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The renormalization of the T matrix for NN scattering with a contact potential is reexamined in a nonperturbative
regime through rigorous nonperturbative solutions. Based on the underlying theory, it is shown that the ultraviolet
divergences in the nonperturbative solutions of the T matrix should be subtracted through “endogenous”
counterterms, which in turn leads to a nontrivial prescription dependence. Moreover, employing the effective
range expansion, the importance of imposing physical boundary conditions to remove the nontrivial prescription
dependence, especially before making any physical claims, is discussed and highlighted. As by-products, some
relations between the effective range expansion parameters are derived. We also discuss the power counting of
the couplings for the nucleon-nucleon interactions and other subtle points related to the EFT framework beyond
perturbative treatment.
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I. INTRODUCTION

The effective field theory (EFT) method or strategy [1] has
become a primary tool for studying a variety of low-energy
problems in particle and nuclear physics; important examples
include chiral perturbation theory (χPT) [2], heavy quark
effective theory (HQET) [3], and nonrelativistic quantum
chromodynamics (NRQCD) [4]. As an EFT parametrizes the
short distance physics in a simple way, severe ultraviolet
(UV) divergences appear. Then one must carefully work out
pertinent power counting rules and renormalization prescrip-
tions [5]. In nonperturbative regimes (for example, in the
application of χPT to low-energy nucleon systems, as is
advocated by Weinberg [6]), the “interplay” between power
counting schemes and renormalization prescriptions becomes
quite complicated [7]. To establish a more reasonable and
consistent framework, many proposals have been put forward
[7–10], creating controversies still to be settled. There were
once (and perhaps still are) even doubts about the applicability
of the EFT method.

The main difficulties stem from a distinct feature of the
nonperturbative formulation, which invalidates the naive use
of the perturbative renormalization (through subtraction) pro-
grams [11,12]. In this report, we continue our investigations of
the renormalization of the EFT for nucleon-nucleon scattering
in the nonperturbative regimes, which we started in Ref. [11].
We work here with a contact potential that allows us to
rigorously obtain a closed form of the T matrix through the use
of the Lippmann-Schwinger equation (LSE) [13]. In this way,
many new features arising in the nonperturbative regime can be
explicitly illustrated. In our approach, we utilize the underlying
theory to understand the renormalization of an EFT. In this
work we examine the renormalization prescription dependence
of the on-shell T matrix together with the observables or
parameters coming from the low energy theorems for nucleon-
nucleon scattering. The latter are obtained through the effective
range expansion [14]. This paper is organized as follows:
In Sec. II, we sketch the nonperturbative parametrization
of the T matrix proposed in Ref. [11] and its implications
for nonperturbative renormalization. In Sec. III, we employ

the algebraic method described in Ref. [13] to obtain a
rigorous closed-form solution of the LSE in the case of contact
nucleon-nucleon interactions. Then the regularization and
renormalization of the T matrix in the nonperturbative regime
are analyzed using the closed form solutions at various chiral
orders. Both the prescription dependence and its removal from
the observables or parameters obtained via the effective range
expansion (low-energy theorems) are investigated in Sec. IV.
In Sec. V, we study the interplay between the renormalization
prescription and the power counting schemes for EFT, and the
renormalization group evolution in the nonperturbative regime
and the naturalness of the T matrix are also explored. Finally,
Sec. VI contains our summary. Our main conclusion is that one
should be aware of the nontrivial renormalization prescription
dependence in the nonperturbative regime, with emphasis on
physical boundaries.

II. A COMPACT PARAMETRIZATION

Let us start with a standard parametrization for the on-shell
partial wave T matrix [7] (we consider the diagonal channels
for simplicity),

Tl;os(p) = −4π

M

1

p cot δl(p) − ip
, (1)

with M and p being, respectively, the mass and on-shell
momentum of a nucleon, and l denoting the angular momen-
tum number. Literally, the potential could be systematically
constructed or calculated using χPT [6] through counting
the powers in terms of p2/�2 or m2

π/�2, with � being the
high scale or upper limit for the EFT under consideration
(� ∼ 500 MeV). Then the off-shell T matrix for partial wave
l could be found through the solution of LSE,

Tl(p
′, p; E) = Vl(p

′, p) +
∫

kdk2

(2π )2

×Vl(p
′, k)G0(k; E+)Tl(k, p; E), (2)
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G0(k; E+) ≡ 1

E+ − k2/M
, (3)

where E+ ≡ E + iε, with E being the center of mass energy.
It should be noted that Eq. (2) is ill defined in terms of UV, as
the potential Vl calculated using χPT is usually singular.

To highlight the nonperturbative features present in this
problem, we previously proposed a tentative nonperturbative
parametrization for the T matrix based on LSE [11],

1

Tl(p, p′; E)
= 1

Vl(p, p′)
− Gl(p, p′; E), (4)

Gl(p, p′; E) ≡
∫

kdk2

(2π)2 Vl(p′, k)G0(k; E+)Tl(k, p; E)

Vl(p, p′)Tl(p, p′; E)
, (5)

where Gl carries the nonperturbative information of all the
quantum processes (all the loop amplitudes in the field
theoretic terminology) generated by Vl . We have already
shown in [11] that the nonperturbative quantity Gl could
not be renormalized through the introduction of “exogenous”
counterterms in the potential.1 That means G, or equivalently
T, is regularization and renormalization (R/R) prescription
dependent. There can be only one renormalization prescription
(contrary to perturbative treatment [15]) consistent with
physical data or boundary conditions. In the following sections
we demonstrate this point with rigorous solutions of LSE.

III. CONTACT POTENTIAL: RIGOROUS SOLUTIONS

The specific case of contact potential allows us to transform
the integral equation into the algebraic one following Ref. [13].
In other words, the nonlocal pion exchange contributions to
the potential are neglected. However, the main conclusions
also remain qualitatively valid when pion exchanges are
included.

A. Factorized LSE and its algebraic solutions

Next, to illustrate the role played by the nonperturbative
features, we employ the 1S0 channel. To see how the situation
evolves with the chiral orders, we consider the solution of LSE
with the following local potentials at three different chiral
orders (� = 0, 2, 4) (leading order, next-to-leading order,
next-to-next-to-leading order):

� = 0 : V
1S0

(0) = C0; (6)

� = 2 : V
1S0

(2) = C0 + C2(p2 + p′2); (7)

� = 4 : V
1S0

(4) = C0 + C2(p2 + p′2)

+ C̃4p
2p′2 + C4(p4 + p′4). (8)

1We have introduced new terminology to distinguish between
the counterterms introduced before the nonperturbative summation
(“endogenous”) and those introduced after the infinite summation
(“exogenous”).

Following Ref. [13], we “factorize” the potentials into ma-
trices: V = UTλU ′, with U and U ′ being column vectors,
and λ being an n × n matrix. At next-to-next-to-leading order
(� = 4), they are

λ ≡
C0 C2 C4

C2 C̃4 0
C4 0 0

, U ≡ (1, p2, p4), U ′ ≡ (1, p′2, p′4);

(9)

whereas at next-to-leading order (� = 2), they read

λ ≡
(

C0 C2

C2 0

)
, U ≡ (1, p2), U ′ ≡ (1, p′2). (10)

The off-shell T matrix factorizes exactly in the same manner:
T = UTτU ′, where τ is an n × n matrix. Generally, the
coupling constants [Cn] come from the chiral expansion of
an underlying theory (say, QCD) for nucleons and pions in
terms of p2/�2, and hence they scale like C2n/C0 ∼ �−2n in
the naive power counting scheme.

