the Bardeen-Cooper-Schrieffer (RMF+BCS)
approximation [22], where the resonant continuum is properly
treated. The empirical pairing gaps deduced from odd-even
mass differences are adopted in the BCS calculation in this
work. All calculations are performed with the parameter
set NL3 [35], which gives a good description of not only
the ground-state properties [36] but also the collective giant
resonance [29–31,37–39].

The paper is arranged as follows. In Sec. II, we present the
formalism of the QRRPA in the extended RMF+BCS ground
state in the response function approach. In Sec. III, a test of
the numerical calculation of the QRRPA in the neutron-rich
nucleus 22O is performed and compared with the results in
Ref. [28]. In Sec. IV, the ground-state properties of 26Ne and
28Ne are studied in the extended RMF+BCS approach. Then
the QRRPA in the response function formalism is applied to
study the properties of isovector giant dipole resonances in
nuclei 26Ne and 28Ne. Finally, we give a brief summary in
Sec. V.

II. THE QUASIPARTICLE RELATIVISTIC RANDOM
PHASE APPROXIMATION

There are usually two methods of obtaining the RPA
strength in the study of nuclear collective excitations. One
is working in a particle-hole configuration space and solving
the RPA equation using a matrix diagonalization method [30];
the other is based on the linear response theory [40]. In the
response function formalism, one solves a Bethe-Salpeter
equation by inversion. In both methods the starting point is
a self-consistent solution of the nuclear ground state. In this
paper we shall work in the response function formalism and
study nuclear dipole excitations in neutron-rich nuclei.

In the RRPA calculation, we first solve the Dirac equation
and equations of meson fields self-consistently in the coordi-
nate space. The continuum is discretized by expanding nucleon
spinors on a complete set basis, such as eigenfunctions in a
spherical harmonic oscillator potential. Those single particle
states are used to build the RRPA configurations: a set of
particle-hole pairs ( ph) and pairs formed from the negative
energy state in the Dirac sea and the hole state in the Fermi
sea (αh).

The response function of a quantum system to an external
field is given by the imaginary part of the polarization operator,

R(Q,Q; k, k′; E) = 1

π
Im �R(Q,Q; k, k′; E), (1)

where Q is an external field operator. The RRPA polarization
operator is obtained by solving the Bethe-Salpeter equation:

�(Q,Q; k, k′, E)

= �0(Q,Q; k, k′, E) −
∑

i

g2
i

∫
d3k1d

3k2�0

× (Q,�i ; k, k1, E)Di(k1, k2, E)�(�i,Q; k2, k′, E).

(2)

In the RRPA, the residual particle-hole interactions are
obtained from the same Lagrangian as in the description of
the nuclear ground state. They are generated by exchanging
various mesons: the isoscalar scalar meson σ , the isoscalar
vector meson ω, and the isovector vector meson ρ. Therefore,
in Eq. (2) the sum i runs over σ, ω, and ρ mesons, and gi

and Di are the corresponding coupling constants and me-
son propagators. They are �i = 1 for the σ meson and
�i = γ µ, γ µτ3 for the ω and ρ mesons, respectively. The
meson propagators in the nonlinear model are nonlocal in
the momentum space and therefore have to be calculated
numerically. The detailed expressions of nonlinear meson
propagators Di(k1, k2, E) can be found in Ref. [40]. �0 is
the unperturbed polarization operator, which in a spectral
representation has the following retarded form:

�R
0 (P,Q; k, k′; E)

= (4π )2

2L + 1




∑
h,p

(−1)jh+jp

[
〈φh‖PL‖φp〉〈φp‖QL‖φh〉

E − (εp − εh) + iη

− 〈φp‖PL‖φh〉〈φh‖QL‖φp〉
E + (εp − εh) + iη

]

+
∑
h,α

(−1)jh+jα

[
〈φh‖PL‖φα〉〈φα‖QL‖φh〉

E − (εα − εh) + iη

− 〈φα‖PL‖φh〉〈φh‖QL‖φα〉
E + (εα − εh) + iη

] 
 . (3)

The unperturbed polarization operator includes not only the
positive energy particle-hole pairs but also pairs formed from
the Dirac sea states and the Fermi sea states. In Refs. [29,30]
the authors show that the inclusion of configurations built
from positive energy states in the Fermi sea and negative
energy states in the Dirac sea is essential to give an accurate
quantitative description of the excitation energies of isoscalar
giant multipole resonances as well as to ensure current
conservation and decouple the spurious states.

