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We propose a scheme for extracting an effective three-body interaction originating from a two-nucleon
interaction. This is based on the O-box method of Kuo and collaborators, where folded diagrams are obtained
by differentiating a sum of nonfolded diagrams with respect to the starting energy. To gain insight we have
studied several examples using the Lipkin model where the perturbative approach can be compared with exact
results. Numerically the three-body interactions can be significant and in a matrix example good accuracy was
not obtained simultaneously for both eigenvalues with two-body interactions alone.
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I. INTRODUCTION

The role of effective three-body forces in shell-model and
nuclear structure calculations of medium-heavy and heavy
nuclei is still an unsettled question. The question has received
scattered attention over the years, but there has been no
decisive study yet yielding a unique answer; see, for example,
Refs. [1-4]. Most of the studies seem to indicate that effective
three-body forces play a rather modest role for nuclear spectra,
although there is a possibility that binding energies may be
more substantially affected. As pointed out by Zuker [5], one is
not able to obtain simultaneously a good reproduction of both
the excitation spectra and the binding energy with effective
interactions based on two-body nucleon-nucleon interactions
only, unless one fits an effective interaction to reproduce
selected data; see, for example, the recent work of Otsuka
et al. in Refs. [6,7]. To give an example, effective interactions
derived from two-body nucleon-nucleon interactions that fit
nucleon-nucleon scattering data are not able to reproduce the
well-known shell closure in “®Ca or the excitation spectra of
#7Ca and #Ca [5,8,9]. For the chain of oxygen isotopes one
may even reach the conclusion that 20 is a bound nuclear
system, unless the interaction is fitted to reproduce selected
properties such as binding energies and spectra of known and
stable nuclei in the 15s0d shell [8].

Conversely, theoretical interactions that have not been fitted
do rather well in reproducing nuclear properties other than
binding energies and shell closures. Examples are nuclear
spectra around A ~ 100 and 132 [10-15], which come out
surprisingly well in view of the complexity of the many-body
problem. It has therefore been speculated that some of the
above-mentioned deficiencies could be ascribed to the lack
of three-body interactions, as seen in recent Monte Carlo and
no-core shell-model calculations of light nuclei with A < 16
[16-20].

In light nuclei the role of three-body forces seems rather
well established. To reproduce the binding energy of the
triton, for example, it is necessary to include a three-nucleon
interaction in addition to the two-nucleon interaction. The
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situation in medium-heavy and heavy nuclei is, however,
unclear, although similar arguments, based on an analysis of
Op, 150d, and 1p0 f nuclei by Zuker [5], lend support to the
need for three-body interactions in heavier nuclei as well.

In contrast to the case for light nuclei, none of the present
calculations of effective interactions for medium and heavy
nuclei are sufficiently complete, however, to enable one to
draw definite conclusions. For nuclei with A > 16, one relies
on shell-model analyses combined with appropriate effective
interactions for a selected model space. Such interactions
are typically based on perturbative many-body methods and
because high-order calculations of the effective three-body
contribution are prohibitively complicated, one is forced to
limit oneself to low-order calculations. There are, however,
classes of diagrams that can be summed to infinite order. One
of these classes is the set of folded diagrams. The latter arise
because of the removal of the dependence on the exact model-
space energy in the Brillouin-Wigner perturbation expansion.
Through the Q-box formulation and its derivatives [9,21], this
set of diagrams can easily be summed up. With few exceptions
[2], three-body folded diagrams have not been included. There
are indications, however, that folded three-body diagrams may
be important, even if nonfolded ones are small.