Using this notation, the LSE can be reduced to the algebraic
equation [13]

τ (E+) = λ + λ ◦ I(E+) ◦ τ (E+), (11)

with ◦ denoting the matrix multiplication. For the 3 × 3 case,
the matrix I and the related parametrizations and definitions
are listed in Appendix A. With this algebraic parametrization,
all the ill-defined integrals can be isolated and parametrized in
any regularization prescription. The solution to this algebraic
equation is easy to obtain:

τ (E+) = [1 − λ ◦ I(E+)]−1 ◦ λ. (12)

In a similar fashion, the solution of the T matrix can be
obtained. For the three chiral orders considered so far, they
read (on shell)

� = 0 :
1

Tos(p)
= 1

C0
+ J0 + M

4π
ip; (13)

� = 2 :
1

Tos(p)
= (1 − C2J3)2

C0 + C2
2J5 + C2(2 − C2J3)p2

+ J0 + M

4π
ip; (14)

� = 4 :
1

Tos(p)
= N0 + N1p

2 + N2p
4

D0 + D1p2 + D2p4 + D3p6

+ J0 + M

4π
ip, (15)

with the ill-defined integrals [Jn] and the coefficients [Nn]
and [Dn] as defined in Appendix B. The next-to-leading order
has been considered in Ref. [13], whereas the � = 4 result
has not been given before. We should note that J0 always
stands “alone” in the real part of the inverse on-shell T matrix.
(A rigorous proof of this fact at any order is given in
Appendix C.) Here we would like to stress the compact or
closed form of the expressions for the T matrix in terms
of the couplings and the integrals [Jn]. It is this crucial
property that distinguishes the nonperturbative solutions from
the perturbative ones and complicates the renormalization.

034001-2



RENORMALIZATION OF NN SCATTERING: CONTACT . . . PHYSICAL REVIEW C 71, 034001 (2005)

Obviously, the T matrix becomes more complicated as
higher order interactions are included. Nevertheless, when
the nonlocal pion exchanges are included, one can naturally
anticipate that the nonperturbative solutions would still take
compact or closed forms. Thus, we expect that our conclusions
here will also hold in realistic potentials with nonlocal pion
contributions, at least qualitatively.

B. Failure of “exogenous” counter-term renormalization

Now let us consider the renormalization of the T matrix.
The leading order case is trivial; one can absorb the only
divergence in J0 into the inverse coupling, 1/C0, similar to the
perturbative cases.

However, in the presence of higher order interactions, this
operation may not work. For example, at next-to-leading order,
in order to renormalize the on-shell T matrix in Eq. (14), or to
make the fraction (1−C2J3)2

C0+C2
2 J5+C2(2−C2J3)p2 + J0 finite, one should

make each of the following compact functions finite at the
same time:(
C0 + C2

2J5
)/

(1 − C2J3)2, C2(2 − C2J3)/(1 − C2J3)2, J0.

(16)
Now it is clear that the main obstacle for performing
“exogenous” subtraction for the T matrix is the compact or
closed expressions in terms of [Cn] and [J̄n]: it is hard to see
how to make (C0 + C2

2J5)/(1 − C2J3)2, C2(2 − C2J3)/(1 −
C2J3)2 and J0 finite simultaneously, since each of them is
a compact or closed expression given in terms of the two
couplings, C0, C2, and the three divergent integrals, J0, J3,
and J5. The situation differs strikingly from the perturbative
case where counterterms are introduced order by order with the
higher order terms discarded, as no compact or “closed” form
of expression is involved. Moreover, no matter what was done
for (C0 + C2

2J5)/(1 − C2J3)2 and C2(2 − C2J3)/(1 − C2J3)2,
one should make sure that J0 stays “separately” finite at the
same time.

C. Nonperturbative renormalization in EFT

It is known that an EFT is often established through certain
reorganization of parts of a well defined underlying theory (UT,
at least renormalizable). Unfortunately, such reorganization
usually (1) brings about new UV divergences and (2) impedes
the “exogenous” counterterms from working. To see the first
point, consider the diagrams shown in Figs. 1 and 2, with the
heavy meson exchange diagrams (with g and mh being the
coupling constant and the meson mass) underlying the ones
with contact interactions. For convenience, let us introduce
a projection operator P̆LE to symbolize the influences of this
heavy meson: the extraction of the EFT vertices or couplings
from the UT diagrams.

At tree level (Fig. 1),

−iC̄0 ≡ P̆LE	
(4)
tree = P̆LE

{ −ig2

k2 − m2
h

}
= i

g2

m2
h

, (17)

no divergence appears. The complication comes at the loop
diagram level. For example, in the case of the convergent box

P̆LE∼ −ig2

k2−m2
h

∼ −iC̄0 = ig2

m2
h

−ig

−ig

FIG. 1. Tree vertex for 4-nucleon in UT (left) and in EFT (right).

diagram in Fig. 2, if P̆LE is applied after the loop integration
(
∫

d4l
(2π)4 ) has been done (the correct order), one would get a well

defined expansion in terms of 1
m2

h

. When P̆LE is applied before∫
d4l

(2π)4 (the incorrect order), the divergent bubble diagram
results. Thus, the new divergences generally arise from the
incorrect order of computations, as the following commutator
does not vanish identically:

Ôc.t. ≡
[
P̆LE,

∫
d4l

(2π )4

]
�= 0. (18)

Embarrassingly, one has to use EFT either because UT is
unavailable or because the calculations in UT are tedious.
Combining this procedure with a nonperturbative context
(infinite iteration or resummation) makes things even worse:
the counterterms cannot be implemented “exogenously.”

However, from the underlying theory the solution follows
immediately: one should devise some procedures to effectively
“recover” the correct order for P̆LE and

∫
d4l

(2π)4 before anything
else is done. The clue lies in Eq. (18). Through rearrangement,
Eq. (18) is equivalent to the following equation for the
integrand of a loop diagram (say, the box diagram integrand
fbox):

P̆LE

∫
d4l

(2π )4
fbox =

∫
d4l

(2π )4
P̆LEfbox + Ôc.t.fbox

=
∫

d4l

(2π )4
fbubble + Ôc.t.fbox. (19)

That means that in order to recover the correct-order results in
EFT, we must introduce a counterterm: Ôc.t.fbox. Therefore,
the UT scenario provides a natural interpretation for the
counterterms and, more importantly, a rationality for the
subtraction at the level of the loop integral without any
reference to a Lagrangian. That is, the counterterms must be
endogenous: the divergent integrals must be subtracted before

P̆LE

FIG. 2. Box diagram in UT (left) and bubble diagram in EFT
(right).
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the nonperturbative reorganization [11]. Finally, the subtracted
integrals (finite) appear in the compact nonperturbative ex-
pressions, which are no longer compatible with exogenous
counterterms. In this logic, the formal consistency issue [7]
of the Weinberg power counting simply dissolves: in the
nonperturbative regime of EFT, there is no point searching for
exogenous counterterms and their counting rules. Of course,
there might be other approaches that directly renormalize the
integrals without the explicit use of counterterms.

