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Charge form factors of quark-model pions
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Experimental data of the pion charge form factor are well represented by Poincaré invariant constituent-quark
phenomenology depending on two parameters: a confinement scale and an effective quark mass. Pion states are
represented by eigenfunctions of mass and spin operators and of the light-front momenta. An effective current
density is generated by the dynamics from a null-plane impulse current density. A simple shape of the wave
function depending only on the confinement scale is sufficient. The range of quark masses and confinement scales
consistent with both low- and high-Q2 data depends on the shape of the wave function.
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The unitary Poincaré representations on the Hilbert space
of confined quark states may be specified by mass and spin
operators together with the choice of a kinematic subgroup
[1,2]. The four-momentum operator is a function of the mass
operator M and three kinematic quantities that depend on the
choice of a kinematic subgroup [3]. Single-hadron eigenstates
of the mass operator may be represented by functions φn of
constituent quark momenta, spin, flavor, and color variables.
The mass operator can be defined by the spectral representation

M :=
∑

n

φnMnφ
†
n, (1)

using empirical hadron masses or by the conventional as-
sumption that the operator M (or M2) is expressed as the
sum of a kinetic term M0 (or M2

0) and a confining potential.
However, mass operators of confined quarks need not involve
this conventional dependence on constituent-quark masses and
the formal structure of the dynamics is simpler if it does
not [4,5]. The wave functions representing hadron states are
not observable. The observable form factors are determined
by both the wave functions and associated representations of
the Poincaré covariant, conserved, current density operators
Iµ(x),

U (�, a)Iµ(x)U †(�, a) = I ν(�x + a)�ν
µ,

(2)
ı[Pµ, Iµ(x)] = ∂µIµ(x) = 0.

Poincaré covariant, conserved, current operators may be
generated by the dynamics from any input that is covariant
under the kinematic subgroup. The form factors are invariant
under unitary changes of the representations of both the state
vectors and the current operators. Such transformations may
preserve the kinematic subgroup [1,2].

Here we investigate the compatibility of simple shapes
of the wave function with current operators generated by
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the dynamics from impulse currents. Quark masses of
confined quarks enter as scale parameters of the impulse
currents. Their values differ with different forms of kinematics
[3]. They are not masses of potentially free constituent
particles.

The null-plane kinematic subgroup leaves invariant the null-
plane n · x = 0, with n2 = 0. With a convenient choice of
the axes the components of n are given by n = {1, 0, 0, 1}.
With the null vector perpendicular to the momentum transfer,
n · Q = 0, the invariant Q2 = Q2

⊥ is kinematic.
It is an important consequence that the form factors do not

depend on the hadron mass. This feature is essential for the
quark phenomenology of pion form factors. With point-form
kinematics [6] form factors are functions of η := Q2/4m2

π ,
which is large for moderate values of Q2. Thus, with simple
wave functions, form factors are much too small for a realistic
representation [7].

Previously [8] we demonstrated that the simple quark
phenomenology just sketched yielded charge form factors of
the pion in agreement with available data for both low Q2 [9]
and Q2 > 1 GeV2. Recently new measurements [10] provided
more precise data for Q2 < 2 GeV2 and new data at higher val-
ues of Q2 are expected. Assuming a simple shape of the wave
function the model depends on two scales, the confinement
scale of the wave function and the quark mass. The purpose of
this Brief Report is to investigate the implications of precise
data for Q2 > 1 GeV2. Recent data constrain acceptable values
of the quark mass and confinement scale to a narrow range of
values, which depends on the the shape of the wave function.
For Q2 > 2 GeV2, form factors consistent with existing data
decrease at different rates depending on the shape of the wave
function.

There is no intent to approximate features of quantum field
theory in the construction of such quark models. In particular
the representations of constituent-quark states are not meant
to approximate Fock-space amplitudes and/or satisfy features
of perturbative QCD [11].

As in Ref. [8] the models are specified by input currents
with the representation

0556-2813/2005/71(2)/028202(4)/$23.00 028202-1 ©2005 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW C 71, 028202 (2005)

TABLE I. Dependence of quark masses, confinement scales,
and quark axial couplings on the shape of the wave functions.

Wave mq (MeV) b (MeV) g
q

A

function

Eq. (9) 200 360 1.07
Eq. (10) 230 430 .91
Eq. (11) 300 275 .76

〈ξ ′, k′
⊥, µ′, µ̄′|n · I (0)|ξ, k⊥, µ, µ̄〉

= δµ′,µδµ̄′,µ̄δ(ξ ′ − ξ )δ(k′
⊥ − k⊥ − (1 − ξ )Q⊥) (3)

and a representation of the pion state by wave functions
φ(ξ, k⊥, µ, µ̄) which is proportional to a radial wave function
u(k2) and Melosh rotation matrices,

φ(ξ, k⊥, µ, µ̄) :=
∑
µ′,µ̄′

〈µ|R†(ξ, k⊥)|µ′〉

× 〈µ̄R†(1 − ξ,−k⊥)µ̄′〉
(

1

2
,

1

2
, µ′, |µ̄′|0, 0

)
u(k2).

