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Dibaryon resonance and two-photon bremsstrahlung in pp scattering
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The signature of a possible dibaryon state is studied in two-photon production in proton-proton scattering,
that is, in the process pp → Dγ → 2γNN . We have investigated the effects on the cross section for cases in
which the dibaryon has spin 0±. Special attention is paid to interference of the dibaryon signal with that of the
two-photon bremsstrahlung process.
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I. INTRODUCTION

Various QCD-inspired models have predicted the existence
of a dibaryon state. The most well known is the H dibaryon
with strangeness S = −2. In this work we will concentrate,
however, on nonstrange dibaryons for which there are predic-
tions based in quark models (see, for example, [1–3]) as well as
in a potential model approach [4]. For such a dibaryon state (D)
to exist and not be observed in proton-proton ( pp) or proton-
neutron ( pn) scattering requires that the quantum numbers
differ from the pp and pn partial waves; that is, they must
be so-called decoupled states. As emphasized by Gerasimov
et al. [5,6] the most promising way to observe a dibaryon
with a mass below the pion-production threshold is through
electromagnetic decay. The JINR phasotron collaboration
claims to have seen the dibaryon resonance [7], using a proton
beam of 216 MeV in the double-bremsstrahlung reaction
pp → ppγ γ . Its mass was determined at mD = 1956 ±
6 MeV and its width WD � 8 MeV. There also exists some
evidence that a dibaryon state has been excited in pion
scattering off a nucleus [8]. It should be noted that in Ref. [9] it
is contested that in this reaction the dibaryon is excited with an
appreciable cross section. An important process contributing
to the pp → ppγ γ reaction is two-photon bremsstrahlung.
In previous estimates of the effects of the dibaryon, the
two-photon bremsstrahlung contribution has not, however,
been taken into account.

To investigate the effect of a possible dibaryon resonance
on the cross section of the pp → ppγ γ reaction we have
added coherently the amplitude for bremsstrahlung to that
for the dibaryon process in the present work. A model for
the bremsstrahlung process, which obeys the low-energy con-
straints, has been proposed in [10]. The dibaryon contribution
is included assuming it to be a (JP , T ) = (0±, 2) state with
mass MD = 1956 MeV. A strong interference is observed
where the pattern clearly distinguishes the quantum numbers
of the state.

∗Electronic address: scholten@kvi.nl.

II. TWO-PHOTON EMISSION

The process of two-photon bremsstrahlung gives an im-
portant contribution to the cross section for pp → ppγ γ .
To a large extent the matrix element for this process is
governed by the low- (photon) energy theorem (or soft-photon
theorem). Reference [10] presents a derivation of a ppγ γ

amplitude that obeys the low-energy theorem (i.e., is gauge
invariant, free of spurious poles, and based on a realistic
pp-scattering amplitude). The Feynman diagrams included
in the matrix element are given in Fig. 1. As described
in [10] a Taylor series expansion around a point of average
kinematics is used for the momentum dependence of the
T matrix, which guarantees that current conservation is obeyed
for proton-proton bremsstrahlung. The photon vertex includes
contributions from the anomalous magnetic moment, which
are very important in pp bremsstrahlung. The model is covari-
ant. This model, when applied to one-photon bremsstrahlung,
gives a good reproduction of the cross section obtained in a
recent high-statistics experiment at 190 MeV [11]. This also
shows that terms that are beyond those determined by the
low-energy theorem are adequately accounted for.

A. The dibaryon mechanism

The possible quantum numbers for a decoupled dibaryon
that can be excited in pp scattering through coupling with
a photon are (JP , T ) = (1+, 1) or any T = 2 state. For the
present investigation we will assume a spin-zero, T = 2 state
and consider both positive and negative parity.

The structure of the four-point vertex for the coupling of the
dibaryon to the proton-proton-photon channel can be obtained
in several ways. The simplest structure that obeys the necessary
symmetries is

�
µ

ppγD = eg

m2
σµρqρ�C, (1)

where the photon momentum is given by q, C is the charge
conjugation operator, and � = 1 (� = γ 5) for a Jπ = 0−
(Jπ = 0+) dibaryon, respectively. One may also obtain an
expression for the vertex assuming a sequential process in
which the photon first couples the proton to form a spin-1/2
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FIG. 1. The Feynman diagrams included in the
calculation of two-photon bremsstrahlung.

baryon, which subsequently couples with the other proton
to form the dibaryon. One can show that in the limit of
an infinitely heavy intermediate baryon the effective vertex
reduces to the expression given in Eq. (1). The same result
also holds if the intermediate propagator is taken to be spin
3/2 instead of 1/2. Since the vertex given in Eq. (1) is magnetic
in structure, gauge invariance is automatically obeyed and it
is sufficient to include the Feynman diagrams given in Fig. 2
to account for the contribution of the dibaryon. In particular
it should be noticed that the diagrams where both photons are
emitted before or after the formation of the dibaryon do not
contribute because the quantum numbers prevent the dibaryon
from coupling directly to the initial or final two-proton state
through the strong interaction.