Thus, the nonperturbative renormalization must be im-
plemented through either endogenous counterterms or other
means that effectively “subtract” the EFT integrals (see similar
prescriptions in Ref. [16]). For the T matrix considered in
this paper, this procedure would be formulated as a simple
replacement of the divergent [Jn] with the subtracted [J̄n],
which are finite constants (prescription dependent and hence
arbitrary), in the compact expressions:

� = 0 : T̄ −1
os (p) = 1

C0
+ J̄0 + M

4π
ip; (20)

� = 2 : T̄ −1
os (p) = (1 − C2J̄3)2

C0 + C2
2 J̄5 + C2(2 − C2J̄3)p2

+ J̄0 + M

4π
ip; (21)

� = 4 : T̄ −1
os (p) = N̄0 + N̄1p

2 + N̄2p
4

D̄0 + D̄1p2 + D̄2p4 + D̄3p6

+ J̄0 + M

4π
ip. (22)

Here we wish to note that from a UT perspective, both [Cn]
and [J̄n] come from the projection acting on the convergent
vertices in UT. (Those that are divergent in UT will be
renormalized before applying the projection and do not directly
contribute to EFT renormalization due to scale hierarchy. We
return to this point in Sec. VI.) In this sense, [J̄n] are also
fundamental parameters in EFT, so the nonperturbative T
matrix is parametrized by both [Cn] and [J̄n]. To illustrate
this point, let us apply the projection on the box diagram after
the loop integration is carried out. After some calculations we
get

P̆LE	
(4)
box

∣∣
leadingterm = −i

g4

m4
h

I
(UT)

0 (M,mh, p)

= iC̄2
0

[
J

(UT)

0 (M,mh) + M

4π
ip

]
, (23)

where the definite parameter J
(UT)

0 (M,mh) (see Appendix B),
in place of the divergent integral J0, can be extracted in the
following way:

J
(UT)

0 (M,mh) = − Re
(
iP̆LE	

(4)
box

)(
iP̆LE	

(4)
tree

)2

∣∣∣∣∣
p=0

= − P̆LE

{
Re

(
i	

(4)
box

)(
i	

(4)
tree

)2

}∣∣∣∣∣
p=0

. (24)

We should note that here we used the mesonic interaction
for illustration. Of course, the true contact nucleon interactions

should be computed from QCD. But the mechanism explained
above still holds in general.

Finally, we note that the renormalized T matrix suffers from
severe prescription dependence in the nonperturbative regime,
which is incompatible with the exogenous counterterms. That
means, given specific couplings, only one prescription could
yield the physical T matrix; others have to be dropped even
though they are finite. So the final resolution boils down
to the flexible regularization methods that could facilitate
convenient access to physical predictions [11], as already noted
in other nonperturbative contexts [17]. This argument leads us
to the following strategy: One first parametrizes the ill-defined
integrals in terms of ambiguous constants and then imposes
physical boundary conditions. A similar strategy also based on
the underlying theory, has already been described in Ref. [18]
for renormalizing any EFT.

IV. LOW-ENERGY THEOREMS (LET) AND
PRESCRIPTION DEPENDENCE

A. Effective range expansion

Now let us consider effective range expansion (ERE)
defined as

Re

{
−4π

M
T −1

os (p)

}
= p cot δ(p) = −1

a
+ 1

2
rep

2 +
∞∑

k=2

vkp
2k,

(25)

with the parameters a and re being the scattering length and
the effective range, which (including [vk]) could be extracted
from the scattering data. In this sense, we could impose their
values as the boundary conditions for the T matrix. Performing
the expansion for the T matrix obtained above, we get

� = 0 : p cot δ(p) = −4π

M

{
C−1

0 + J̄0
}
; (26)

� = 2 : p cot δ(p) = −4π

M

{
ν̄0δ̄

−1
0 + J̄0 − ν̄0δ̄1δ̄

−2
0 p2

+
∞∑

k=2

ν̄0δ̄
k
1 δ̄

−k−1
0 (−p2)k

}
,

ν̄0 ≡ (1 − C2J̄3)2, δ̄0 ≡ C0 + C2
2 J̄5, δ̄1 ≡ C2(2 − C2J̄3);

(27)

� = 4:p cot δ(p) = −4π

M

{
N̄0D̄

−1
0 + (N̄1D̄0 − N̄0D̄1)D̄−2

0 p2

+ [
N̄2D̄

2
0 − N̄1D̄1D̄0 + N̄0

(
D̄2

1 − D̄0D̄2
)]

D̄−3
0 p4

+ [
N̄0

(
2D̄1D̄2D̄0 − D̄3D̄

2
0 − D̄3

1

)
+ N̄1D̄0

(
D̄2

1 − D̄0D̄2
) − N̄2D̄1D̄

2
0

]
D̄−4

0 p6 + · · · }.
(28)

The scattering length, effective range, and vk can be read from
the results above. For the three orders considered so far, we
have

� = 0 : a−1 = 4π

M

(
C−1

0 + J̄0
)
, re = 0, vk = 0, k � 2;

(29)
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� = 2 : a−1 = 4π

M

(
ν̄0δ̄

−1
0 + J̄0

)
, re = 8π

M
ν̄0δ̄1δ̄

−2
0 ,

vk = 4π

M
ν̄0δ̄

k
1(−δ̄0)−k−1

, k � 2; (30)

� = 4 : a−1 = 4π

M

(
N̄0D̄

−1
0 + J̄0

)
,

re = 8π

M
(N̄0D̄1 − N̄1D̄0)D̄−2

0 ,

v2 = 4π

M

[
N̄0

(
D̄0D̄2 − D̄2

1

) + N̄1D̄1D̄0 − N̄2D̄
2
0

]
D̄−3

0 ,

v3 = 4π

M

[
N̄0

(
D̄3D̄

2
0 − 2D̄1D̄2D̄0 + D̄3

1

)
− N̄1D̄0

(
D̄2

1 − D̄0D̄2
) + N̄2D̄1D̄

2
0

]
D̄−4

0 , (31)

· · · .

Note again that, at each order, J̄0 only enters the expression for
the scattering length but is “decoupled” with all the other ERE
parameters. The reason is clear: J̄0 stands alone in T −1. As we
make clear below, this point has very important implications.

Keeping in mind that the parameters [J̄n] are in principle
independent of each other, two distinct approaches can be
adopted in order to impose physical or reasonable boundary
conditions: (1) taking the couplings and the prescription pa-
rameters as the fundamental variables, and the ERE parameters
as the functions of these variables; or (2) conversely, taking
some of the ERE parameters (which should be physical) as
fundamental and the others as the functions of them. For
convenience, we could also parametrize [J̄n] in terms of a
dimensional scale µ̃ and dimensionless numbers [q···]:

J0 ≡ q0Mµ̃, J3 ≡ q3Mµ̃3, J5 ≡ q5Mµ̃5,

J7 ≡ q7Mµ̃7, J9 ≡ q9Mµ̃9. (32)

The appearance of M is easy to see from Appendix A.
Generally, the magnitude of µ̃ could vary from a value on
the EFT expansion scale, �, to the value of the pion decay
constant (much smaller than M): µ̃ ∈ (fπ,�). One can also
alter the integrals by letting the dimensionless numbers [qn]
vary. Thus, a nonperturbative renormalization prescription is
parametrized by [qn; µ̃]. However, the magnitude of [J̄n],
which also comes from the low energy projection in UT, should
not be larger than the naive powers of the chiral symmetry
breaking scale �χSB � M . In other words, we can safely
assume that |J̄n| � Mn+1, n �= 0, |J̄0| � M2.

