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Ratio of the proton electromagnetic form factors from meson dressing
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The dressed K-matrix model, developed previously for low- and intermediate-energy Compton scattering, is
generalized to calculate the photon-nucleon vertex with a virtual photon and an off-shell nucleon. This model
was used to compute the ratio of the proton electromagnetic form factors. The calculated ratio is in excellent

agreement with the ratio measured in polarized electron-proton scattering.
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I. INTRODUCTION

Results of the recent experiments [ 1] on polarized electron-
proton scattering and their apparent disagreement [2] with
the electromagnetic form factors (EM FFs) extracted from
Rosenbluth cross-section measurements indicate that much
remains to be learned about nucleon EM interactions. While a
definitive understanding of the nucleon EM FFs is still lacking,
several theoretical models [3—8] are able to describe their
momentum-transfer dependence consistently with the JLab
experiments [1].

Since the ultimate goal is to reach a coherent understanding
of all aspects of the nucleon EM interactions, important
insights can be gained by describing as many different
photon-nucleon reactions as possible in a unified theoretical
approach. The dressed K-matrix model (DKM) [9-11] has
been developed for a description of real Compton scattering in
a wide energy region both below and above the pion production
threshold. The central element of this model is a nonperturba-
tive nucleon dressing based on the iterative use of dispersion
relations, thus adding analyticity constraints to the properties
of relativistic covariance, unitarity, crossing symmetry, and
gauge invariance of the usual K-matrix approaches.

The parameters of the model are not entirely free: the
convergence requirement of the dressing procedure imposes
constraints on the allowed range of these parameters while
introducing an interdependence among them. The thus-
constrained parameters were then completely fixed by a fit to
Compton cross sections and pion-nucleon (;r N) phase shifts at
intermediate energies [10]. With all the parameters fully fixed,
low-energy observables—such as the nucleon polarizabilities
[10], pion-nucleon scattering lengths, and ¥ term [11]—were
then calculated and shown to agree with experimental data.
The main reason for this success is that important analyticity
(causality) constraints are implemented in DKM by dressing
the yNN, NN, and 7 NA vertices and the nucleon and
A propagators with meson loops up to infinite order. The
extent to which analyticity is fulfilled can be quantified by
comparing the low-energy amplitudes with corresponding sum
rules, both evaluated within the same model. Within DKM,
such a comparison was made for the Baldin-Lapidus and
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Gerasimov-Drell-Hearn sum rules vs. the nucleon polariz-
abilities [12] and for the Adler-Weisberger and Goldberger-
Miyazawa-Oehme sum rules vs. the near-threshold 7 N am-
plitude [13]. We generally found good agreement between the
low-energy and sum-rule evaluations.

In this report we extend the dressing procedure to the case
of virtual spacelike photons. The resulting dressed photon-
nucleon (yNN) vertex has six invariant functions depending
on two invariant variables: the four-momentum squared of the
photon and of one of the nucleons, the other nucleon being on-
shell. By putting both nucleons on the mass shell we calculate
the momentum-transfer dependence of the ratio of the proton
EM FFs. We find good agreement of our calculation with the
JLab polarization-transfer measurements [1].

The crucial point of this result is that the momentum-
transfer dependence of the ratio of the FFs is calculated here
with the same parameters as used in Refs. [10-13] to describe
the Compton and 7 N amplitudes at low and intermediate
energies. This shows that the dynamics of DKM captures
features which are important in a wide kinematical range
relevant to the photon-nucleon interactions.

II. FORM FACTORS IN THE DRESSED y NN VERTEX

The most general Lorentz-covariant structure of the y NN
vertex with an incoming off-shell photon (four-momentum ¢)
and an incoming off-shell nucleon (four-momentum p) can be
written as [14]

o*vq,
M(p.q)=Y (y“F{ (P’ q*)+ iz—quz’(pz, %)
r==+
9" . o 5
+--Fi(p*q )) A, (1)

where A (jf) = (£ f + m)/(2m) are the nucleon positive- and
negative-energy projection operators,! and the six invariant
'Throughout the paper we use the conventions and definitions of

Ref. [15].
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functions F/(p?, ¢*) (i = {1, 2,3}, r = %) are called half-off-
shell FFs. The outgoing nucleon is on the mass shell, i.e., its
four-momentum p’ = p + ¢ obeys p'> = m>. We consider
protons interacting with real or virtual spacelike photons,
ie., g2 <O.