The matrix element for the contribution of an intermediate
dibaryon state to two-photon production in proton-proton
scattering can now be written as

Mµν

D = e2g2ū′
1�

µ

ppγDū′T
2 D(pD)uT

1 �ν
ppγDu2, (2)

where the spinors of the ingoing (outgoing) nucleons are
denoted by ui (ūi), i = 1, 2, respectively. The propagator of
the dibaryon with momentum pD and mass mD is

D(pD) = 1

p2
D − m2

D + imDWD

. (3)

p
2

p’
2

p
1 p’

1

q
1

q
2

p
2

p’
2

p
1 p’

1

q
2

q
1

FIG. 2. Feynman diagrams included in the calculation of the
dibaryon mechanism.

The decay width of the dibaryon due to the coupling to the
ppγ channel is WD and is calculated in the next section.

B. Dibaryon decay width

In general the decay width of a particle with mass mA can
be expressed as

dW(A→1···n) = g2|M|2 dQ

2mA

, (4)

where the multiparticle phase space is dQ = (2π )4δ4(P )∏ dp3
i

(2π)32Ei
.1 For a dibaryon decaying into two protons (pa, pb)

and a photon (q), this phase space can be written as

dQ = d3pa

2Ea

d3pb

2Eb

d3q

2ω

1

2(2π )5

× δ(MD − Ea − Eb − ω)δ3( �pa + �pb + �q)

=
∫

4

(2π )5

1

8EaEbω
x2dxd	xy

2dyd	y

× δ(M − Ea − Eb − ω), (5)

where �x = ( �pa + �pb)/2, �y = ( �pa − �pb)/2, Ea =
√

m2 + �pa
2,

Eb =
√

m2 + �pb
2, ω = |�q|, x = |x|, and y = |y|. Two identi-

cal protons give rise to a factor 1/2. Integration over 	x gives
a factor 4π and

∫
dφy = 2π since for a spin-zero dibaryon the

integrand is independent of these variables.
The δ function in energy can be used to cancel the y integral,

giving

y2 = (MD − 2x)2 (MD − 2x)2 − 4(m2 + x2)

4(MD − 2x)2 − 16x2 cos θ2
y

. (6)

1This assumes we take uū = p/ + m for fermions in Eq. (10).
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The upper limit (xu) of x integration is obtained when y = 0,

xu = (
M2

D − 4m2
)/

4MD. (7)

For MD � 4m the boundaries for the cos θy integration are
simply −1 and +1.

The phase space now reads

dQ = dxd cos θy

2(4π )(2π )

(2π )5

x2y2

4EaEb(2x)

×
(y + x cos θy

Ea

+ y − x cos θy

Eb

)−1

= 1

2
dx2d cos θy J, (8)

where

J = y2

2(2π )3(Eb(y + x cos θy) + Ea(y − x cos θy))
. (9)

The square of the matrix elements appearing in Eq. (4) for
dibaryon decay can be expressed as

|M|2 = e2g2Tr[σµνqν(p/a + m)σµρqρ(p/b − m)]/m4,

(10)
where the dibaryon ppγ vertex Eq. (1) is used. Evaluation of
this trace gives

|M|2 = 16 e2g2(pa · q)(pb · q)/m4. (11)

In terms of the notation just introduced, (pa · q)/ω = Ea −
x + y cos θy and (pb · q)/ω = Eb − x − y cos θy . The decay
width can now be expressed as

WD = e2g2

4MDm4

∫
16 × 4x2 (pa · q)(pb · q)

ω2
Jdx2d cos θy

= e2g2 8

MDm4

∫
(pa · q)(pb · q)

ω2
Jdx4d cos θy, (12)

where J is given by Eq. (9). The decay width is independent
of the parity of the dibaryon state.