Having made these preparations, we can start to examine
the low-energy expansions listed above order by order in
chiral expansion. The leading order case (� = 0) is trivial:
we have only one condition, i.e., imposing that 1

C0
+ J0 = a,

with a being experimentally measured, is enough since re =
vk = 0, k � 2, which is obviously a bad theoretical prediction,
although it is not prescription dependent. Thus, the situation
at this order is physically uninteresting, and most importantly,
the distinctive nonperturbative features we wish to expose are
not obvious here. Therefore, we examine in detail the higher
order cases.

B. LET at next-to-leading order: � = 2

Let us start with the next-to-leading order: � = 2. As men-
tioned above, we discuss the problem from two perspectives.

1. First perspective

For convenience, let us list the explicit expressions of a, re,
etc., in terms of [Cn] and [J̄n], which read

a = M

4π

C0 + C2
2 J̄5

(1 − C2J̄3)2 + J̄0
(
C0 + C2

2 J̄5
) ,

re = 8π

M

(
2C2 − C2

2 J̄3
)
(1 − C2J̄3)2(

C0 + C2
2 J̄5

)2 ,

vk = 4π

M
(−)k+1 (1 − C2J3)2Ck

2 (2 − C2J̄3)k(
C0 + C2

2 J̄5
)k+1 , k � 2.

(33)

Before imposing reasonable boundary conditions, we could
not make any physical predictions, as J̄0, J̄3, and J̄5 each inde-
pendently varies. The independent variations of J̄0, J̄3, andJ̄5

could not be easily absorbed into the couplings, for the reasons
explained in Sec. III. Thus, unlike the leading-order case, we
need (more) exogenous constraints to fix the values of J̄0, J̄3,
and J̄5.

From Eq. (33), J̄3 and J̄5 could be solved in terms of re, v2

and C0, C2; the solution might be unique after accounting
for a reasonable size. After the insertion of the obtained
numbers back into the formula for a, J̄0 could be expressed in
terms of the physical value of the scattering length. In this
sense, imposing two additional boundary conditions could
fix the prescription or make the next-to-leading order result
unambiguous. Now, the [vk] with k � 3 are taken to be
theoretical predictions, which now shall be better than the
leading-order ones, as we have more degrees of freedom to
work with: J̄3 and J̄5, which come together with the new
interactions. The fact, that some of the predictions are still poor
can be attributed to the inadequacy of the next-to-leading-order
potential: even higher order terms should be put in and
accordingly more physical boundary conditions are needed.
Thus, in spite of the fact, that the procedure for fixing
the prescription becomes more nontrivial and laborious, the
predictions for the ERE parameters improve when the higher
order interactions are included (because of the “freedom”
brought by the augmented interactions). We must repeat here
that the predictions are made using the prescription that is most
compatible with the physical boundary conditions.

Employing Eg. (32), we could also write the above
equations as

a = M

4π

C0 + C2
2q5Mµ̃5

(1 − C2q3Mµ̃3)2 + q0Mµ̃
(
C0 + C2

2q5Mµ̃5
) ,

re = 8π

M

(
2C2 − C2

2q3Mµ̃3
)
(1 − C2q3Mµ̃3)2(

C0 + C2
2q5Mµ̃5

)2 ,

vk = 4π

M
(−)k+1 (1−C2q3Mµ̃3)2Ck

2 (2−C2q3Mµ̃3)k(
C0 + C2

2q5Mµ̃5
)k+1 , k � 2.

(34)
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Note that even though the µ̃ scale dependence can be removed
(fixed), the prescription dependence remains in terms of the
dimensionless parameters [qn] that are independent of each
other, a subtle point that often seems to be overlooked. For
example, in a cutoff scheme, the renormalization is usually
performed in such a way that the cutoff dependence is removed
by letting the couplings develop a certain cutoff dependence.
However, residual prescription dependence remains due to the
cutoff-independent but prescription-dependent numbers [qn].
Without fully appreciating this point, any fitting procedure that
uses tuning of the couplings or even tuning of the cutoff only
amounts to fitting along a special orbit in the space [qn], not in
the whole space. The result thus obtained is still prescription
dependent.

2. Second perspective

Taking a, re, and {v2} as the elementary parameters, we can
express all the higher order constants [vk, k � 3] as

vk = M − 4πaJ̄0

Ma
(−2v2/re)k, k � 3. (35)

Note that from this perspective, the prescription-dependent
parameter J̄0 seems to be an independent constant in addition to
the three elementary parameters. At first sight, this ambiguity
calls for one more condition: the value for v3. But from the
discussion above, we know that this seemingly independent
parameter is in fact determined together with J̄3 and J̄5 by
Eqs. (33). Of course, the nature of the problem remains the
same even when it is taken as independent. The most striking
point here is again that the prescription is “removed” through
fixing, i.e., through boundary conditions, which is a nontrivial
procedure, as articulated above.

One can also put Eq. (35) into the form that contains no
explicit prescription dependence:

vk = v3(−2v2/re)k−3, k � 4. (36)

This relation should hold for any problems (in certain atomic
or molecular contexts) with contact potential such as V (x) ∼
C(0)δ

(3)(x) + C(2)∇2δ(3)(x).
So, we may conclude that, no matter what point of view

one adopts, the key point is that the compact nonperturba-
tive formulations make the prescription dependence and its
removal a very nontrivial problem or procedure. However, the
predictions also improve with the use of these formulations, in
spite of their technical complexity. This nontrivial procedure
becomes more involved as more higher order corrections to
the potential are included. To verify this, let us turn to the
next-to-next-to-leading order.

C. LET at next-to-next-to-leading order: � = 4

Again we begin with the first perspective.

1. First perspective

Now we have four couplings (C0, C2, C4, C̃4) and five
prescription-dependent parameters (J̄0, J̄3, J̄5, J̄7, J̄9) in eight

compact expressions: N̄0, N̄1, N̄2, D̄0, D̄1, D̄2, D̄3, and J̄0,
which stays alone. From Eq. (31) it is clear that we need
at least five conditions to fix J̄0, J̄3, J̄5, J̄7, and J̄9, say,
a, re, v2, v3, and v4. But the compact expressions such as that
for the scattering length, a = M

4π

D̄0

N̄0+J̄0D̄0
with D̄0 and N̄0 given

in Appendix B, become more involved. This means that the
boundary conditions might be more stringent for J̄0, J̄3, J̄5, J̄7,
and J̄9 and the analytical work more difficult. In the meantime,
the predictions for vk at this order should be better than those
at the leading and next-to-leading orders, as we have more
parameters.