The usual Dirac and Pauli FFs, denoted as F, D(qz) and
Fp(g?), respectively, are obtained by putting both nucleons on
the mass shell in Eq. (1):

Fpp(g®) = lim FHp* ¢). )
pe—m

When the two nucleons are on-shell, F, ;(m*, ¢*) do not
enter the vertex since A_ (7 = m) = 0; in addition, space-time
reflection invariance requires [14] that

F;r(m*, ¢ = 0. A3)

Fp.p(g?) are related to the Sachs (electric and magnetic) FFs
Ge.m(q?) by

2
Ge(g)) = Folg) + 75 Fr(g?),
m
Gu(q®) = Fp(g>) + Fpr(g?).

The yNN vertex Eq. (1) is calculated by dressing a bare
vertex with an infinite number of meson loops including
pions and vector isoscalar mesons. The w NN and nwNA
vertices and the nucleon and A propagators, which enter
in the loop integrals for the y NN vertex, are also dressed
nonperturbatively with pions and p and o mesons. The detailed
description of the dressing technique for the y NN vertex (with
real photons) can be found in Ref. [9], and for the 7NN, 7 N A
vertices and the propagators in Ref. [11]. This dressing is part
of DKM [10] where it amounts to restoring the principal-value
parts of loop contributions to the Compton and r N amplitudes.

In the present work we have generalized the dressing
procedure of Ref. [9] from real to virtual spacelike photons
in Eq. (1). Thus we have calculated the six invariant functions
Fi’(pz, qz) for —o0 < p2 < 00 and q2 <0, from which the
momentum-transfer dependence of the EM FFs has been
obtained according to Egs. (2) and (4). For brevity, we will
focus only on the important new features related to the
off-shellness of the photon.

We write the bare vertex as

I

s+ Lnpg?). ©)
m m

“

ohv

vt

The renormalization consists in choosing the bare constant
kp such that the dressed vertex with all particles on-shell
reproduces the physical anomalous magnetic moment of the
proton, i.e., F2+(m2, 0) =«, = up, — 1 = 1.79, and adjusting
hg(g*) so that the calculated function F3+ (p%. q%) obeys
Eq. (3).

III. GAUGE INVARIANCE OF THE MODEL

The Ward-Takahashi identity (WTI) is a consequence of
gauge invariance of the theory [16]. It relates the yNN
vertex Eq. (1) to the propagator S(jf) of the off-shell proton:
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g, T"(p, @) = —S~!(##). Thus, the WTI dictates that the half-
off-shell FFs in Eq. (1) must obey the relations

2)(p? 4 m?
Ff(p*q") = 2 Tmz <Ol(P oo 2a(pE(P?)
+ q_z [(3m2 + 2)F+( 2 2)
23 Py (p,q
+(m* = p)F5 (p*. ¢7)] ) (6)

2
Fr(p% g% = a(p?) + f—mz [F(p% q®) — Fy (p% qP)],
7

where the self-energy functions a(p?) and £(p?) enter into
the dressed nucleon propagator S(7) = [a(p?)(ff — E(p*)] ™!
which was calculated together with the dressed A propagator
and 7NN and wNA vertices [11]. The renormalization
conditions S~!'(m) = 0 and Res S(m) = 1 can be explicitly
written as

a(m*)(m — &(m*) = 0, ®)
2o — 2y 22D
dp? .
p =m
d&(p?)
_a(mz) 2m | 2 —1] =1 )
p =m

On expanding Eq. (6) in powers of p? around m? and using
Egs. (2), (3), (8), and (9), we obtain the WTI for the Dirac FF
of the proton as

AF (p* g%
ap?

Fy (m?, ¢*%)
2m?

)

Fp(gHh=1+4¢"|2

pi=m?

(10)

yielding the familiar constraint Fp(g> = 0) = 1 foran on-shell
vertex with a real photon. Note that we do not impose Eqgs. (6)
and (7) “by hand” at any stage of the dressing; nevertheless,
the resulting vertex does obey these constraints of the WTI
because of the gauge invariance of the model.

IV. RESULTS OF THE CALCULATION

The ratio of the calculated proton EM FFs is shown in
Fig. 1 as a function of the photon momentum squared, Q? =
—q2 > 0, together with the recent JLab measurements [1].

We found that in order to obtain accurate agreement with
experiment over the wide range of momenta-transferred Q2,
the coupling of the vector isoscalar particle to the nucleon
has to be different from the w NN coupling given in Ref. [10].
While the part of the vertex proportional to y,, is comparable to
that of the wNN vertex (instead of g, = 12 as in [10], now we
use gyect = 8), the part proportional to 0,,,4" has to be quite
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FIG. 1. Momentum-transfer dependence of the ratio of the proton
EM FFs Eq. (4) (Q? = —¢?). The present calculation is com-
pared with the experimental results from polarized electron-proton
scattering [1].

large (we need kyeer = 60 instead of «k,, = —0.8).2 The other
coupling constants are the same as in [10], i.e., as fixed in the
description of the # N and Compton scattering processes. It
is important that even without the contribution of the vector
isoscalar particle, we find the slope of the ratio of the FFs to
be negative at Q> = 0, although in that case it is too steep.
Including the vector particle in the dressing makes the slope
less steep. A negative slope of the ratio implies that the electric
mean-square radius of the proton is larger that the magnetic
mean-square radius normalized to the total magnetic moment;
ie., if
2