A detailed analysis of Eq. (12) in the limit of ω � m shows
that the width can be approximated by

WD = αg2m

2
√

2(4π )2

(
MD − 2m

m

)4.5

. (13)

As shown in Fig. 3 this indeed gives a good approximation to
the exact expression over the full energy range of interest.

Closely related to the decay width is the formation cross
section of the dibaryon resonance, given by

dσ = 1

64π2s

1

4

pf

pi

|M|2d	, (14)

where pi = p(pf = ω) are the initial (final) momenta in the
two-body center-of-mass system and the factor 1/4 comes
from averaging over initial spin states. Integrating Eq. (14)
gives for the total formation cross section

σf = 1

64π2s

ω

p

16e2g2

4m4

∫
(pa · q)(pb · q)2πd cos θ

= αg2ω3

2p s m4
(2E2 − 2�p2/3), (15)

2.0 2.05 2.1 2.15 2.2
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

M
4.5

exact

MD /m

W
D

/g
2

m
[1

0-8
]

FIG. 3. (Color online) Width of a dibaryon as a function of its
mass calculated from Eq. (12) compared to the approximation of
Eq. (13).

where the square matrix element from Eq. (11) has been used
and E =

√
m2 + �p2.

III. RESULTS

Following the suggestions of the Dubna group [7] we
have taken in the numerical examples the dibaryon at a
mass of MD = 1956 MeV. As quantum numbers we have
considered (JP , T ) = (0±, 2). The coupling constant has been
taken equal to g = 0.2 for both of the assumed parities for
the dibaryon. According to Eq. (15) this corresponds to a
formation cross section (at a beam energy of 216 MeV for
which the calculations are presented) of σf = 2 pb, well within
the bounds given by [9]. The width of the resonance calculated
from Eq. (13) is WD = 4 MeV, an extremely narrow width. A
small formation cross section, however, also implies a small
decay width.

For a narrow dibaryon state, as is the case for the present
investigation, we expect to see two sharp peaks in the cross
section as a function of the energy of one of the two
emitted photons. One peak corresponds to the formation of
the dibaryon (p + p → γ F + D), where the resonant photon
energy in the formation process (EF

γ ) can be calculated from

EF
γ =

(
W 2 − M2

D

)
2W

, (16)

where W 2 is the square of the center-of-mass energy of the
colliding nucleons. For a resonance mass of MD = 1956 MeV
and an incoming beam energy of Ep = 216 MeV the resonance
energy is EF

γ = 25.4 MeV in the center-of-mass system.
Another peak in the spectrum will correspond to the decay
of the dibaryon into two protons and a photon (D → p +
p + γ D). The energy of the decay photon (ED

γ ) will depend
strongly on the relative energy of the pp system in the final
state.

Figures 4 and 5 show the fully exclusive cross section
d8σ

d	1d	2dθγγ dMγγ dφ1dε1
as a function of photon energy. The peaks

at energies EF
γ = 25.4 MeV and ED

γ , resulting from the
dibaryon mechanism, stand out from the “background” due
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FIG. 4. (Color online) The fully exclusive cross section
d8σ

d	1d	2dθγ γ dMγγ dφ1dε1
as a function of photon energy for two different

coplanar kinematics. The bremsstrahlung contribution is given by the
dotted curve, the dibaryon contribution is given by the dashed curve,
and the total cross section is given by the solid curve. The left and
right panels show the results for J π = 0− and J π = 0+ dibaryons,
respectively.

to two-photon bremsstrahlung (σγγ ). This peak to background
ratio depends strongly on the dibaryon coupling constant. The
energy of the second peak (ED

γ , moving from 70 to 55 MeV)
clearly depends on the relative energy of the two outgoing
protons, which, in turn, depends strongly on their relative
angle. It is worth noting that these results closely parallel
that obtained by the Dubna group [7]. The rise of the cross
section at higher energies can be understood from the fact that
the energy of the other photon (which is not plotted) becomes
small and one approaches the soft-photon pole in the cross
section.

It should be noted that the cross section due to the dibaryon
mechanism (σD) is independent of the assumed parity of the
dibaryon. The fact that the total cross section (σtot) does
depend on the parity of the dibaryon shows that there is
strong interference between the dibaryon and bremsstrahlung
amplitudes. To express this more clearly we have plotted in
Fig. 6 and 7 cross-section ratios

Pk = σk

σtot
, (17)
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FIG. 5. (Color online) Same as Fig. 4 for different kinematics.
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FIG. 6. (Color online) The cross-section ratios, defined in
Eqs. (17) and (18), plotted as a function of photon energy. The
dotted curve shows the resonance contribution, the dashed curve
shows the bremsstrahlung contribution, and the solid curve shows the
quantity P.

where the index k = D or γ γ . Further, we also define

P = σtot

σD + σγγ

. (18)

This last quantity shows most clearly the effects of interfer-
ence.