Here, some remarks are in order. At next-to-leading order,
we ignored the possible multiple solutions for the fixing pro-
cedure. Here, with more compact expressions being involved,
we should be more careful about this multiplicity of solutions.
To this end, we note that the multiplicity can be effectively
reduced with the limitations on the reasonable magnitudes
of [J̄n] together with the experimental values of the higher
ERE parameters (say, vk, k � 3). However, no matter how the
multiplicity is removed, the solution is still an approximate
(though nonperturbative) one: Eqs. (29)–(31) are obtained
from a truncated potential and cannot be exact ones. Then,
the theoretical predictions based on such equations will be
less credible, especially for the ERE parameters that dominate
higher and higher energy regions. In other words, the boundary
conditions should be given by a procedure similar to fitting
the shape of the phase shift within the corresponding ranges at
each chiral order. This is actually what most authors have done,
though the regularization schemes used vary significantly. Of
course, our remarks in Sec. IV B 1 concerning the residual
prescription dependence still apply for all the higher order
calculations.

Mathematically, the multiplicity of solutions might be
generic for nonperturbative renormalization because of the
compact expressions involved. Therefore, the limit cycles
encountered in the Schrödinger approach of renormalizing
singular potentials [19] might just be examples of such
multiplicity in certain regularization schemes.

2. Second perspective

To discuss the problem from the second perspective, we
need to express everything in terms of the first five ERE
parameters. Then the arguments go as in the preceding
subsection. We shall not, however, repeat such complicated
technical details here. One can also find relations such as
Eq. (35) or (36), which hold true independently of the
prescriptions, by repeatedly using the recursive relations

ṽn = −
3∑

k=1

D̄k

D̄0
ṽn−k, n � 5; ṽ3 = D̄3

D̄0
ã−1 − D̄2

D̄0
r̃e − D̄1

D̄0
ṽ2;

(37)

ṽ4 = −D̄3

D̄0
r̃e − D̄2

D̄0
ṽ2 − D̄1

D̄0
ṽ3;

ã−1 ≡ M

4πa
− J̄0, r̃e ≡ M

8π
re, ṽn ≡ M

4π
vn, n � 2, (38)

034001-6



RENORMALIZATION OF NN SCATTERING: CONTACT . . . PHYSICAL REVIEW C 71, 034001 (2005)

where the coefficients [ D̄k

D̄0
] can be solved in terms of

M,a, re, v2, v3, and v4.

D. Lessons from nonperturbative solutions

Now it is clear that things get more complicated as more
higher order terms are included in the potential. Given this,
we should not take the lower order results too seriously. For
instance, the low energy theorems at leading order are too
simple to be true in practice: re = vk = 0, k � 2. This implies
the necessity of including higher order terms, which, however,
will bring us both favorable and unfavorable consequences. On
one hand, more severe prescription dependence will appear
and make this analysis more difficult. On the other hand,
more prescription ambiguities also provide us with more

chances to access the measured values of the ERE parameters.
Although our calculations were done for the case of contact
potentials, the core feature of our analysis—more ambiguities
or more divergences at higher orders—holds true also for
realistic potentials. At this stage, we shall mention that the
freedoms in the prescription are in fact limited: [J̄n] must
satisfy certain requirements as presented in the discussion
following Eq. (32). Moreover, the coupling constants should
generally follow certain rules of EFT power counting. Then,
after putting all these theoretical aspects into consideration,
the EFT predictions must lie in a certain region of the “space”
of observables.

Now we provide another way to see the virtue of the fitting
procedure. Let us examine the variation of the functional form
of the scattering length a in terms of the couplings and [J̄n]
for different chiral orders:

� = 0 : a = M

4π

C0

1 + C0J̄0
,

� = 2 : a = M

4π

C0 + C2
2 J̄5

(1 − C2J̄3)2 + J̄0
(
C0 + C2

2 J̄5
) ,

� = 4 : a = M

4π

D̄0(C0, C2, C4, C̃4; J̄5, J̄7, J̄9)

N̄0(C0, C2, C4, C̃4; J̄3, J̄5, J̄7, J̄9) + J̄0D̄0(C0, C2, C4, C̃4; J̄5, J̄7, J̄9)
.

It is obvious that the theoretical form of the scattering
length varies with the chiral order quite significantly! So
the scattering length calculated at lower orders should not
be directly identified with the experimental value in order to
accommodate the higher order terms. Thus, a more reasonable
way to fix the renormalization prescription is to avoid the direct
identification of physical parameters in order to accommodate
higher order contributions in a consistent way. To this end,
again, a procedure such as fitting the empirical curve over
appropriate low energy regions might be more plausible.

V. POWER COUNTING AND RENORMALIZATION
IN THE NONPERTURBATIVE REGIME

In all the discussions above, we have left out the power
counting of the couplings. Since they constitute the basis for
the EFT methods, it is necessary to see what the nonpertur-
bative renormalization procedure described above means for
the power counting rules. In fact, as was stressed in Ref. [11],
the parametrization in the nonperturbative regime given in
Eq. (1) implies that, in order for a power counting scheme for
couplings to be meaningful, the corresponding prescription for
the constants [J̄n] must be appropriately chosen. Otherwise,
one could not obtain the physical T matrix.

From the standpoint of UT, both [Cn] and [J̄n] come from
the well defined low-energy projection (P̆LE) applied to UT
amplitudes. So both [Cn] and [J̄n] serve as the elementary
parameters for parametrizing the T matrix for the low-energy

nucleon-nucleon scattering. In the EFT treatment without
knowledge of the details from UT, we are forced to employ
[Cn] as the elementary couplings according to certain counting
rules, while the constants [J̄n] appear as the divergent pieces
in the EFT loops constructed with the use of [Cn]. Thus, it is
the EFT treatment that makes [Cn] and [J̄n] look disparate.
In UT they are organized and derived together according to
more elementary rules. Therefore, changing any of them (each
single parameter in [Cn] ∪ [J̄n]) alone would alter the physical
behavior of T. Thus, they must be considered together.

One can also understand it from the Wilsonian definition
of EFT through successive decimation of the higher scales,
where different EFT expansion points lead to both different
couplings and different [Jn], as long as the expansions are
compatible with the chiral power counting.

To be specific, the variations of [Cn] and [J̄n] (from now
on J̄0 is excluded from [J̄...] for the reasons given below) must
not alter the functional form (shape) of the T matrix:

Re

{
1

Tos(p)
− J̄0

}
=

∑
N̄i([C ′

...]; [J̄ ′
...])p

2i∑
D̄j ([C ′

...]; [J̄ ′
...])p2j

=
∑

N̄i([C...]; [J̄...])p2i∑
D̄j ([C...]; [J̄...])p2j

=
∑

N
(phys)
i p2i∑

D
(phys)
j p2j

. (39)

Here, we use the superscript “phys” to indicate that the
parameters in the last fraction are physically determined, for
example, from a genuine UT. To see why J̄0 is excluded from
[J̄n], consider the physical parametrization of the T matrix
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(independent of the variations of [C...] and [J̄n]), which has
the form

1

T (phys)
=

∑
N

(phys)
i p2i∑

D
(phys)
j p2j

+ Mγ + M

4π
ip, (40)

where γ must be a physical scale, just like the nucleon
mass M and the on-shell momentum p. Now, it is clear
that J̄0 alone corresponds to the physical parameter Mγ ,
which should therefore be independent of prescriptions. If
this were not the case, or if J̄0 could vary with prescriptions,
we would have to alter N̄0 and D̄0 to compensate for such
variation in J̄0. Now, to keep the proportionality between
N̄0, D̄0 and N̄ip

2i , D̄jp
2j invariant, all the rest of [N̄..., D̄...]

must be accordingly altered, which in turn leads to an overall
factor for (

∑
N

(phys)
i p2i)/(

∑
D

(phys)
j p2j ). Then, the functional

dependence of the T matrix upon p would be altered, since its
imaginary part, M

4π
ip, remains intact. Hence, J̄0 must stay

independent of prescriptions, i.e., physical. One could also
verify this by examining the consequences of this procedure
on the ERE parameters.

