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Generalized counting rule and oscillatory scaling

D. Dutta and H. Gao
Triangle Universities Nuclear Laboratory and

Department of Physics, Duke University, Durham, North Carolina 27708, USA
(Received 20 November 2004; published 11 March 2005)

We studied the energy dependence of the pp elastic scattering data and the pion-photoproduction data at a
90◦ c.m. angle in light of the new generalized counting rule derived for exclusive processes. We show that by
including the helicity-nonconserving amplitudes and their interference with the Landshoff amplitude, we are able
to reproduce the energy dependence of all the pp elastic cross-section and spin-correlation (ANN ) data available
above the resonance region. The pion-photoproduction data can also be described by this approach; however,
data with much finer energy spacing are needed to confirm the oscillations about the scaling behavior. This study
strongly suggests an important role for helicity-nonconserving amplitudes related to the quark orbital angular
momentum and for the interference of these amplitudes with the Landshoff amplitude at GeV energies.
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The transition between perturbative and nonperturbative
regimes of quantum chromodynamics (QCD) is of long-
standing interest in nuclear and particle physics. Exclusive
processes play a central role in studies trying to map out this
transition. The differential cross sections for many exclusive
reactions [1] at high energies and large momentum transfers
appear to obey dimensional scaling laws [2] (also called
quark counting rules). In recent years, the onset of this
scaling behavior has been observed at a hadron transverse
momentum of ∼1.2 (GeV/c) in deuteron photodisintegration
[3,4] and in pion photoproduction from nucleon [5]. On
the other hand, these models also predict hadron helicity
conservation in exclusive processes [6], and experimental data
in similar energy and momentum regions tend to disagree
with these helicity-conservation selection rules [7]. Although
contributions from nonzero parton orbital angular momenta
are power suppressed, as shown by Lepage and Brodsky [8],
they could break the hadron-helicity-conservation rule [9]. In-
terestingly, recent reanalysis of quark orbital angular momenta
seems to contradict the notion of power suppression [10].
Furthermore, Ref. [11] argues that nonperturbative processes
could still be important in some kinematic regions even at
high energies. Thus the transition between the perturbative
and nonperturbative regimes remains obscure and makes it
essential that we understand the exact mechanism governing
the early onset of scaling behavior.

Toward this goal, it is important to look closely at claims
of agreement between the differential cross-section data and
the quark counting rule prediction. Deviations from the quark
counting rules have been found in exclusive reactions such
as elastic proton-proton ( pp) scattering [12,13]. In fact, the
rescaled 90◦ center-of-mass pp elastic scattering data, s10 dσ

dt

show substantial oscillations about the power law behavior.
Oscillations are not restricted to the pp elastic scattering
channel; they are seen in elastic πp fixed-angle scattering [14],
and hints of oscillation about the s−7 scaling have also been
reported in recent data [5] from Jefferson Laboratory (JLab)
on photo-pion production above the resonance region. In
addition to violations of the scaling laws, spin correlations in
polarized pp elastic scattering also show significant deviations

from perturbative QCD (pQCD) expectations [15,16]. Several
sets of arguments have been put forward to account for
these deviations from scaling laws and the unexpected spin
correlations. Brodsky and de Teramond [17] explain the pp
scattering data in terms of the opening up of the charm channel
and excitation of cc̄uuduud resonant states. Alternatively,
the deviations are said to be an outcome of the interference
between the pQCD (short distance) and the long-distance
Landshoff amplitude (arising from multiple independent
scattering between quark pairs in different hadrons) [18].
Gluonic radiative corrections to the Landshoff amplitude
give rise to an energy-dependent phase [19] and thus the
energy-dependent oscillation. Carlson, Chachkhunashvili, and
Myhrer [20] applied a similar interference concept to explain
the pp polarization data. The QCD rescattering calculation
of the deuteron photodisintegration process by Frankfurt,
Miller, Sargsian, and Strikman [21] predicts that the additional
energy dependence of the differential cross section, beyond
the dσ

dt
∝ s−11 scaling, arises primarily from the n-p scattering

in the final state. In this scenario, the oscillations may arise
due to the QCD final-state interaction. If these predictions are
correct, such oscillatory behavior may be a general feature of
high-energy exclusive photoreactions.