The pairing correlation and coupling to the continuum
are important for exotic nuclei. A proper treatment of
the resonant continuum to pairing correlations has been
recently investigated in the Hartree-Fock (HF) Bogoliubov
or the HF+BCS approximation [19–21] and in the extended
RMF+BCS approximation [22,23]. It shows that the simple
BCS approximation in the resonant continuum with a proper
boundary condition works well in the description of ground-
state properties even for neutron-rich nuclei. We treat the
pairing correlation within the BCS approximation in this work,
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and the resonant continuum is calculated by imposing an
asymptotic scattering boundary condition.

When pairing correlations are taken into account, the
elementary excitation is a two-quasiparticle excitation, rather
than a particle-hole excitation. The unperturbed polarization
operator in the QRRPA in the response function formalism can
be constructed in a similar way as

�R
0 (P,Q; k, k′; E)

= (4π )2

2L + 1




∑
α,β

(−1)jα+jβ Aαβ

[
〈φα‖PL‖φβ〉〈φβ‖QL‖φα〉

E − (Eα + Eβ) + iη

− 〈φβ‖PL‖φα〉〈φα‖QL‖φβ〉
E + (Eα + Eβ) + iη

]

+
∑
α,β

(−1)jα+jβ υ2
α

[
〈φα‖PL‖φβ〉〈φβ‖QL‖φh〉
E − (Eα + λ − εβ) + iη

− 〈φβ‖PL‖φα〉〈φα‖QL‖φβ〉
E + (Eα + λ − εβ) + iη

] 
 , (4)

with

Aαβ = (uαυβ + (−1)Lυαuβ)2(1 + δαβ)−1, (5)

where υ2
α is the occupation probability, and u2

α = 1 − υ2
α .

Eα =
√

(εα − λ)2 + �2 is the quasiparticle energy, where
λ and � are the Fermi energy and the pairing correlation
gap, respectively. In the BCS approximation, the φα is the
eigenfunction of the single-particle Hamiltonian with an
eigenvalue εα . In Eq. (4), terms in the first square bracket
represent those excitations with one quasiparticle in fully or
partially occupied states and one quasiparticle in partially
occupied or unoccupied states. Terms in the second square
bracket describe all excitations between positive energy fully
or partially occupied states and negative energy states in
the Dirac sea. For unoccupied positive energy states outside
the pairing active space, their energies are Eβ = εβ − λ,
with occupation probabilities υ2

β = 0 and u2
β = 1. For fully

occupied positive energy states, the quasiparticle energy and
the occupation probability are, respectively, Eα = λ − εα and
υ2

α = 1 in Eq. (4). States in the Dirac sea are not involved
in pairing correlations. Therefore, the quantities υ2

β
and u2

β

are set to be 0 and 1, respectively. Once the unperturbed
polarization operator in the quasiparticle scheme is built, the
QRRPA response function can be obtained by solving the
Bethe-Salpeter equation (2), as is usually done in the RRPA.

III. NUMERICAL CALCULATION AND TEST
OF THE QRRPA

In this section, we first check the validity of the present
QRRPA calculations. We apply the QRRPA to calculate the
response function of the isovector giant dipole resonance
(IVGDR) and the isoscalar giant quadrupole resonance (IS-
GQR) in the neutron-rich nucleus 22O. Similar calculations for
the nucleus 22O were recently performed by Paar et al. [28] in
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FIG. 1. IVGDR strengths in 22O. The solid curve represents the
result calculated in the QRRPA approach. The result calculated in the
RRPA approach is shown by a dashed curve. All results are calculated
with the effective Lagrangian parameter set NL3.

the framework of the relativistic Hartree-Bogoliubov (RHB) +
QRRPA in the configuration space formalism.