There is obviously a need to obtain a clearer picture of the
role of effective three-body forces in heavier nuclei. Part of
our motivation for studying the contribution of effective three-
body forces comes from large-scale shell-model calculations
of the entire range of Sn isotopes from A =100 to A =132,
where the spectra are well reproduced, whereas the binding
energies are strongly overestimated. In fact, it was found
that a small repulsive monopole contribution to the effective
two-body interaction could cure this problem. The origin of
such a term is unknown, but it is speculated that it might
be simulating an effective three-body interaction. Indeed
Talmi [22] has shown that the binding energies of the entire
range of Sn isotopes could be well fitted by an effective
two-body plus an effective three-body interaction. Despite
the fact that both the Green’s function Monte Carlo and
no-core shell-model approaches offer benchmark calculations

©2005 The American Physical Society



P.J. ELLIS et al.

of light nuclei with A < 16 [16-20], and that coupled cluster
approaches can presently extend the region of ab initio
calculations to A ~40—56 [23], features of heavier nuclei
will most likely be studied within the framework of the shell
model and appropriately defined effective interactions. Thus
we need to have a controlled approach that allows us to discern
contributions from various many-body terms, such as effective
three-body forces. Effective three-body forces may originate
from three-nucleon forces as well as from two-nucleon forces.
To be able to draw definite conclusions, we believe that
it is necessary to study one effect at a time. Thus, before
introducing a three-nucleon interaction, we would study the
contribution from effective three-body forces originating from
the two-nucleon interaction. This is the topic of the present
work.

The article is organized as follows. In Sec. II we propose an
algorithm for evaluating the effective three-body interaction
in the convenient Q-box formalism introduced by Kuo and
collaborators [9,21]. We prepare ourselves for this procedure
by briefly summarizing the method for obtaining the effective
two-body interaction. Because the method can be rather
involved in realistic cases, we apply it in Sec. III to a simple
model, namely the Lipkin model [24], for which exact results
can easily be obtained; see, for example, Ref. [25]. This is
instructive both as regards the formalism and the numerical
results. In Sec. IV we draw conclusions and point to the need
for more realistic calculations.

II. THE EFFECTIVE ONE-, TWO-, AND
THREE-BODY INTERACTIONS

The Hamiltonian acting in the complete Hilbert space
(usually infinite) consists of an unperturbed one-body part,
Hy, and a perturbation V, namely H = Hy + V. The goal is
to obtain an effective interaction, V, such that H = Hy + V
acting in a chosen model or valence space yields a set of
eigenvalues which are identical to (a subset of) those of
the complete problem. To this end Kuo and collaborators
introduced the Q box (see Refs. [9,21]), which, in principle,
contains all nonfolded diagrams that are attached to the valence
particle lines. Unlinked pieces that refer to excitations of a
closed-shell core are absent because the energy is calculated
relative to the closed-shell ground state [26]. The effective
interaction also requires that folded diagrams be included to
all orders and this can be formally written as follows:

V= 1im V), (1)

n—oo

where

InQ

|
Vi = 0@+ ———

m=1

— D", @)

with V(0) = O and matrix multiplication implied. Here
is the unperturbed energy of the initial state. To perform
calculations with N particles in the model space it is necessary
to separate the effective interaction V into its one-, two-, and
three-body components (in principle up to N-body interactions
are needed, but we shall not go beyond three-body). This brief
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FIG. 1. Two-body diagrams discussed in the text.

sketch establishes our notation; a complete discussion is to be
found in Refs. [9,21,26,27].

Consider first the case where our model space consists of
a single particle, N = 1; we assume that a given total angular
momentum j is represented only once. Then Eq. (1) can be
solved for each state separately, yielding the complete folded
series for the one-body effective interaction V = V), The
one-body effective Hamiltonian is thus Hy + V1.

Now consider the case where we have two particles in the
model space, N = 2. The Q) box again consists of all nonfolded
diagrams. It will include diagrams such that the interactions
link the two valence lines together as indicated schematically
in Fig. 1(a), diagrams where one line is noninteracting as in
Fig. 1(b), and diagrams where the interactions on each line are
separate so that the diagram is valence unlinked as in Fig. 1(c).
All of these components need to be included so as to generate
the cross terms in the full folded effective interaction of Egs.
(1) and (2). Valence unlinked diagrams are removed by the
folding process so that the effective interaction is completely
linked [26]. Now because of the one- plus two-body nature of
the Q box, the result for V from Eq. (1) will contain linked,
folded two-body components that are schematically of the
form of Fig. 1(a) plus linked, folded one-body components
where one line is noninteracting, as in Fig. 1(b). The one-body
piece V(U is already determined, as indicated above, so the
purely two-body interaction V® can be obtained from the
following:

(de|V]ab)y = (de|V®|ab)

+ 84a8en(alVPVla) +

The subscript on the left indicates the value of N for which
Eq. (1) is solved. We assume here that the initial and final states
in Fig. 1(a) are in a standard order so that e = a implies d # b.
Here the two-body matrix elements are “antisymmetrized,”
that is, (de|V]ab) implies (de|V|ab — ba). They are not
coupled to a total angular momentum or isospin because our
shell model calculations are carried out in the m-scheme.