_d_GeQ) <0, (11)

d0? Gu(0Y)| gy
then taking into account that Gz(Q?> =0) =1, Gy (Q* =

0) = 14p, and using the usual definitions of the mean-square
radii

dGgu(Q%)
(r2y)=—-6—2222 (12)
dQ Q2:0
we find
2
r
(rz) > @. (13)
Hp
Note that the traditional one-photon exchange anal-

yses of the Rosenbluth cross sections would yield
Hp G£(0?)/Gy(Q?) = const ~ 1 (see, e.g., Ref. [2]), which
would imply equal electric and (normalized) magnetic radii,
in sharp contrast to Eq. (13). We would also like to point
out that the relation in Eq. (13) is consistent with the
well-known fact that the electric polarizability of the proton,
ap ~ 12 x 10~* fm?, is larger than its magnetic polarizability,
By ~ 2 x 10~* fm?, that is,

ap > Bu. (14)

Thus, one might speculate that the proton behaves as a “larger”
and hence more “deformable” object in the presence of an
electric field than in the presence of a magnetic field. Since

2A large additional vector particle contribution is also needed in
other approaches in the literature, e.g., in a soliton model of Ref. [4].
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FIG. 2. Calculated electric FF of the proton is compared with the
data analysis of Ref. [17].

the mean-square radii are extracted from the momentum-
transfer dependence of the FFs while the polarizabilities come
from Compton scattering, the dressing procedure of DKM
could provide a theoretical framework for understanding this
(possibly fortuitous) similarity between Eqgs. (13) and (14).

Even though the ratio of the calculated FFs agrees with
experiment very well as shown in Fig. 1, the model fails in
describing G (Q?) and G (Q?) separately. This is demon-
strated in Fig. 2 for the electric FF. A possible remedy could
be to use an appropriate FF in the bare y NN vertex, which
would introduce additional cutoff parameters. We have not
done so in the present calculation since our aim is to keep the
same model parameters as fixed in describing Compton and
7 N scattering. In this way we impose a stringent dynamical
constraint on the model.

The dependence of the calculated y NN vertex on the
momentum squared p? of the off-shell proton is illustrated
in Fig. 3, where we show the p? dependence of the ratio of
generalized (half-off-shell) Sachs FFs, which we define as

2
en q
G3(p*. q>) = F ' (p*, ¢») + mp;(pz, a°),
G5'(p*, qP) = F'(p*, ¢») + F (p*, ¢7).

The usual Sachs FFs (4) are obtained from (15) by taking the
limit p?> — m? in accordance with Eq. (2).

5)
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FIG. 3. Ratio of the generalized Sachs form factors (15) as a
function of the momentum squared p? of the off-shell proton, for
various fixed values of the photon momentum squared Q2 = —g>.
The vertical dotted line corresponds to both nucleons being on-shell
with p?> = p”?> =m?. The cusp at p>~ 1.16 GeV? indicates the
opening of the pion production threshold.
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Although the half-off-shell FFs are not measurable by
themselves [18], they can be an important part of various
models for physical processes. For example, a two-photon
exchange contribution to electron-proton scattering contains
yNN vertices with an off-shell nucleon leg. So far the depen-
dence of these vertices on the nucleon off-shell momentum has
not been taken into account in the existing approaches [19].
Our calculation shown in Fig. 3 suggests that this dependence
may be significant. It should be borne in mind, however,
that in view of the representation dependence of Green’s
functions [20], the calculation of such off-shell vertices should
be consistent with the model for the physical processes to
which they are applied.

V. CONCLUSIONS

In this report we extended the nonperturbative dressing
procedure of the dressed K-matrix model (DKM) to calculate
ay NN vertex with an off-shell nucleon and an off-shell photon.
The principal motivation for this work is to study the nucleon
electromagnetic interactions in a dynamical approach that
describes in a unified manner two distinct types of reactions:
those where essential contributions come from an off-shell
nucleon (as in Compton scattering) and those where one probes
the dependence on the momentum transferred by an off-shell
photon (as in form factors extracted from electron-proton
scattering experiments). Having previously applied DKM to
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Compton and 7 N scattering, in this report we focused on the
momentum-transfer dependence. We developed the dressing
procedure to calculate the ratio of the proton electromagnetic
form factors and found good agreement of our results with the
recent JLab measurements.

The main limitation of the present version of DKM is the
difficulty in describing the momentum-transfer dependence
of the individual form factors as accurately as their ratio.
To resolve this problem, additional dynamical contents—with
attendant new parameters—might be required in the model.
Rather than pursuing this direction in detail, we studied to
what extent one can describe the dependence of the nucleon
EM interactions on both the nucleon and photon variables
using the same dynamical approach with a few predetermined
parameters. Our approach is based on essential symmetry con-
straints, including relativistic and gauge invariance, unitarity,
crossing, and causality, which are required in order to correlate
in one model the very different kinematical regions explored
in Compton and 7 N scattering and in the proton form factors.
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