Recently, a number of new developments have generated
renewed interest in this topic. Zhao and Close [22] argue
that a breakdown in the locality of quark-hadron duality
(dubbed as “restricted locality” of quark-hadron duality)
results in oscillations around the scaling curves predicted by
the counting rule. They explain that the smooth behavior of the
scaling laws arises from the destructive interference between
various intermediate resonance states in exclusive processes at
high energies. However, at lower energies this cancellation by
destructive interference breaks down locally and gives rise to
oscillations about the smooth behavior. On the other hand, Ji,
Ma, and Yuan [23] derived a generalized counting rule based
on a pQCD-inspired model, by systematically enumerating
the Fock components of a hadronic light-cone wave function.
Their generalized counting rule for hard exclusive processes
include the parton orbital angular momentum and hadron
helicity flip, thus they provide the scaling behavior of the
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helicity flipping amplitudes. The interference between the
different helicity flip and nonflip amplitudes offers a new
mechanism to explain the oscillations in the scaling cross
sections and spin correlations. The counting rule for hard
exclusive processes has also been shown to arise from the
correspondence between the anti-de Sitter space and the
conformal field theory [24], which connects superstring theory
to conformal gauge theory. Brodsky et al. [25] used this
anti-de Sitter/conformal field theory correspondence or string/
gauge duality to compute the hadronic light-front wave
functions. This yields an equivalent generalized counting
rule without the use of perturbative theory. Moreover, pQCD
calculations of the nucleon form factors including quark
orbital angular momentum [26,27] and those computed from
light-front hadron dynamics [25] both seem to explain the

1
Q2 fall-off of the proton form-factor ratio, G

p

E(Q2)/G
p

M (Q2),
measured recently at JLab in polarization transfer experiments
[28].

In this Rapid Communication, we examine the role of the
helicity flipping amplitudes in the oscillatory scaling behavior
of pp scattering and charged photo-pion production from
nucleons and the oscillations in the spin correlations observed
in polarized pp scattering. We used the generalized counting
rule of Ji et al. [23] to obtain the scaling behavior of the helicity
flipping amplitudes.

It is well known that pp scattering can be de-
scribed by five independent helicity amplitudes [29]. Ac-
cording to the dimensional as well as the generalized
counting rules, the three helicity-conserving amplitudes,
M(+,+; +,+),M(+,−; +,−), and M(−,+; +,−), have
an energy dependence of ∼1/s4. On the other hand,
the simple constituent quark interchange models [29] as-
sume the two helicity flipping (nonconserving) amplitudes,
M(+,+; +,−)(NC1) and M(−,−; +,+) (NC2) to be zero.
Later analysis by Lepage and Brodsky [8] has shown these
amplitudes to be nonzero but power suppressed. The new
generalized counting rule predicts their energy dependence to
be ∼1/s4.5 and ∼1/s5, respectively [23]. Thus the generalized
counting rule, which includes the helicity flipping amplitudes
and the interference between them, gives rise to additional
energy dependence beyond the s−10 scaling predicted by
dimensional scaling.

In addition to these short-distance amplitudes, there can
be contributions from three successive on-shell quark-quark
scattering [30]. Although each scattering process is itself a
short-distance process, different independent scatterings can
be far apart, limited only by the hadron size. The Landshoff
amplitude also carries an energy-dependent phase arising from
gluonic radiative corrections calculable in pQCD [19] and has
a known energy dependence, similar to the renormalization-
group evolution: φ(s) = π

0.06 lnln(s/�2
QCD). This effect is be-

lieved to be analogous to the Coulomb-nuclear interference
that is observed in low-energy charged-particle scattering. It
has been shown that this energy dependence of the phase
occurs at medium energies [31] and becomes independent of
energy at asymptotically high energies [31,32]. In Ref. [18],
Ralston and Pire used the helicity-conserving amplitudes, the
Landshoff amplitude with an energy-dependent phase, and
the interference between them to reproduce the oscillations in
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FIG. 1. (a) The fit to pp scattering data at θc.m. = 90◦ of Ralston
and Pire [18]; this fit had two parameters: the overall normalization A1

and the arbitrary phase δ. (b) The same data fitted with the new more
general parametrization of the Landshoff amplitude; this fit includes
the three additional parameters b1, c1, and d1 mentioned in Eq. (1).
The data are from Ref. [12].