Turning to the more interesting three-body case (N = 3),
consider the @ box. It contains diagrams such that the
interactions link the three valence lines together as indicated
schematically in Fig. 2(a), diagrams where two of the lines
are linked [Fig. 2(b)] or where only one line is interacting
as in Fig. 2(c). The valence unlinked diagrams can involve
a two-body and a one-body piece [Fig. 2(d)] or two or three

BIVOBY.  (3)
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one-body pieces [Figs. 2(e) and (f)]. Notice that there are no
valence unlinked diagrams if, as is often the case, one-body
interactions are excluded. In general all of the components
illustrated in Fig. 2 need to be included in generating the full
folded, valence-linked effective interaction of Egs. (1) and
(2). The interaction has a three-body contribution where the
three lines are linked together, schematically in the form of
Fig. 2(a), two-body interactions acting on all possible pairs of
lines [Fig. 2(b)] and one-body interactions acting on each line
separately [Fig. 2(c)]. Using Eq. (3) we can disentangle the
desired V® from

(def|Vabe)s = (def |VPabe) + 8 ye(de| Vab),
— 5fb(d€|V|(lC>2 + (Sfa (de|V|bc),
+ e (df|Vlac)s — Sec(df|V]ab)s
—8ealdfIVIbc)s + daalef |V ]bc),
—daplef|Vlac)y + Saclef|Vlab)a
—8aa8erd re(alVPla) + bV 1b)
+(c[VPle)). “)
Again the subscript on the left indicates the value of N for
which Eq. (1) is solved. Of course for a given matrix element
only a few of the § functions will be nonzero. Because the ini-
tial and final states are in a chosen standard order the one-body
term only contributes whend = a, e = b, and f = c. Here the

uncoupled three-body matrix elements are “antisymmetrized,”
that is, (def |V |abc) implies the following:

(def|V]abc — acb + cab — bac + bca — cba),

labeling in order for particle numbers 1, 2, and 3. Equation (4)
has one-body components in (V), as well as a compensating
explicit term. By using Eq. (3) the equation can be cast just
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FIG. 2. Three-body diagrams discussed in the
text.

in terms of one-, two-, and three-body effective interactions as
follows:

(def|Vl]abc)s = (def |V |abe) + 8 f.(de| VP |ab)
—8sp(delVPlac) + 84(de|VP|bc)
+8e(dfIVPlac) — 8ec(df|VP|ab)
—8ealdf IV |be) + Saalef |V |be)
—Sap(efIVPlac) + 84c(ef |VPab)
+ 84aBerd re((alVVa)

+ (BIVOID) + (c|VPle)). S

This just spells out explicitly the fact that the complete effective
interaction requires all possible valence-linked contributions.
We emphasize that to make this rather clean separation it
is necessary to include in the three-body @ box not only
the valence-linked diagrams but also the unlinked ones of
Figs. 2(d)-2(f). Then the full set of folded, valence-linked dia-
grams is generated. This removes the difficulties encountered
by Miither, Polls, and Kuo [2], who used a valence-linked
O box and discussed the explicit removal of the unwanted
valence-unlinked folded diagrams. For the case of two particles
(N = 2) this can be done, but for three particles (N = 3) it
appears to be prohibitively difficult if one wishes to include all
possible folded diagrams.