As p is arbitrary in the supposed range, the “invariance”
discussed above leads to the following nontrivial equations
for [Cn] and [J̄n] with the crucial presence of the physical
parameters [N (phys)

i ] and [D(phys)
j ] for the on-shell T matrix,

N̄i([C...]; [J̄...]) = N
(phys)
i , D̄j ([C...]; [J̄...]) = D

(phys)
j , ∀i, j.

(41)

These equations have dual implications: they can be used either
(1) to fix the prescription ([J̄...]) in terms of the couplings
([C...]) and the physical parameters ([N (phys)

... ; D(phys)
... ]) or

conversely (2) to examine the influence of prescription upon
the couplings with the help of the physical parameters. The
first use parallels what we have done in Secs. IV B and C.

A. Interplay between power counting and prescription:
next-to-leading order

Let us illustrate the interplay between power counting and
prescription at next-to-leading order; that is, we try to solve
the following equations for couplings:

C0 + C2
2 J̄5

(1 − C2J̄3)2
= α0 ≡ D

(phys)
0

N
(phys)
0

,
2C2 − C2

2 J̄3

(1 − C2J̄3)2
= α2 ≡ D

(phys)
2

N
(phys)
0

.

(42)
The solutions are easy to find as

C
(±)
2 = J̄−1

3

{
1 ± (1 + α0J̄3)−

1
2
}
, (43)

C
(±)
0 = α0

1 + α2J̄3
− 2J̄5

J̄ 2
3

{
1 ± (1 + α0J̄3)−

1
2
}2

. (44)

Taking into account the natural boundary condition for C2:
C2|J→0 =⇒ α2/2, we are left with the unique solution: C

(−)
2

(and C
(−)
0 ). Thus, assigning a power counting to C0 and

C2 means assigning the sophisticated scaling for J̄3 and J̄5.
Conversely, one can come up with an alternative interpretation:
The power counting for the couplings can only be preserved in
some particular prescription in order to obtain the expected

physical behavior from the T matrix. Note that here we
have deliberately not mentioned J̄0; it will be exclusively
discussed below. Equations (41) or (42) now formalize our
discussions concerning the interplay between power counting
and prescription.

More interestingly, these equations have a further utility:
they can be used to describe the evolution of the couplings in
terms of a sliding scale (µ) in [J̄n](= [qnMµn, n �= 0]). Since
the exogenous counterterms are incompatible with the closed
form of the T matrix, the conventional route to the evolution
described by the renormalization group equation does not exist.
But we can take the evolution implied by Eqs. (41) or (42)
as a nonperturbative “renormalization group” evolution. We
discuss this point in the next subsection.

B. Nonperturbative “renormalization group” (RG) evolution

To proceed, let us choose the prescription with [J̄n ≡
qnMµn] to examine the evolution of the couplings enforced
by (42). Let us assume that there exist enough boundary
conditions to obtain the “physical” solutions for the couplings
from the equations in (41):

Ci = Fi([N
(phys)
... , D(phys)

... ,M]; [q...]; µ),∀i. (45)

With such nonperturbative solutions, the complete evolution
of the couplings is determined and both the IR and the UV
fixed points can be identified. For example, at next-to-leading
order, we have from Eqs. (44) and (43):

C0(α0, α2,M, q3, q5; µ) = α0

1 + q3α2Mµ3

− 2q5

q2
3Mµ

{
1 − (1 + q3α0Mµ3)−

1
2
}2

, (46)

C2(α0, α2,M, q3, q5; µ)

= (q3Mµ3)−1
{
1 − (1 + q3α0Mµ3)−

1
2
}
. (47)

It is easy to see that they have both IR and UV fixed points:

IR fixed point (µ ⇒ 0) : C
(IR)
0 = α0, C

(IR)
2 = α2/2;

(48)

UV fixed point (µ ⇒ ∞) : C
(UV )
0 = C

(UV )
2 = 0. (49)

Note that the prescription dependence is obvious in Eq. (45)
with the presence of [q...] but the UV and IR fixed points
are prescription independent. While the IR fixed points are
realistic, as the couplings were defined in the low-energy limit,
the UV fixed points seem not to be realistic. But such UV
behavior of the EFT couplings is compatible with the fact that
the EFT couplings would be dominated by the UT couplings at
high energy, and therefore “vanish.” Of course we should bear
in mind that what we obtained are only approximate answers,
though nonperturbative.

Note that Eqs. (41), (45) contain the full dependence upon
the prescription parameters. So one could also derive the
equations a la Stückelberg and Petermann [20] that describe
the laws for transitions from one prescription to another, which
are not related by running the renormalization scale:

d

d[J̄...]
{N̄i, D̄j } = 0,∀i, j. (50)
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TABLE I. Determinant for naturalness/unnaturalness of T matrix.

Natural [C...] Unnatural [C...]

Natural [J̄...] Natural T matrix Unnatural T matrix
Unnatural [J̄...] Unnatural T matrix Natural/Unnatural T ?

In terms of [q...; µ], they become

d

d[q...]
{N̄i, D̄j } = 0,∀i, j. (51)

In the foregoing discussion, physical requirements are
imposed on the functional shape of the T matrix. Alterna-
tively, we could also employ the physically determined ERE
parameters (scattering length, effective range, etc.), instead
of [N (phys)

... ; D(phys)
... ], to solve the couplings in terms of [J̄n]. In

principle, the two approaches should lead to the same evolution
behavior, but the ERE approach is more involved than the shape
approach as is clear from the comparison between Eqs. (30)
and (32) and Eqs. (41).

C. Determinant for the natural or unnatural
scattering length: J̄0

Now we discuss the determinant(s) of the size of physical
parameters [N (phys)

i ] and [D(phys)
j ] or a, re, vk,∀k � 2. As

argued above, a complete parametrization of the T matrix is
given by [C...] supplemented with [J̄...]; then [C...] and [J̄...]
together determine whether the physical parameters are of
natural size or not. We can have four rough scenarios, listed
in Table I, where by a natural Cn we mean that the scale
� in its parametrization Cn ∼ 1/(M�n+1) is of the size of
the expansion scale (unnatural if � ∼ p,mπ ), whereas for
[J̄... = q...Mµ...] the situation is reversed: the natural size of
µ should be ∼ p,mπ . A natural T matrix is parametrized
by [N (phys)

i , D
(phys)
j ] (or for a, re, vk,∀k � 2) such that the

dimensional parameters are of the same magnitudes as the
natural couplings.