the pp scattering data at 90◦ c.m. angle. (A similar method
was used by Carlson et al. [20] to describe oscillation in the
cross section as well as the spin correlation.) They write the
two amplitudes as M = MS + eiφ(s)+iδML, where MS ∼ 1/s4

represents the three helicity-conserving short-distance am-
plitudes, ML ∼ 1/s3.5 is the Landshoff amplitude, φ(s) is
the energy-dependent phase, and δ is an arbitrary energy-
independent phase. By fitting to the existing pp scattering
data at the 90◦ c.m. angle, they find that the ratio of ML

to MS is 1:0.04 for an energy-dependent phase given by
φ(s) = π

0.06 lnln(s/�2
QCD), where �QCD = 100 MeV. It has

been argued that the asymptotic leading limit used to calculate
this energy-dependent phase of the Landshoff amplitude is
not entirely valid [33], and thus the Landshoff term is better
parametrized as

ML = bj s
−3.5 eicj [lnln(s/�QCD)]+iδj

[log(s)]dj
, (1)

where bj , cj , dj , and the energy-independent phase δj are
now parameters that are not exactly calculable. Figure 1(a)
shows the fit of Ref. [18] compared to the world data, and
Fig. 1(b) is a fit using the more general parametrization of the
Landshoff described above. Both these fits deviate drastically
from the data at s < 10 GeV2 and are not sensitive to the
different parametrizations of the Landshoff amplitude. Since
the Landshoff amplitude is expected to be significant only at
high energies, it is not unreasonable that the above formalism
does not describe the data at low energies.
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As the interference between the Landshoff and the short-
distance amplitudes fails to describe the data at low energies,
it is possible that the helicity flip amplitudes, and their
interference may play an important role at these energies.
The helicity flip amplitudes arising from the parton orbital
angular momentum are non-negligible when the parton
transverse momentum cannot be neglected compared with
the typical momentum scale in the exclusive processes at
relatively low energies. Thus one would expect the helicity
flip amplitudes to be a significant contribution to the cross
section at low energies. Moreover, the generalized counting
rule of Ji et al. [23] predicts a much faster fall-off with energy
for the helicity flip amplitudes as expected. We have refitted
the world data by including the two helicity nonconserving
amplitudes according to the generalized counting rule of
Ji et al. [23]. The two different forms for the energy dependence
of the phase in the Landshoff amplitude, described above,
were employed in the fits to examine their sensitivity to them.
The three helicity-conserving amplitudes combined as one
amplitude and the two helicity flipping amplitudes, along with
the Landshoff contributions, can be written as

MHC = s−4(a1 + b1s
0.5eiφ1(s)),

MNC1 = s−4(a2s
−0.5 + b2s

0.5eiφ2(s)), (2)

MNC2 = s−4(a3s
−1 + b3s

0.5eiφ3(s)),

where φj (s) is the energy-dependent phase. Two different
forms for the phase φj (s) were used in our fits: φj (s) =

π
0.06 lnln(s/�2

QCD) + δj and φj (s) = cj
lnln(s/�2

QCD)+δj

[log(s)]dj
. We have

neglected the helicity flipping Landshoff contributions. The
scaled cross section is then given by

R = s10 dσ

dt
∝ |MHC|2 + 4|MNC1|2 + |MNC2|2. (3)

The factor of 4 associated with the NC1 helicity flipping
amplitude arises because of the two possible configurations
of this single-spin flip amplitude [29].