Thus, given the O box in the one-, two-, and three-particle
systems we can obtain the one-, two-, and three-body effective
interactions. Obviously it would be possible to generalize
this procedure to obtain four-body and higher interactions.
However, because almost all calculations have stopped at the
two-body level, it is sensible to investigate just three-body
interactions. Here we attempt to get a feel for their impact in
a simple model situation.
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III. APPLICATION TO THE TWO-LEVEL LIPKIN MODEL

The Lipkin model [24] consists of two single-particle levels
labeled by ¢ = — and +, each of which has a degeneracy p.
We write the Hamiltonian as follows:

H=Hy+YV, where

1
H, Eégaa;fwapg, and

1
V= EV Z a;‘wa;,aal,r_(,ap_a

pp'o

1 n
+ EW Z azgal',,_aapr(,ap,g

pp'o

1 t
+ EU Z [alaap/aap/,aapa
pp'o

+a;aa;,_oapraapa]. (6)

Here H) is the unperturbed Hamiltonian with single-particle
energies :I:%S . The two-body interaction, V, has three terms.
The interaction V acts between a pair of particles with parallel
spins and changes the spins from ++ to ——, or vice versa,
and the interaction W is a spin-exchange interaction. The
interaction U, which was not present in the original model,
was introduced by Anastasio and Kuo [28] to induce core
polarization effects; it flips the spin of one particle. It is of
interest to note that the interaction does not change the value
of the degeneracy labels pp’.

Because each particle has only two possible states, the
use of the quasi-spin formulation was suggested by Lipkin
et al. [24]. The quasi-spin operators obey angular momentum
commutation relations and are defined by the following:

1 ,
J, = ) Zaa;aam, Jy = Za},+a,,_, J_ = Za},_al,+.
po P P

)

The Hamiltonian can then be compactly expressed in the form

H=EL+5V(II+I2)+5WU I+ T Jp—n)
+3U + T = 1), ®)

where the number operator n =) o a;aa po- The operator

J? = 1(JpJ- + J_J;) + J? commutes with the Hamiltonian
so the Hamiltonian matrix breaks up into submatrices of
dimension 2J + 1, each associated with different values of
J; for a given number of particles N the largest angular
momentum corresponds to J = %N .

Here we need the case N = 3 and for our purposes it is
sufficient to consider J = % We denote the basis state for

three particles by the following:

\p1E, pok, pat) = a) al ab L 0), ©)

where p; refers to the degeneracy label and |0) is the vacuum

state. Then the basis states for the J = % matrix are as follows:

PHYSICAL REVIEW C 71, 034301 (2005)

=3 =-3)=Ipi— p2— p3—),
=3J.=—3)={lpi— p2—. p3+)

+1pi—, pat. p3=) + [p1+. p2—, p3—)}/V/3,
13) = |7 =371 =+3)={Ipi—. p2+. p3+)

+1pi+, pa—s p3H) + Ipi, prt, p3—)1/V3,

(S]]

4) = [J =30 =+3) = [P+, pot. p3t)- (10)
In this basis the Hamiltonian matrix is
-3 V3U V3V 0
V3U —de+2w 2 V3V
| (1n
V3V 2U le+2w V3U
0 V3V NET/T-

A. The case of U = 0

We consider first the simplest case where U = 0 so that the
matrix (11) splits into two 2 x 2 matrices. Consider the matrix
formed by states |1) and |3) which is

-3 V3V
; (12)
V3V lE 42w
whose eigenvalues are
3 3v?
W=—ZerE+w |1+ 14— 13
SEHEEW) LT (13)

In principle both eigenvalues are given by an exact treatment
of the perturbation series [29] because Eq. (1) is simply a
rearrangement of the exact eigenvalue equation. In practice
approximations imply that only one eigenvalue is obtained
and we will focus on A% using the model space state |1).