Examining the concrete expressions of the T matrix, we
find that whether the T matrix is natural or not is determined
by both the sizes of the couplings and the magnitudes
of the dimensionless combinations such as

∏
n,m C±1

n J̄m

(dim[
∏

n,m C±1
n J̄m] = 0). Now suppose we have natural cou-

plings, i.e., Cn ∼ 1/(M�n+1),∀n. If [J̄...] are also natural,
we should have |∏n,m C±1

n J̄m| � 1 for all the dimensionless
combinations. Then, given our experience at next-to-leading
and next-to-next-to-leading orders, we can anticipate that

N
(phys)
0 ∼ 1, N

(phys)
i ∼ 1

�2i
; D

(phys)
j ∼ 1

M�j+1
(∼ Cj ),∀i, j.

(52)

In this case, we obtain a natural T matrix, or ERE parameters
(a, re, vk,∀k � 2), of natural sizes. If [J̄...] are unnatural,
then in general, we could have |∏n,m C±1

n J̄m| ∼ 1 for the
dimensionless combinations. Therefore, we have

N
(phys)
0 � 1(� 1), N

(phys)
i � (�)

1

�2i
;

D
(phys)
j � (�)

1

M�j+1
(∼ Cj ),∀i, j. (53)

In this case, we obtain an unnatural T matrix, or unnatural
ERE parameters (a, re, vk,∀k � 2) with natural couplings. For
example, at next-to-leading order, we have

natural [J̄...] : |C2J̄3| � 1,
∣∣C2

2C
−1
0 J̄5

∣∣ � 1,

=⇒ natural T :
(1 − C2J̄3)2

C0 + C2
2 J̄5 + C2(2 − C2J̄3)p2

� 1

C0 + 2C2p2
; (54)

unnatural [J̄...] : |C2J̄3| ∼ 1,
∣∣C2

2C
−1
0 J̄5

∣∣ ∼ 1,

=⇒ unnatural T :
(1 − C2J̄3)2

C0 + C2
2 J̄5 + C2(2 − C2J̄3)p2

= ζ1

ζ2C0 + 2ζ3C2p2
, (55)

where each of the ζ... can be either fairly small or fairly large,
and therefore the T matrix cannot be a natural one.

Now let us consider J̄0 and the scattering length in parti-
cular. As argued above, J̄0 should be viewed as an independent
physical parameter, not as a common prescription parameter.
From the parametrization of T and the formulas in the
preceding sections, J̄0 will only contribute to the scattering
length:

a−1 = 4π

M

{
J̄0 + N̄0([C..., J̄...])

D̄0([C..., J̄...])

}
,

re = 8π

M

{
N̄0([C..., J̄...])D̄1([C..., J̄...])

D̄2
0([C..., J̄...])

− N̄1([C..., J̄...])

D̄0([C..., J̄...])

}
, · · ·

⇒ ∂a−1

∂J̄0
= 4π

M
,

∂re

∂J̄0
= ∂vk

∂J̄0
= 0,∀k � 2. (56)

Now we can see that, even when both [C...] and [J̄...] are of
natural size, the scattering length could be unnaturally large
once J̄0 is unnatural (∼M�),

natural J̄0(∼Mµ) : a−1 � −O(�) + O(µ) ∼ −O(�);

(57)

unnatural J̄0(∼M�) : a−1 � −O(�) + O(�) ∼ −O(µ).

(58)

That is, in the 1S0 channel, there theoretically exists a scenario
such that the scattering length could be unnaturally large while
all the rest ERE parameters are naturally sized. Then, the first
situation in Table I should be amended as follows: even when
all the couplings and all the rest of the [J̄...] are natural, we get
an unnatural scattering length as long as J̄0 is unnatural.

For an unnatural power counting of the couplings, the
discussion would be more difficult, and we refrain from
exploring such situations here. As we have shown that both
the natural and the unnatural physical parameters can be
explained with the natural couplings (provided the nontrivial
nonperturbative prescription dependence is fully explored),
we feel that it is more reasonable to work with natural or
conventional power counting of EFT couplings.
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VI. DISCUSSION AND SUMMARY

Now it is time for us to address some theoretical aspects
that have been omitted or not fully discussed so far. Let us
start with the relation between the UT renormalization and the
EFT renormalization involved in Sec. III C. Generally, in an
EFT one deals with the new divergences in the diagrams that
are induced by some low energy expansion (with the “wrong”
order of operations; cf. Sec. III C) or a similar operation in
UT, whereas the diagrams that need renormalization in UT are
usually hidden in the EFT couplings. Note that the diagrams
that renormalize UT dominate the quantum fluctuations at
short distances, whereas the ones that are divergent in EFT
dominate those at long distances. So the two renormalizations
do not interfere with (affect) each other due to the large
scale hierarchy between UT and EFT, i.e., they work at two
widely separated scales. Thus, the renormalization in UT does
not affect the renormalization in EFT. This supplements our
remarks following Eq. (22) in Sec. III C.

Next, let us address the effect of the potential truncation on
the nonperturbative renormalization group evolution. At any
fixed chiral order, the nonperturbative evolution behaviors of
the coupling of the highest chiral dimension should be less
trustworthy. This is because once the next-order interactions
are included, the coefficients for the term with the highest
power of p would suffer the largest changes in the functional
forms; the coefficients for the lower power terms receive
smaller changes from the new couplings. That means that
due to the truncation of the potential, the nonperturbative
evolution behaviors of the EFT couplings with lower chiral
dimensions should be more trustworthy than those with higher
chiral dimensions. One can see this point by noting how the
forms of [Ni([C...]; [J̄...]),Di([C...]; [J̄...])] (as functions of the
couplings [C...]) change with the inclusion of higher order
interactions.

In Sec. V C., we have shown that a natural (or conventional)
chiral power counting of the EFT couplings does allow the T
matrix to have unnatural parameters, or unnatural scattering
length, etc. In particular, there is a possibility that only the
scattering length is unnatural while the rest of the parameters
are natural. This seems to be the realisty of the situation with
the 1S0 channel nucleon-nucleon scattering at low energy.
This scenario is clearly different from the one discussed in
the literature where unusual power counting of the couplings
was employed [21]. Here, the key role is played by the
nonperturbative renormalization prescription.

Although our conclusions have been reached with the
use of contact interactions, we feel that they should remain
qualitatively true even in a realistic situation because the
crucial features of the nonperturbative renormalization remain
unchanged: (1) More ill-defined pieces in the loop integrals ap-
pear at higher chiral orders; (2) The nonperturbative solution of
the T matrix takes a closed form that can only be renormalized
via endogenous counterterms. Alternatively, one could also
take the rational function form as a Padé approximant to the
realistic T matrix.

Now let us comment on the literature. In Ref. [22], a
subtraction similar to the endogenous one described in the
present paper is employed: the counterterm is introduced

before the T matrix is calculated, a procedure that parallels the
loop integrations. However, it is not clear if the subtraction
described in some papers is equivalent to the endogenous
one or not. For example, the subtraction procedure described
in Ref. [23] does not appear to be an endogenous one.
Thus, it may be flawed, as already noted in Ref. [24]. In
Ref. [24], the whole investigation is done with the nonper-
turbative formulation (compact) of the T matrix, a positive
aspect of this study. However, a special regularization (cutoff
regularization) exclusively used in Ref. [24] unfortunately
makes their analysis inevitably prescription dependent. In
contrast, the strategy employed in Ref. [9] for parametrizing
and fixing the nonperturbative renormalization prescription
dependence is closer to the one used in the present paper. The
importance of boundary conditions has already been stressed in
Ref. [10], where the physical observables, such as phase shifts,
were parametrized without involving explicit divergences.