The ground-state properties of the nucleus 22O are cal-
culated in the extended RMF+BCS approach [22] with the
parameter set NL3. The neutron pairing gap is obtained from
the experimental binding energies of neighboring nuclei, �n =
1.532 MeV. In the QRRPA calculation, particle-hole residual
interactions are taken from the same effective interaction NL3,
which is used in the description of the ground state of 22O.
Fully occupied states and states in the pairing active space
are calculated self-consistently in the extended RMF+BCS
approach in the coordinate space. The BCS active space is
taken as all states in the sd shell as well as the 1f7/2 state, which
is a resonant state in 22O. A scattering boundary condition is
imposed in the resonant continuum. Unoccupied states outside
of the pairing active space are obtained by solving the Dirac
equation in the expansion on a set of the harmonic oscillator
basis. The response functions of the nuclear system to the
external operator are calculated at the limit of zero momentum
transfer. It is also necessary to include the space-like parts
of vector mesons in the QRRPA calculations, although they
do not play a role in the ground State [41]. The consistent
treatment guarantees the conservation of the vector current.

In Fig. 1, we show the response function of the IVGDR
mode in 22O calculated in the RRPA and QRRPA approaches.
The isovector dipole operator used in the calculations is [42]

Q = e
N

A

Z∑
i=1

riY1M (r̂i) − e
Z

A

N∑
i=1

riY1M (r̂i), (6)

which excites an L = 1 type electric (spin-nonflip) �T = 1
and �S = 0 giant resonance with Jπ = 1−. The spurious state
for exotic nuclei may appear at an energy of about 1 MeV
in the IVGDR strength in numerical calculations due to the
mixture of the isoscalar mode [43]. In our present calculations,
the spurious state is removed by slightly adjusting the coupling
constant of the σ meson in the residual interaction by less than
1%, which does not affect the general results.

In general, the IVGDR strengths in light stable nuclei are
expected to be fragmented substantially. This also occurs in
the response function of the IVGDR in neutron-rich nuclei.
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FIG. 2. ISGQR strengths in 22O. Notations are the same as in
Fig. 1.

More fragmented distributions around the GDR region in 22O
are observed in Fig. 1. In addition to the characteristic peak
of the IVGDR at an energy of around 20 MeV, the low-lying
dipole strength appears at an excitation energy below 10 MeV.
It can be seen that the inclusion of pairing correlations
enhances the low-lying dipole strength and has a slight effect
on the strength at the normal dipole resonance. This illustrates
the importance of including pairing correlations in the study
of the low-lying isovector dipole strength in neutron-rich
nuclei. The effect of pairing correlations on the isovector
dipole strength in 22O observed in our calculation is consistent
with that obtained in the RHB+QRRPA in the configuration
formalism (Fig. 2 of Ref. [28]).

The response functions of the ISGQR mode in 22O
calculated in the RRPA and QRRPA approaches are shown
in Fig. 2. In the present calculation, the isoscalar quadrupole
operator is taken from Ref. [42]:

Q = e
Z

A

A∑
i=1

r2
i Y2M (r̂i). (7)

The inclusion of pairing correlations shifts the low-lying
quadrupole strength to a higher energy region and enhances
the low-lying quadrupole strength, whereas this only slightly
affects the strength at the normal giant resonance region. A
similar effect on the isoscalar quadrupole strength in 22O has
been observed in Fig. 3 of Ref. [28] in the framework of the
RHB+QRRPA.
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FIG. 3. Neutron and proton density distributions in nuclei 26Ne
and 28Ne. All results are calculated in the RMF+BCS.

TABLE I. The energy-weighted moment m1 at Ex < 60 MeV
for the electric isovector dipole and isoscalar quadrupole excitations
in 22O. DC represents the result from double commutators in the
nonrelativistic approach.