Figure 2 shows the results of our fit and the explicit
contributions from the s−11 and s−12 terms for this approach.
The value of �QCD was fixed at 100 MeV for all fits. This
new fit is in much better agreement with the data. The helicity
flip amplitudes (mostly the term ∼s−4.5) are significant at low
energies and seem to help in describing the data at low energies.
It is interesting to note that among the helicity flip amplitudes,
the one with the lower angular momentum dominates. These
are very promising results and should be examined for other
reactions.

As mentioned earlier, the ANN spin correlation in polarized
pp elastic scattering also shows large deviations [16] from
the expectations of pQCD (assuming hadron helicity is
conserved). In terms of the helicity amplitudes, ANN is given
by [29]

RANN = 2Re[M∗(++; ++)M(−−; ++)]

+ 2Re[M∗(+−; +−)M(−+; +−)]

+ 4|M(++; +−)|2, (4)

where R has been defined in Eq. (3). At θc.m. = 90◦ the ratio of
the three helicity nonflip amplitudes is 2:1:1 [29]. Taking this
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FIG. 2. (a) The fit to pp scattering data at θc.m. = 90◦ when helicity
flip amplitudes are included as described in Eq. (2). The parameters
for the energy-dependent phase were kept the same as for the earlier fit
of Ralston and Pire [18]. The solid line is the fit result, the dotted line is
the contribution from the helicity flip term ∼s−11, and the dot-dashed
line is the contribution from the helicity flip term ∼s−12. The ∼s−12

contribution has been multiplied by 100 for display purposes. (b) The
same data fitted to the form described in Eq. (2) but with the new more
general parametrization of the Landshoff amplitude, which includes
the three additional parameters per term, bj , cj , and dj ( j = 1, 2, 3),
as mentioned in Eq. (1).

into account, we fit the ANN data by including the helicity
flipping amplitudes. Figure 3(a) shows the results for the
case where the helicity flip amplitude is neglected and only
the interference between the short-distance amplitude and the
Landshoff amplitude is used. In this case, the expression for
ANN simplifies to RANN = 2Re[M∗(+−; +−)M(−+; +−)].
These results are similar to those obtained by Carlson
et al. [20], and they described the ANN data at high energies
but failed to describe the low-energy data using this idea
of interference between short-distance and Landshoff terms.
Figure 3(b) shows the results of our fit when the helicity
flipping amplitudes are included. Clearly, this method is a
better fit to a larger fraction of the data, including some
low-energy data. This suggests that even in the case of the
spin correlation ANN in polarized pp elastic scattering, the
helicity flip amplitudes play an important role at low energies
(s < 10 GeV2).

Recently some precision data on pion photoproduction
from nucleons above the resonance region have become
available from JLab [5]. These data show hints of os-
cillation about the s−7 scaling predicted by the quark
counting rule. In pion photoproduction from nucleons, the
helicity nonflip amplitudes have an energy dependence of

032201-3



RAPID COMMUNICATIONS

D. DUTTA AND H. GAO PHYSICAL REVIEW C 71, 032201(R) (2005)

(a)

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

s(GeV2)

A N
N

(b)

5 25 30201510

FIG. 3. (a) The fit to ANN from polarized pp
scattering data at θc.m. = 90◦ with the helicity nonflip
and Landshoff amplitudes only. (b) Fit to the same data
when the helicity flip amplitudes are included. The data
are from Refs. [15,16]. The solid line is the fit, and the
dashed line is the expectation, assuming hadron helicity
conservation.

s−2.5, and there is just one helicity flip amplitude, which
according to the generalized counting rule has an energy
dependence of s−3 [23]. There are no leading-order Landshoff
terms in pion photoproduction because the initial state has a
single hadron. However, the Landshoff process can contribute
at subleading order [34] (i.e., ∼s−3 instead of ∼s−2). In
principle, the fluctuation of a photon into a qq̄ in the initial
state can contribute an independent scattering amplitude at
subleading order. But, experimentally it has been shown
that the vector-meson dominance diffractive mechanism is
suppressed in vector-meson photoproduction at large values
of t [35]. On the other hand, such an independent scattering
amplitude can contribute to the final state if more than one
hadron exist in the final state, as is the case in nucleon photo-
pion production reactions. Thus an unambiguous confirmation
of such an oscillatory behavior in exclusive photoreactions
with hadrons in the final state at large t may provide a signature
of QCD final-state interaction.