Now directly from the matrix (12), or by explicitly drawing
diagrams, the second-order 0 box is 3V?2 /(=2§&). Clearly the
W interaction can be incorporated to all orders yielding an
exact Q box of 3V? /(—=2& — 2W). The folded diagrams can
then be included by differentiation as indicated in Eq. (2). In
the approximation that we stop at order V° the interaction is
as follows:

Vs = — 3v?2 N oy+ B 27V°
T U2E+W) O BEL WY 16(E + WY
= f3(8). (14)

To disentangle the three-body interaction we need the two-
body interaction for the state |p;—, po—). Because this is
only coupled to | p1+, p>+) by the Hamiltonian, the necessary

matrix is as follows:
—£ Vv
v &)

For later use we note that the exact lowest eigenvalue is
A2 = —£/1+V2/E2. Now the exact O box is V2/(—2&)
and carrying out the folding to order V° as before

v ovs oo

<V)2=_E+@—@

= f(8) . 5)
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The one particle wave function is a;, |0) with energy —%
given by the unperturbed Hamiltonian Hy, so that the one-body
interaction V" is zero. Thus, using Eq. (4) or (5), and noting
that because of the degeneracy label p there will only be three
contributions from the two-body terms,

3viw  3v?
VO) = (V)3 —3(V)y = ="+ 2 (V2 — 2 W2
(V) = (V)3 =3(V)2 = g + )
3VIW
4W? —9V?
+ger ( )
3v? 4 2172 4
_4_55(2\/ —9VIW 42w, (16)

Here we have expanded to sixth order in the interaction.
Notice that there is no second-order contribution. This result
can also be obtained by evaluating diagrams, for brevity we
do not go beyond fourth order. In third order the diagram
of Fig. 3(a) is required, whereas in the fourth order the
folded diagram of Fig. 3(b), drawn in unfolded form, and
the nonfolded diagram (c) are needed; by counting the number
of independent diagrams of each type the numerical factors
in Eq. (16) are obtained. If W is set to zero in Eq. (16)
the remaining three-body contributions come from folded
diagrams, Fig. 3(b) and higher orders. The coefficients of
the order V* and V° terms in Eq. (16) are larger than three
times the corresponding values in Eq. (15). This supports
the suggestion that even if nonfolded three-body diagrams
are small, three-body contributions arising from folding could
be important.

We can, of course, obtain the exact three-body interaction
for this simple Hamiltonian using the exact eigenvalues
given. As we have remarked, the one-body interaction V(1 is
zero. Then, subtracting the unperturbed energy, the two-body
effective interaction is as follows:

2
(VP =¢|1- /1+;

(17)

The desired exact three-body interaction is therefore
(V) =29 —3(v®) + 3¢, (18)
where the last term removes the contribution from Hj in A9,

Expanding this expression to sixth order of course yields
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FIG. 3. Third-order (a) and fourth-order [(b)
+ and (c)] three-body diagrams discussed in the text.
Diagram (b) is a folded diagram drawn in unfolded
form for clarity.

©

Eq. (16) again. Notice that because V® depends on W,
whereas V® does not, suitable adjustment of this parameter
could yield a three-body interaction of magnitude comparable
to the two-body interaction. For instance, in the limit W — oo
we have V©® — —3V@ because the eigenvalue is simply —3&
in this case.

It is instructive to make the model a little more elaborate
by changing the parameter & of the one-body Hamiltonian
to & + €. The first term is included in H as before and € is
treated as a perturbation. The matrix (12) then becomes the
following:

V3V

. 19
%E+%e+2w> 1)

~3¢ - 3e
V3V
From the matrix directly, or by drawing diagrams, the Q
box through second order contains both one- and two-body
parts, namely —%e — 3V?/(2¢). Starting in third order there
will be diagrams with € insertions. Because the intermediate
state always involves two + particles and one — particle, the
net insertion is +%e [note that valence unlinked contributions
of the form of Fig. 2(d) occur here]. If these insertions, together
with the W interactions are summed to all orders, one obtains
—%e — 3V2/(2$ +2W + %e), a result that can be obtained
immediately from the matrix (19). Now an € insertion on
each of the three — particles of the model space state |1)
gives a net contribution of — %e. If these insertions are folded
out to all orders, one obtains —%6 —3V2/(Q2E +2W + 2¢),
in the process removing valence-unlinked diagrams. This
result again follows immediately from the matrix (19). If
this modified Q box is used in Eq. (2) to generate all the
additional folded diagrams required, we obtain (V)3 = —%6 +
f3(§ + €). A similar procedure in the two-body case gives
(V)2 = —€ 4+ f2(§ + €). In the one-body case (VY = —%e.
Then using Eq. (4)