(4)

The argument k2 is related to the null-plane momenta by

k2 + m2
q = k2

⊥ + m2
q

4ξ (1 − ξ )
. (5)

The pion charge form factor, a functional of the radial wave
function u(k2), is

Fπ (Q2) = 1

16π

∫ 1

0
dξ

∫
d2k̄⊥

ξ (1 − ξ )
W(ξ, k̄⊥)u(k′2)u(k2)

(6)
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FIG. 1. Wave-function dependence of pion form factors at low
momentum transfer.
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FIG. 2. Wave-function dependence of pion form factors at high
momentum transfer.

with

k̄⊥ = k⊥ − 1
2 (1 − ξ )Q⊥ = k′

⊥ + 1
2 (1 − ξ )Q⊥ (7)

and

W :=
√√√√ ξ (1 − ξ )√(

m2
q + k2

⊥
)(

m2
q + k′

⊥
2)

m2
q + k̄2

⊥ − 1
4 (1 − ξ )2Q2

ξ (1 − ξ )
.

(8)
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FIG. 3. Shapes of the three radial wave functions.
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FIG. 4. Wave-function dependence of pion form factors at low
momentum transfer.

In [8] a Gaussian shape

u(k2) =
√

4√
πb3

exp(−k2/2b2) (9)

was used for numerical convenience. We expect that a rational
shape, for example,

u(k2) =
√

32

πb3

(
1

1 + k2/b2

)2

, (10)
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FIG. 5. Wave-function dependence of pion form factors at high
momentum transfer.
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FIG. 6. Shapes of the two radial wave functions.

may specify a better model. For each shape of the wave
function a precise fit to both low- and high-Q2 data tightly
constrains acceptable values of the quark mass mq and the
confinement scale b. A larger quark mass requires a different
shape, illustrated by the function

u(k2) =
√

16

πb3

(
1

1 + k2/b2

) 3
2

. (11)

The form factors obtained with the parameters listed in Table I
are shown in Figs. 1 and 2.

The pion decay constant fπ is related to the quark axial
coupling g

q

A by [12,13]

fπ =
√

3g
q

A

8π2

∫ 1

0
dξ

∫
d2k⊥

ξ (1 − ξ )

mq√
M0

u(k2), (12)

M2
0 := m2

q + k2
⊥

ξ (1 − ξ )
. (13)

The empirical value fπ = 92.4 MeV [14] implies the values
of g

q

A listed in Table I.
The shapes of the three wave functions are compared

in Fig. 3. All three parametrizations are in agreement with
existing data. For larger values of Q2 the form factors decrease
at different rates depending on the quark mass and the shape of
the wave function. For Q2 > 2 GeV2 the form factors obtained

TABLE II. Dependence of quark masses, confinement scales, and
quark axial couplings on the shape of the wave functions.

mq (MeV) α (GeV)2 β γ (GeV) λ (GeV)2 g
q

A

220 .10 .40 .167 .299 .98
360 .03 .155 2.94 1.48 .68
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with Eq. (10) are in agreement with the QCD approximations
of Maris and Tandy [15].

Conventional QCD-motivated mass operators [16,17]

(
2
√

m2
q + k2 + αr − β

r
+ γ �sq · �sq̄ e−λ2r2 − m0

)
u(r) = 0,

(14)
designed to fit meson spectra, produce wave functions that
require substantial modification of the input current [12]. The
application of unitary “scattering equivalences” [18], which
preserve the quark masses, produce wave functions compatible
with impulse currents. These transformed wave functions may
be realized by adjusting the parameters in the potential [18,19].
In Figs. 4–6 this is illustrated for mq = 220 MeV [16] and

mq = 360 MeV [17]. The associated potential parameters and
quark axial couplings are listed in Table II.

Minimal phenomenological models of confined quark
dynamics, illustrated by Eqs. (9)–(11), with null-plane impulse
currents and quark masses between 200 and 300 MeV can
easily accommodate existing experimental values of pion form
factors, as well as QCD-based predictions for Q2 in the range
of several GeV2 [15]. Sufficiently precise data for larger values
of Q2 will limit acceptable shapes of the wave functions and
associated mass scales of the impulse currents.
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