DC m1 (Ex < 60 MeV)

RRPA QRRPA

IVGDR(e2 fm2 MeV) 75.9 82.08 81.71

ISGQR(e2 fm4 MeV) 2018 1971 2159

In Table I we show the energy-weighted moment m1 at
Ex < 60 MeV for electric isovector dipole and isoscalar
quadrupole excitations in 22O. DC represents the result from
double commutators in the nonrelativistic approach. In the
isovector dipole mode, the value corresponds to the Thomas-
Reiche-Kuhn (TRK) dipole sum rule. It is shown that the m1

obtained by the integration of the RPA strength up to 60 MeV
is slightly larger than that obtained by the double commutator
(DC) in the dipole mode, whereas in the quadrupole mode,
both the RRPA and QRRPA results are close to the DC value.

IV. ISOVECTOR DIPOLE EXCITATION IN THE
NEUTRON-RICH NUCLEI 26NE AND 28NE

A. Ground-state properties of nuclei 26Ne and 28Ne

Ground-state properties of nuclei 26Ne and 28Ne are studied
in the extended RMF+BCS with the parameter set NL3,
where a spherical symmetry is assumed. The continuum is
calculated by imposing a scattering boundary condition, and
the width of the resonant state is not considered in this work.
Constant pairing gaps are adopted in the calculation of pairing
correlations, which are obtained from the experimental binding
energies of neighboring nuclei by the formula

�p = 1
8 (B(Z − 2, N ) − 4B(Z − 1, N ) + 6B(Z,N )

− 4B(Z + 1, N) + B(Z + 2, N)), (8)

�n = 1
8 (B(Z,N − 2) − 4B(Z,N − 1) + 6B(Z,N )

− 4B(Z,N + 1) + B(Z,N + 2)). (9)

In our calculations, the neutron pairing active space in
nuclei 26Ne and 28Ne includes states up to the N = 28 major
shell and the 2p3/2 state, which are 1d5/2, 2s1/2, 1d3/2, 2p3/2,
and 1f7/2. The BCS active space for protons is taken as all
states in the sd shell. In Table II we list the neutron and proton
pairing gaps in nuclei 26Ne and 28Ne derived from Eqs. (8)
and (9) and the calculated ground-state properties, including
neutron and proton Fermi energies, total binding energies,
as well as the neutron and proton rms radii. The values in
parentheses are corresponding experimental binding energies
taken from Ref. [44]. Neutron single-particle energies and
BCS occupation probabilities for those states near the neutron
Fermi energy are shown in Table III, where levels (2p3/2 and
1f7/2) with positive energies are the single-particle resonant
states.
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TABLE II. Neutron and proton pairing gaps in 26Ne and 28Ne,
and calculated ground-state properties: neutron and proton Fermi
energies, binding energies, as well as neutron and proton rms radii.
Values in parentheses are the corresponding experimental data of the
binding energy [44].

26Ne 28Ne

�n (MeV) 1.436 1.400
�p (MeV) 2.025 2.101
λn (MeV) −5.325 −4.290
λp (MeV) −14.168 −16.247
EB (MeV) 201.8(201.6) 210.5(206.9)
rn (fm) 3.179 3.348
rp (fm) 2.784 2.833

Thus the nucleon density with pairing correlations can be
written as

ρ(r) =
∑

α

(2jα + 1)

4π
υ2

αφ†
α(r)φα(r), (10)

where the summation runs over all states weighted by the factor
υ2

α . In Fig. 3 we show the calculated nucleon densities in 26Ne
and 28Ne. It is shown in Table II that proton rms radii are
much smaller than those of neutrons. The neutron densities
have far-extending tails seen in Fig. 3, which clearly shows
neutron skins formed in those nuclei.