(V) = (V)3 = 3(V), +3(VD)
_3VIw 3vE ) 5
=0 +4—§3(v —2W? —4eW)

3v?
+ @(4W3 —OV2W — 6V?e 4 12W?e + 12We?)
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(2) (b)
3V2 4 272 4 2
_45_5(2‘/ —OV-W~ +2W" — 18V-We

+8W3e —6V2e> + 12W2e? + 8Wed),
(20)

to sixth order in the interaction. Obviously the terms that do
not involve € are the same as in Eq. (16). Notice that terms
of the form VZ2e"/£"*+! necessarily belong to the two-body
interaction and do not occur here. The fourth-order term
involving € is generated from the diagrams of Fig. 4(a) and
(b), as well as the folded diagram (c). Here V! is represented
by a dot. Each diagram stands for several different diagrams
of the same general structure and the coefficient in Eq. (20) is
obtained by accounting for all of them. The result in Eq. (20)
can also be obtained by a power series expansion of the exact
result that is the analogue of Eq. (18), namely

(V) =29 —3(v®) —3(v) 4 3¢, 1)

with the replacement § — & + ¢ being made in the first two
terms on the right.

B. The case of U # 0

Here we take the model space to consist of states |1) and |2)
of Eq. (10) and require our effective interaction to reproduce
two of the eigenvalues of the matrix (11). It is simplest
to work with a degenerate model space and we choose the
unperturbed energy to be — %é . The remainder of the diagonal
(2, 2) contribution in (11) is then included as a perturbation.
The lowest order O box of a given type is easily written down
as discussed in Sec. III A. Here we also need to account for
multiple scatterings back and forth between states |3) and |4),
which is easily done by summing the infinite series. Thus we
can obtain the exact Q box:

3y?2

(11011) = S WU

) ) 2J/3U0V
21011) = (11012) = V/3U + —2& —2W + U2/t

J3UV?
2E(E+W)—UY
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FIG. 4. Fourth-order three-body diagrams
discussed in the text. Diagram (c) is a folded
diagram drawn in unfolded form for clarity, and
the dot represents a one-body insertion.

(©)

2|1012) = £ +2W + AU
—2& —2W + U?/¢
N v? 4vU?
—E+U?/(2E +2W)  26¢E+W)—-U?

(22)

Insertion of this in Eq. (2) will yield an effective interaction
that reproduces two of the exact eigenvalues. This is illustrated
by the solid lines in Fig. 5. We work in units of & and
have chosen the dimensionless ratios V/§ = W/& = —-0.4
and U/& = —0.15. The label O fold in Fig. 5 implies that
the solid lines are obtained from the Q box alone, whereas
the labeling n fold implies that the summation over m in
Eq. (2) extends to m = n. As n is increased so that more
folded diagrams are included the eigenvalues of the effective
interaction converge to the exact result. The deviations are less
than 0.2% by the time n = 5.

This analysis necessarily includes effective three-body
interactions and we assess the effect of their removal. To that
end consider first the two-body problem. We only need to

-1.2

-1.4

-1.6

-1.8

Eigenvalues/&

-22

0 1
fold fold

2
fold

3
fold

4
fold

5
fold exact

FIG. 5. Comparison of the eigenvalues (in units of &) of the
effective interaction with n folds to the exact result. For the solid
lines two- and three-body interactions are included, whereas for the
dashed lines only two-body interactions are considered.
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consider the J = 1 matrix which is as follows:

-& U2 VvV
U2 wo U2, (23)
vV U2 &
in the basis
la) = |J = 1J, = —1) = |pi—, p—),
Ib) = |J = 1J, = 0) = {|pi—, pa+) + |p1+. p2—)}/V2,
lc) = |J = 1J, = +1) = |pi+, pat).
(24)

Taking the model space to comprise states |a) and |b) and
choosing degenerate unperturbed energies of —¢&, the exact Q
box is as follows:

2

m@m=—g,
R ~ U VU
b = b)) = — — —, 25
(b|Qla) = (alQIb) e 25)
U2
waw—s+W—@-

When used in Eq. (2) this will give an effective interaction that
yields two of the exact two-body eigenvalues. However, our
interest is in using this in the three particle case. The (a, a)
element will contribute thrice to the (1,1) component of the
three-body Q box and once to the (2,2) case. Note that for
the latter the use of — —E for the unperturbed energies requires
that the energy denommator be modified to 3&. This can be
viewed as arising from diagrams with a one-body insertion
of —& folded out to all orders to correct the energy of the
model space + state. The two-body part of the (b, b) element
contributes twice to the (2,2) component; the one-body part
is associated with the single 4 state and therefore only

contributes once. Finally the (b,a) element contributes thrice
to the (2,1) component multiplied by a factor \/_ due to the
normalization in Egs. (10) and (24). In this way the one- plus
two-body contribution to the three-body O box is found to be
as follows:

. 3v?
<1|Q|1>=—¥,
VU
21011) = (11012) = fU_fzg ) (26)
v v?
<2|Q|2>_§+2W—E—¥

Note a subtlety here. A diagram of the type shown in Fig. 6
might appear to be a two-body contribution to the three-particle
interaction. However, if the noninteracting line is erased
the remainder cannot contribute to the two-body interaction
because the intermediate state is in the model space. This
is no longer the case with three particles present where
the intermediate state lies outside the model space, thus it
is properly counted as a three-body interaction. Comparing
Eq. (26) to Eq. (22) we see that here the three-body interactions
begin at second order because of the presence of state |2).
Using the two-body approximation of Eq. (26) for the Q box
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FIG. 6. A three-body diagram discussed in the text.

in Eq. (2) yields the eigenvalues denoted by dashed lines
in Fig. 5. Comparison with the exact result shows that the
two-body approximation converges more rapidly in terms of
the number of folds, but the converged result has a lower
(upper) eigenvalue that is in error by 9% (4%); this is not
insignificant. The point is also made in Fig. 7, where the same
values of V /& and U/ are used, but the parameter W/§ is
allowed to vary. Again the solid line employs an effective
interaction with one-, two-, and three-body terms, whereas the
dashed line is obtained when the three-body contributions are
omitted. Clearly, the accuracy of the two-body approximation
is dependent on the precise values of the parameters used. In
this example it can be quite accurate for one of the eigenvalues
for particular values of W/&, but then it is inaccurate for the
other eigenvalue.

IV. CONCLUDING REMARKS

We have shown how the effective three-body interaction
may be isolated from the nonfolded and folded diagrams
generated from a Q box that contains one-, two-, and three-
body terms. To gain some insight this was applied to the

0.5 [
of .
w 05 3
[%] I 4
[ - 4
= L i
©
= L ]
© L i
(=)
i C ]
15F .
:
A T Y T T N T T [N T T T T N T [ T W

-0.4 -0.2 0 0.2 0.4
w/§

FIG. 7. Eigenvalues (in units of &) obtained with the two-body
effective interaction (dashed curves) compared with the exact values
(solid curves), as a function of w/&.
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Lipkin model where exact results can easily be obtained. Even
for this simple example subtle points arose. Numerically we
showed that for a system of three particles, the three-body
components of the effective interaction cannot be assumed
to be negligible. Interestingly in our effective 2 x 2 matrix
example the two-body interaction alone sometimes gave quite
an accurate result for one of the eigenvalues, but then the other
was rather inaccurate.

This suggests that the role of three-body interactions
in realistic situations deserves further study, in particular
in medium-heavy and heavy nuclei. As mentioned in the
Introduction we hope to carry out such a study for the
entire range of Sn isotopes using the formalism discussed

PHYSICAL REVIEW C 71, 034301 (2005)

here. The difficulty in explaining the trend of the binding
energies is a particular motivation, but more important is the
fact that three-body effects scale with the number of valence
particles cubed, whereas two-body contributions scale with the
square. Thus an examination of some thirty Sn isotopes should
allow a rather definitive assessment of the role of three-body
interactions to be made.
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