Without interference between the bremsstrahlung and the
dibaryon contributions, P [see Eq. (18)] should be equal to
unity. However, because of the interference its value can
vary between the extremes of zero and two. The effect of
the interference is more pronounced for the case of a 0−
dibaryon than for 0+ (see Figs. 6 and 7), demonstrating that
the interference can serve as a tool to determine the parity of
the dibaryon resonance.

IV. CONCLUSION

We have investigated the effects of a possible dibaryon
state in two-photon emission in pp scattering. For a coupling
strength where the formation cross section is well within
the experimental bounds, the width of the resonance is very
narrow and stands out clearly over the continuum two-photon
bremsstrahlung spectrum. In high-statistics experiments it thus
should be clearly visible. The “background” due to two-photon
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FIG. 7. (Color online) Same as Fig. 6, however for kinematics
corresponding to larger proton angles and a smaller two-photon
invariant mass.
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bremsstrahlung, however, cannot be ignored and should be
taken into account in a simulation of the experimental
results. In an exclusive measurement the interference with
the bremsstrahlung continuum allows for a determination of
the quantum numbers of the dibaryon. In integrated spectra,
especially when folded with experimental resolution of several
MeV, the peak may reduce to a fractional enhancement of the
cross section over that due to two-photon bremsstrahlung [12].
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APPENDIX A: KINEMATICS FOR
TWO-PHOTON PRODUCTION

For the reaction N + N → N + N + γ + γ the momenta
are denoted by p1, p2, p

′
1, p

′
2, q1, and q2 (see Fig. 1). Energy-

momentum conservation reads p1 + p2 = p′
1 + p′

2 + q1 + q2.
The cross section is

dσ = m4
p

j

∫
|A|2(2π )4δ4(p1 + p2 − p′

1 − p′
2 − q1 − q2)

× d3p′
1

(2π )3E′
1

d3p′
2

(2π )3E′
2

d3q1

(2π )32ε1

d3q2

(2π )32ε2
,

where A = Mµνε∗
1µε∗

2ν is the invariant amplitude, ε1 and ε2

are the polarization vectors of the photons, ε1 = |�q1|, ε2 =
|�q2|, and j =

√
(p1 · p2)2 − m4

p = mp|�pLab| in the laboratory
frame where p2 = (mp, �0). Using the identity

∫
δ4(q1 +

q2 − k)d4k = 1, we can put the cross section in the form

dσ = m4
p

(2π )8j

∫
|A|2δ4(p1 + p2 − p′

1 − p′
2 − k)Iγ γ

× d3p′
1

E′
1

d3p′
2

E′
2

d4k, (A1)

where Iγ γ is the two-photon phase-space integral defined as

Iγ γ =
∫

δ4(q1 + q2 − k)
d3q1

2ε1

d3q2

2ε2
.

To calculate this integral we deviate from the steps followed in
Ref. [10]. To emphasize the dependence on photon energy the
δ function is used to eliminate the polar-angle dependence,

Iγ γ =
∫

δ(ε1 + ε2 − k0)
ε1

4ε2
d cos θ1 dφ1 dε1

= dφ1 dε1

4|�k| , (A2)

with ε2 =
√

|�k|2 − 2|�k|ε1 cos θ1 + ε2
1, where we introduced

the polar and azimuthal angles θ1 and φ1 between the 3-vectors
�k and �q1.

As a last step the integration over k0 in Eq. (A1) is replaced
by an integration over the two-photon invariant mass using
k0dk0 = mγγ dmγγ . We obtain

dσ = 2m4
p

(2π )8j

∫
|A|2J (mγγ )Iγ γ mγγ dmγγ , (A3)

where we introduced the three-particle phase-space integral

J (mγγ ) =
∫

δ4(p1 + p2 − p′
1 − p′

2 − k)

× d3p1
′

E′
1

d3p2
′

E′
2

d3k

2k0
. (A4)

In the one-photon bremsstrahlung the similar integral is tradi-
tionally evaluated in polar coordinates (see, for example, [13]),
leading to the cross section of the type d8σ

d	1d	2dθγγ dMγγ dφ1dε1
as

shown in Figs. 4 and 5.
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