B. Low-lying isovector dipole modes in 26Ne and 28Ne

In this work, a spherical assumption is adopted in the
RMF and RRPA calculation, although 26Ne and 28Ne are
deformed and anharmonic. In order to see to what extent
the present model can be effective, one first studies the
quadrupole excitations in these nuclei and compares them
with the experimental data. The calculated energies and B(E2)
values for the lowest 2+ states in 26Ne and 28Ne are listed in
Table IV. The values in parentheses are the corresponding
experimental data taken from Ref. [45]. Although the B(E2)
value in 28Ne is very close to the lower limit of the experimental
data, the present calculations reasonably reproduce the lowest
2+ states and their B(E2) values.

We now apply the QRRPA approach to investigate the
isovector dipole response in 26Ne and 28Ne. We focus our
attention on properties of the isovector low-lying dipole

TABLE III. Neutron single particle energies εα and occupation
probabilities υ2

α of levels near the neutron Fermi energy in nuclei
26Ne and 28Ne.

26Ne 28Ne

εα (MeV) υ2
α εα (MeV) υ2

α

1d5/2 −10.548 0.982 −10.836 0.989
2s1/2 −6.549 0.824 −7.054 0.946
1d3/2 −3.408 0.099 −4.299 0.503
2p3/2 0.786 0.018
1f7/2 2.946 0.007 2.223 0.011

TABLE IV. The calculated energies and B(E2) values for the
lowest 2+ states in 26Ne and 28Ne. The values in parentheses are the
corresponding experimental data taken from Ref. [45].

E2+ (MeV) B(E2) (e2 fm4)

26Ne 1.46(1.99 ± 0.012) 223(228 ± 41)
28Ne 1.29(1.32 ± 0.020) 156(269 ± 136)

strength. In Fig. 4, we present the Hartree and perturbed
strengths for the isovector dipole mode in nuclei 26Ne (upper
panel) and 28Ne (lower panel) calculated in the RRPA and
QRRPA approaches. Short-dashed curves represent the RRPA
strengths; the QRRPA response functions are denoted by solid
curves. In Fig. 4, it can be seen that the perturbed strengths
at energies above 10 MeV for these neutron-rich nuclei are
very fragmented. Compared to the Hartree strengths, the RPA
strengths are shifted to a higher energy region due to the
repulsive particle-hole residual interaction generated mainly
by exchanging a ρ meson.

In addition to the characteristic peak of the IVGDR around
an energy of 20 MeV, low-lying dipole strengths appear at
excitation energy below 10 MeV. It is shown in Fig. 4 that the
effect of pairing correlations on the isovector dipole strength
in 26Ne and 28Ne is to shift the low-lying dipole strength
to a higher energy region and decrease the low-lying dipole
strength, especially in 26Ne. The situation slightly differs from
that in 22O, where the low-lying strength is increased. The
decrease of the low-lying strength is mainly due to the fact that
two-quasiparticle excitations in the dipole mode are weakened
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FIG. 4. Isovector dipole strength functions in neutron-rich nuclei
26Ne (upper panel) and 28Ne (lower panel). The QRRPA responses
with the pairing (solid curves) are compared with the RRPA
calculation without the pairing (dashed curves). The thick and thin
curves represent perturbed and Hartree strengths, respectively.
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by a factor of υ2
α when the pairing correlation is switched on.

In addition, the two-quasiparticle excitation energy is larger
than the corresponding particle-hole excitation energy in the
dipole mode [27]. On the contrary, when the pairing correlation
is taken into account the configuration space becomes larger,
which allows for the particle-particle and hole-hole transitions.
This enlarged configuration space may increase the low-lying
strength. As analyzed below, the state 2s1/2 produces a large
contribution to the low-lying strength of the dipole mode in
26,28Ne and 22O. It is known that the 2s1/2 state is located below
and above the Fermi surface in 26,28Ne and 22O, respectively.
Therefore, particle-particle excitations, especially due to the
particle state 2s1/2, largely enhance the low-lying strength in
22O, which is not true in the case of 26Ne and 28Ne.