Obviously, we just explored some convenient scenarios of
the nonperturbative solutions. In our arguments, we have been
unable to exclude many other possible scenarios. The only
point in favor of the scenarios discussed in this paper is that
they are relatively simple, whereas the other possibilities seem
rather sophisticated, and they often use fine tuning or similar
arguments.

In our opinion, a better way to work with the renormaliza-
tion in the nonperturbative regime is to appreciate the presence
of a well defined theory underlying an EFT, as illustrated in this
paper. In this sense, the renormalization of singular potentials
in quantum mechanics [25], or equivalently the self-adjoint
extension of singular operators in Hilbert space, should also
be embedded in the underlying theory background. This is
plausible since quantum mechanics is an effective theory of
quantum field theory.

In summary, we reconsidered the renormalization of the
EFT for nucleon-nucleon scattering in the nonperturbative
regime using contact potentials that facilitate rigorous solu-
tions of LSE. Detailed analysis reveals that the T matrix in
the nonperturbative regime should be renormalized through the
endogenous counterterms whose net effects are to remove the
divergences in the loop integrals, or through means that could
yield the same results. The rationality for the subtractions at
the loop integral level is naturally provided by the underlying
theory, with the UV divergences being shown to come from
the “incorrect” order of operations in the construction of EFT.
Then, using the effective range expansion, we demonstrated
that the nontrivial renormalization prescription dependence in
the nonperturbative regime must be “removed” by imposing
appropriate boundary conditions. We also argued that when
imposing boundary conditions, the full “space” for renormal-
ization prescriptions should be explored in order to be able
to remove any residual prescription dependence. It is also
important to impose the boundary conditions in such a way
that higher order terms in the potential can be consistently
incorporated. Finally, the nontrivial relation between the power
counting of the couplings and the renormalization prescription
was highlighted in the nonperturbative regime. As by-products,
(1) the nonperturbative “renormalization group” evolution was
described; and (2) the naturalness of the scattering length, etc.,
was shown to be compatible with the natural or conventional
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power counting of the couplings because of the nontrivial
prescription dependence. That is, the nontrivial prescription
dependence becomes a virtue in such a case. Obviously, much
work remains to be done.
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APPENDIX A

I(E+) ≡


∫

d3k
(2π)3

1

E+− k2
M

,
∫

d3k
(2π)3

k2

E+− k2
M

,
∫

d3k
(2π)3

k4

E+− k2
M∫

d3k
(2π)3

k2

E+− k2
M

,
∫

d3k
(2π)3

k4

E+− k2
M

,
∫

d3k
(2π)3

k6

E+− k2
M∫

d3k
(2π)3

k4

E+− k2
M

,
∫

d3k
(2π)3

k6

E+− k2
M

,
∫

d3k
(2π)3

k8

E+− k2
M

 .

(A1)

The entries of this matrix can be parametrized as follows (p ≡√
ME):∫

d3k

(2π )3

1

E+ − k2

M

≡ I0 = −J0 − i
Mp

4π
; (A2)∫

d3k

(2π )3

k2

E+ − k2

M

≡ −J3 + I0p
2; (A3)∫

d3k

(2π )3

k4

E+ − k2

M

≡ −J5 − J3p
2 + I0p

4; (A4)∫
d3k

(2π )3

k6

E+ − k2

M

≡ −J7 − J5p
2 − J3p

4 + I0p
6; (A5)∫

d3k

(2π )3

k8

E+ − k2

M

≡ −J9 − J7p
2 − J5p

4 − J3p
6 + I0p

8.

(A6)
Here, {Jn} with n = 0, 3, 5, 7, 9 are regularization and renor-
malization prescription-dependent constants.

APPENDIX B

N0 = (1 − C2J3 − C4J5)2 − C0C̃4J
2
3 − C̃4J5

+ 2C̃4C4J
2
5 − C̃4C

2
4J

3
5 − 2C̃4C4J3J7

− C̃4C
2
4J

2
3 J9 + 2C̃4C

2
4J3J5J7;

N1 = −2C4J3 − C̃4J3 + 2C2C4J
2
3 + 2C̃4C4J3J5

+ 2C2
4J3J5 − C̃4C

2
4J3J

2
5 + C̃4C

2
4J

2
3 J7;

N2 = C2
4J

2
3 ;

D0 = C0 + C2
2J5 + C2

4J9 − C0C̃4J5 + C2
4 C̃4J

2
7

+ 2C2C4J7 − C2
4 C̃4J5J9;

D1 = 2C2 − C2
2J3 + C0C̃4J3 + C2

4J7 + 2C4C̃4J7

−C2
4 C̃4J5J7 + C̃4C

2
4J3J9;

D2 = 2C4 + C̃4 − 2C2C4J3 − 2C4C̃4J5 − C2
4J5

+ C̃4C
2
4J

2
5 − C2

4 C̃4J3J7;

D3 = −C2
4J3. (B1)

J
(UT)

0 (M,mh) = m4
h

(4π )2M2

∫ 1

0
dx

∫ x

0
dy

× (y + 3 − 2x)2 + 8(x − 1)[
(y + 1 − 2x)2 + y

m2
h

M2

]2
. (B2)

APPENDIX C

Consider the contact potential given at any chiral order.
In the matrix form defined in Sec. III A, we have V =
UT λU, T = UT τU , with U (p) ≡ (1, p2, p4, p6, . . .) being a
column vector and UT being the transposed vector. Then,
the convolution in LSE could be factorized as V G0T =
UT (p)λIτU (q), with the matrix I being defined as follows:

I ≡
∫

kdk2

(2π )2

U (k)UT (k)

E − k2/M + iε
. (C1)

The 3 × 3 case of I is given in Appendix A. It is easy to see
that we could rewrite I as

I = I0U (
√

ME)UT (
√

ME) + Ĩ([Jm]; ME),m �= 0,

(C2)
where I0 and Jm with m �= 0 are defined in Appendix A. Here,
Ĩ is a real matrix independent of I0. From Eq. (C2), it follows
that

V G0T = UT λ(I0UUT + Ĩ)τU = I0V T + UT λĨτU.

(C3)
Then, using the parametrization in (4), we find that, for on-shell
momentum,

T −1 = V −1 − G = V −1 − I0 − G̃, (C4)

with G̃ ≡ UT λ̃ĨτU

Ṽ T
= G − I0. Now comparing this with the

following representation of T derived in Ref. [11] using
the relation between the on-shell T matrix and the on-shell
K matrix, T −1 = K−1 + M

4π
ip, we find that

G̃ = V −1 − K−1 + J0, (C5)

that is, G̃ must be a real number. But this real quantity
is constructed with a complex T that contains the infinite
iterations of the complex number I0 as given in (C4). That
means I0 must cancel out in the infinite iteration and hence
must disappear in the real quantity G̃. This in turn implies that
J0, as the real part of I0, does not appear in G̃. Finally, these
facts will lead to the form of the T matrix constructed with
local potential,

T −1 =
∑

Ni([C...], [J...])p2i∑
Dj ([C...], [J...])p2j

− I0

=
∑

Ni([C...], [J...])p2i∑
Dj ([C...], [J...])p2j

+ J0 + M

4π
ip, (C6)

with [Ni,Dj ] being independent of J0. QED.
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