We have fit the pion-photoproduction data at θc.m. = 90◦
including the helicity flip amplitude and the Landshoff am-
plitude at subleading order with an energy-dependent phase.
The Landshoff amplitude was parametrized according to the
ansatz given in Ref. [33]. The amplitudes for γp → π+n and
γ n → π−p and the respective Landshoff contribution to each
amplitude can be written as

MHC = s−2.5

(
a1 + b1s

−0.5 eic1φ(s)+iδ1

[log(s)]d1

)
,

(5)

MNC1 = s−2.5

(
a2s

−0.5 + b2s
−0.5 eic2φ(s)+iδ2

[log(s)]d2

)
,

and the scaled cross section is given by

s7 dσ

dt
∝ |MHC|2 + |MNC1|2,

where φ(s) = lnln(s/�2). As seen in Fig. 4, the existing data

can be fitted quite well with this form. However, the data are
rather coarsely distributed in energy, and so these results are not
conclusive evidence for oscillations in pion photoproduction.
This underscores the point that a fine scan of energies above the
resonance region is urgently needed. This is exactly the issue
that will be addressed in the JLab experiment E02010 [36] in
the near future.

We have shown that the generalized counting rule of
Ji et al. [23] along with the Landshoff terms and associated
interferences does a better job of describing the oscillations
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FIG. 4. (a) The fit to γp → π+n scattering data at θc.m. = 90◦

when helicity flip and subleading order Landshoff amplitudes are
included. (b) Fit to γ n → π−p scattering data at θc.m. = 90◦. The
data are from Refs. [5,14].

032201-4



RAPID COMMUNICATIONS

GENERALIZED COUNTING RULE AND OSCILLATORY SCALING PHYSICAL REVIEW C 71, 032201(R) (2005)

about the quark counting rule, in the pp elastic scattering data
at θc.m. = 90◦. This is specially true in the low-energy region
(s < 10 GeV2). The contributions from helicity flipping ampli-
tudes, which are related to quark orbital angular momentum,
seem to play an important role at these low energies, which is
reasonable given that the quark orbital angular momentum
is nonnegligible compared to the momentum scale of the
scattering process. Similarly the spin correlation ANN in
polarized pp elastic scattering data can be better described
by including the helicity flipping amplitude along with the
Landshoff amplitude and their interference. The photo-pion

production data from nucleons at large angles can also be
described similarly; however, because of the coarse energy
spacing of the data, the results are not as illustrative. This points
to the urgent need for more data on pion photoproduction above
the resonance region with finer energy spacing. We expect that
our experiment at JLab, which has been approved for running,
will help address this need in the near future.

We acknowledge fruitful discussions with X. Ji and
S. J. Brodsky. This work is supported by the U.S. Department
of Energy under Contract Number DE-FG02-03ER41231.

[1] C. White et al., Phys. Rev. D 49, 58 (1994).
[2] S. J. Brodsky and G. R. Farrar, Phys. Rev. Lett. 31, 1153 (1973);

Phys. Rev. D 11, 1309 (1975); V. Matveev et al., Nuovo Cimento
Lett. 7, 719 (1973).

[3] C. Bochna et al., Phys. Rev. Lett. 81, 4576 (1998); E. C. Schulte
et al., ibid. 87, 102302 (2001).

[4] P. Rossi et al., Phys. Rev. Lett. 94, 012301 (2005); M. Mirazita
et al., Phys. Rev. C 70, 014005 (2004).

[5] L. Y. Zhu et al., Phys. Rev. Lett. 91, 022003 (2003); L. Y. Zhu
et al., nucl-ex/0409018.