In comparison with the Hartree strength, it is found that the
RPA strength of the isovector dipole mode at the low-energy
region in 26Ne and 28Ne shown in Fig. 4 remains at its position
and is created mainly from a few particle-hole configurations,
which show that it has a single-particle-like property. The
low-lying strength is slightly attracted back to the lower energy,
which is due to the correlations of the isoscalar operator in
the isovector mode [43]. Differing from the normal IVGDR
response, the low-lying resonance can be interpreted as the
excitation of the excess neutrons out of phase with the core
formed with an equal number of protons and neutrons [14].
Analyzing the Hartree strength of the isovector dipole mode
in 26Ne at energies below 10 MeV calculated with pairing
correlations, one finds a pronounced peak around 8.5 MeV,
which is formed mainly from the neutron configurations of
ν(2s−1

1/22p3/2) (8.482 MeV) and ν(2s−1
1/22p1/2) (9.232 MeV),

where the values in parentheses are their Hartree energies.
Since 16 neutrons in 26Ne fill neutron orbits up to 2s1/2 and
form a subclosed shell, the occupation probabilities at 1d3/2

and 1f7/2 states in 26Ne are relatively small (see Table III).
Therefore, the contribution from neutron states 1d3/2 and
1f7/2 to the low-lying Hartree strength is insignificant. In
contrast, for the Hartree strength at the low energy region
in 28Ne, in addition to the peaks formed from the neutron
configurations of ν(2s−1

1/22p3/2) (8.523 MeV) and ν(2s−1
1/22p1/2)

(9.080 MeV), a few more peaks appear, which are formed from
the neutron excitation between the bound level 1d3/2 and levels
in the continuum. It is found that the Hartree strengths at the
low-lying dipole in 26Ne and 28Ne are mainly due to neutron
excitations near the Fermi surface.

Although the Hartree low-lying strength is mainly formed
from the neutron excitations, the RPA strengths are fully
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FIG. 5. The contribution of the proton to the isovector dipole
strengths in 26Ne (left panel) and 28Ne (right panel) in the QRRPA
approach. The solid curves are the full QRRPA strengths. The dashed
curves represent strengths from the proton.

correlated and contributed from both neutron and proton. To
illustrate the contribution of the proton to the full strength,
we set a very small value of the neutron effective charge in
the dipole operator instead of eZ/A. Results are plotted in
Fig. 5. The dashed curves represent the strengths from the
proton, which are compared with the full QRRPA strengths
denoted by solid curves. Figure 5 clearly shows that the
proton also plays an important role in the perturbed strength
at low-lying dipole states.

In Ref. [14], the authors have studied the evolution of
collectivity in the isovector dipole response in the low-lying
region for neutron-rich isotopes of O, Ca, Ni, Zr, and Sn using
the RRPA method. They conclude that in light neutron-rich
nuclei, such as neutron-rich isotopes of O and Ca, the onset of
dipole strength in the low-lying region is due to single particle
excitations of the loosely bound neutrons. By analyzing
the structure of RRPA strengths in a low-lying region in
nuclei 26Ne and 28Ne, we find that there are only several
configurations contributing to the low-lying RRPA strength,
and the RRPA strengths remain in their positions compared
to the Hartree strengths in the low-energy region, which mean
that the RRPA strengths in the low-lying region in nuclei 26Ne
and 28Ne are dominated by single particle transitions.

In order to give a clearer description of those isovector
low-lying dipole states obtained in the QRRPA approach, we
calculate various moments of isovector dipole strengths at a

TABLE V. The non-energy-weighted moment m0 and the energy-weighted moment m1 of isovector dipole strengths in
26Ne and 28Ne in the QRRPA calculations. We separate the energy region into low energies (0 MeV � Ex � 10 MeV) and
high energies (10 MeV � Ex � 30 MeV). The values in the last two columns are obtained from the classical TRK dipole
sum rule and the TRK cluster sum rule (e2 fm2MeV). The units are e2 fm2 and e2 fm2MeV for m0 and m1, respectively.

0 MeV � Ex � 10 MeV 10 MeV � Ex � 30 MeV STRK SClus

m0 m1 m0 m1

26Ne 0.542 4.525 5.032 103.9 91.7 17.2
28Ne 0.705 5.606 5.648 111.2 95.8 21.3
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given energy interval

mk =
∫ E2

E1

RL(E)EkdE, (11)

where E1 and E2 are the lower and upper energies of the
integral, respectively. The RPA equation is solved until E =
60 MeV in the present calculations. The non-energy-weighted
moment m0 and the energy-weighted moment m1 of isovector
dipole strengths in 26Ne and 28Ne are calculated at two energy
intervals: the low-energy region (0 MeV � Ex � 10 MeV) and
the high-energy region (10 MeV � Ex � 30 MeV), which are
listed in Table IV. The values obtained from the Thomas-
Reiche-Kuhn (TRK) dipole sum rule are listed in the sixth
column. In our present QRRPA calculations, the low-lying
isovector dipole strengths in 26Ne and 28Ne exhaust about
4.93% and 5.85% of the TRK dipole sum rule, respectively.
This is consistent with recent experimental observations in
18O, 20O, and 22O, where the low-lying isovector dipole
strengths exhaust about 5% of the TRK dipole sum rule [13].
In general, the percentage of the low-lying isovector dipole
strength becomes larger as the neutron excess increases [14].
The energy-weighted moment m1 at Ex < 10 MeV in 28Ne is
about 1.0% larger than that in 26Ne.

On the other hand, the cluster sum rule [7,8,46,47] is
usually used to understand the properties of low-lying dipole
strength in exotic nucleus excitations. Here, we choose 20Ne
as the core. In Table V, we also list the values obtained from
the TRK cluster dipole sum rule, say, 17.2 e2 fm2 MeV and
21.3 e2 fm2 MeV for 26Ne and 28Ne, respectively. Table V
shows that the low-lying dipole excitations in these two
neutron-rich nuclei exhaust about 26.3% of the TRK cluster
dipole sum rule. Similar results are obtained in Ref. [7] for
neutron-rich isotopes.

The centroid energy of the response function is defined as

E = m1/m0. (12)

We separate the energy interval into two regions: 0 MeV <

Ex < 10 MeV and 10 MeV< Ex < 60 MeV. The centroid
energies in these two energy regions are listed in Table VI. In
the QRRPA calculations, the centroid energies of low-lying
isovector dipole strengths in 26Ne and 28Ne are 8.34 and
7.94 MeV, respectively, whereas the centroid energies of the

TABLE VI. Centroid energies of the isovector dipole response
functions in 26Ne and 28Ne. The centroid energies are calculated
within 0 ∼ 10 and 10 ∼ 60 MeV, respectively. All energy values
are in units of MeV.

26Ne 28Ne

E(0 ∼ 10) 8.34 7.94
E(10 ∼ 60) 22.32 21.13

normal IVGDR strengths are located at 22.3 MeV for 26Ne
and 21.1 MeV for 28Ne.

V. SUMMARY

In this paper we have studied the properties of low-lying
isovector dipole resonances in the neutron-rich nuclei 26Ne
and 28Ne in the framework of the QRRPA with the effective
Lagrangian parameter set NL3. The ground-state properties
are calculated in the extended RMF+BCS approach, where
the resonant continuum is properly treated. Constant pairing
gaps extracted from the experimental binding energies of
neighboring nuclei are adopted in the BCS calculation. In the
QRRPA calculation, the negative energy states in the Dirac sea
are included for completeness. It is shown that the inclusion
of pairing correlations has a relatively strong effect on the
low-lying isovector dipole strength in neutron-rich nuclei.
In the QRRPA calculation, the low-lying isovector dipole
strengths in 26Ne and 28Ne exhaust about 5% and 26.3%
of the TRK dipole sum rule and the TRK dipole cluster
sum rule, respectively. The centroid energies of the low-lying
dipole excitation in nuclei 26Ne and 28Ne are located around
8.0 MeV.
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