[6] S. J. Brodsky and G. P. Lepage, Phys. Rev. D 24, 2848 (1981).
[7] K. Wijesooriya et al., Phys. Rev. Lett. 86, 975 (2001).
[8] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157

(1980).
[9] T. Gousset, B. Pire, and J. P. Ralston, Phys. Rev. D 53, 1202

(1996).
[10] J. P. Ralston and P. Jain, Phys. Rev. D 69, 053008 (2004).
[11] N. Isgur and C. H. Llewellyn Smith, Phys. Rev. Lett. 52, 1080

(1984).
[12] C. W. Akerlof et al., Phys. Rev. 159, 1138 (1967);

R. C. Kammerud et al., Phys Rev. D 4, 1309 (1971);
K. A. Jenkins et al., Phys. Rev. Lett. 40, 425 (1978).

[13] A. W. Hendry, Phys. Rev. D 10, 2300 (1974).
[14] D. P. Owen et al., Phys. Rev. 181, 1794 (1969); K. A. Jenkins

et al., Phys. Rev. D 21, 2445 (1980); C. Baglin et al., Nucl. Phys.
B216, 1 (1983).

[15] D. G. Crabb et al., Phys. Rev. Lett. 41, 1257 (1978).
[16] G. R. Court et al., Phys. Rev. Lett. 57, 507 (1986); T. S. Bhatia

et al., ibid. 49, 1135 (1982); E. A. Crosbie et al., Phys. Rev. D
23, 600 (1981).

[17] S. J. Brodsky and G. F. de Teramond, Phys. Rev. Lett. 60, 1924
(1988).

[18] J. P. Ralston and B. Pire, Phys. Rev. Lett. 49, 1605 (1982);
B. Pire and J. P. Ralston, Phys. Lett. B117, 233 (1982).

[19] A. Sen, Phys. Rev. D 28, 860 (1983).
[20] C. E. Carlson, M. Chachkhunashvili, and F. Myhrer, Phys. Rev.

D 46, 2891 (1992).
[21] L. L. Frankfurt, G. A. Miller, M. M. Sargsian, and M. I. Strikman,

Phys. Rev. Lett. 84, 3045 (2000).
[22] Q. Zhao and F. E. Close, Phys. Rev. Lett. 91, 022004 (2003).
[23] X. Ji, J.-P. Ma, and F. Yuan, Phys. Rev. Lett. 90, 241601 (2003).
[24] J. Polchinski and M. J. Strassler, Phys. Rev. Lett. 88, 031601

(2002); R. C. Brower and C. I. Tan, Nucl. Phys. B662, 393
(2003); O. Andreev, Phys. Rev. D 67, 046001 (2003).

[25] S. J. Brodsky and G. F. de Teramond, Phys. Lett. B582,
211 (2004); S. J. Brodsky, J. R. Hiller, D. S. Hwang, and
V. A. Karmanov, Phys. Rev. D 69, 076001 (2004).

[26] R. Buniy, J. P. Ralston, and P. Jain, in VII International
Conference on the Intersections of Particle and Nuclear Physics,
Quebec City, 2000, edited by Z. Parsa and W. Marciano (AIP,
New York, 2000), hep/ph/0206074.

[27] A. V. Belitsky, X. Ji, and F. Yuan, Phys. Rev. Lett. 91, 092003
(2003).

[28] M. K. Jones et al., Phys. Rev. Lett. 84, 1398 (2000); O. Gayou
et al., ibid. 88, 092301 (2002).

[29] S. J. Brodsky, C. E. Carlson, and H. Lipkin, Phys. Rev. D
20, 2278, (1979); G. R. Farrar, S. Gottlieb, D. Sivers, and
G. H. Thomas, ibid. 20, 202 (1979).

[30] P. V. Landshoff, Phys. Rev. D 10, 1024 (1974).
[31] J. Botts and G. Sterman, Nucl. Phys. B325, 62 (1989).
[32] A. H. Mueller, Phys. Rep. 73, 237 (1981).
[33] P. Jain, B. Kundu, and J. P. Ralston, Phys. Rev. D 65, 094027

(2002).
[34] G. R. Farrar, G. Sterman, and H. Zhang, Phys. Rev. Lett. 62,

2229 (1989).
[35] E. Anciant et al., Phys. Rev. Lett. 85, 4682 (2000).
[36] JLab experiment E02-010, spokespersons: D. Dutta, H. Gao, and

R. Holt (2002).

032201-5


