
PHYSICAL REVIEW C 71, 024902 (2005)

Forward production in d + Au collisions by parton recombination
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Hadron production at forward rapidities in d + Au collisions is studied in the framework of parton
recombination in the final state. Multiple scattering and gluon saturation in the initial state are not explicitly
considered. The recombination of soft and shower partons is found to be important. The soft parton densities
are determined by extrapolation from the parametrization fixed at η = 0 with no unconstrained adjustments. The
suppression of RCP observed at high η is understood as the simple consequence of the reduction of the soft parton
density on the deuteron side compared to that on the gold side. The effect of momentum degradation responsible
for baryon stopping is also considered. The asymmetry of backward-to-forward spectra can be reproduced within
the same framework without any change in the basic physics.
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I. INTRODUCTION

Particle production at forward rapidities in d + Au col-
lisions has recently been recognized as a fertile ground for
testing models of hadron production that embody diverse
physical mechanisms. Because no hot and dense medium
is created in d + Au collisions, they have generally been
regarded as a type of collision process where the effects of
final-state interaction (FSI) are minimal, thus allowing the
physics of initial-state interaction (ISI) to manifest itself most
transparently [1–3]. This is especially true at forward rapidities
where the saturation effect is expected to be important and the
physics of color glass condensate (CGC) may dominate [1–6].
Alternative approaches to the problem based primarily on
perturbative QCD (pQCD) have also been considered with
emphasis on the effects of nuclear shadowing [7,8]. The
results do not provide unambiguous interpretation of the data
from BRAHMS [9]. We consider in this paper yet another
approach that emphasizes the hadronization part of the FSI
and takes into account hard scattering in pQCD; however,
instead of fragmentation we consider the recombination of
soft and shower partons. Our treatment is an extension to
the forward region of what has been found to be successful
at midrapidity for Au + Au collisions [10] and for d + Au
collisions [11] and is a natural mechanism for hadronization
at intermediate transverese momentum pT . It does not, in
principle, contradict the physics of CGC. The issues are
whether hadronization by recombination is important and
which one of the competing effects is dominant in the
kinematical region under examination. Our results indicate
that the BRAHMS data [9] can be well reproduced in our
approach even when no adjustable parameters are used.

Experiments at the Relativistic Heavy Ion Collider (RHIC)
have found that the ratio, RCP, of d + Au central to peripheral
inclusive spectra for 1 < pT < 3 GeV/c decreases monoton-
ically from a value ∼1.8 at pseudorapidity η ∼ −2 to a value
∼0.5 at η ∼ 3.2 [9,12]. This has led to the interpretation of a
change of the physics responsible for the phenomena from the
gold side (η < 0) to the deuteron side (η > 0) [1]. For η � 0

the enhancement of the particle yield at intermediate pT with
respect to binary collision scaling, that is, the Cronin effect
[13], is generally regarded as the result of multiple scattering
in ISI [14,15]. For η > 0 saturation physics is considered to
be dominant, especially at large η, so that there is suppression,
instead of enhancement, in particle production [3,5,6]. Neither
effect takes into account any details about hadronization in
FSI. Such explanations of the data cannot account for the
phenomenological fact that Rp

CP (for protons) is larger than Rπ
CP

(for pions) at intermediate pT [16]. Hadronization of partons
to a proton or a pion is an issue that involves the final state,
and the use of fragmentation functions (FFs) appropriate for
the produced hadrons in the usual factorizable way would
necessarily yield a p/π ratio < 1 by virtue of the nature of the
FFs, contrary to what has been observed [17].

The subject of a large p/π ratio has been addressed by
several groups that consider parton recombination as the
hadronization process in the final state in Au + Au collisions
[18–20]. For hadrons produced at intermediate pT it is the
recombination of thermal partons at lower pT that gives rise
to the higher yield of the baryons compared to mesons. In
Ref. [10] the additional component of the recombination of
thermal and shower partons is introduced, and it is shown to
be dominant in the 3 < pT < 9 GeV/c range. That component
turns out to be crucial to explain the Cronin effect, when
the formalism is extended to d + Au collisions, without the
need for any kT broadening in ISI [11]. Although there are no
thermal partons in d + Au collisions as in Au + Au collisions,
there are soft partons that play the same role. It is found
that the property R

p

CP > Rπ
CP at intermediate pT can readily

be reproduced in the recombination model [11,21]. Based
on the success of that description of particle production at
midrapidity in d + Au collisions, we now extend the treatment
to the forward region (η > 0) without the introduction of any
new physics. This extension should be considered whether
or not the signature of new physics is present in the forward
region, since the contribution from conventional physics forms
the background that must be understood to facilitate the
identification of any new signal. As we shall show, it seems
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that recombination in FSI is completely adequate to explain
the suppression at large η.

The main reason for RCP to decrease with increasing η is
simple. Since the recombination process that involves soft
partons is important, the dependencies of the soft parton
density on rapidity and centrality directly affect the particle
spectra at intermediate pT . The density that is reflected in
dN/dη is known to decrease with increasing η with the
consequence that RCP also decreases with η. Since CGC has
successfully reproduced the hadron multiplicity dN/dη, one
may take the view that the suppression at large η has its
origin in saturation physics. That may be the case. From
the point of view of FSI the suppression is a direct result
of parton recombination involving soft partons whose density
decreases with η; indeed, our treatment of hadron production
is compatible with any model that can generate the soft parton
spectra that we shall determine phenomenologically.

Before we consider hadron production quantitatively, let us
make some general remarks here on recombination. Since the
formation of a pion by a qq̄ pair implies the loss of degrees
of freedom, it is sometimes thought that the recombination
process leads to a decrease of entropy. However, the entropy
principle should not be applied locally. A global consideration
must recognize that the bulk volume is increasing during the
hadronization process, and thus this compensates the decrease
of entropy density that is a local quantity. Furthermore, in the
qq̄ → π process a color singlet is formed by color mutation
of the quarks through soft gluon radiation that carries the
extra degrees of freedom without significantly altering the
local relation that the sum of the parton momenta equals
the pion momentum. All gluons hadronize by conversion
to qq̄ pairs first, so there is a cascading of the degrees of
freedom to lower and lower momentum regions where the pion
multiplicity accumulates. Eventually all degrees of freedom
are converted from partons to hadrons. Such nonperturbative
processes cannot be calculated, and our formalism does not
contain explicitly the feed-down process of partons cascading
to the very low pT region before recombination. Indeed, such
a process need not be made explicit in our approach, since
we do not determine the soft parton distribution in a model of
evolution from the initial state. Instead, we determine the soft
parton distribution from the observed pion distribution in the
0.5 < pT < 2 GeV/c region. The soft partons thus obtained
are defined in the context of recombination. We use them in
the same context when we consider their recombination with
shower partons. Thus our procedure of treating hadronization
at all pT > 0.5 GeV/c is totally self-consistent.

It is also appropriate at this point to make another general
remark about our treatment of recombination. In a one-
dimensional (1D) formulation of the recombination process in
momentum space, one may question whether we are ignoring
the spatial extent of the recombining subsystem normal to
the collinear momentum vectors of the quarks and hadrons.
Partons that are separated by a distance of the order of the
transverse size of the bulk volume but have parallel momenta
are not likely to recombine. That is indeed an issue that has
to be faced in a model in which the spatial and momentum
distributions of the partons are generated from the initial state
and evolve according to some sensible dynamics. However,

that is not what we do, as we have already stated at the end
of the preceding paragraph. For the soft parton distribution,
which forms the crux of the issue here, we start from the
observed soft pion distribution. For every �p of such a pion
we claim that it can only arise from the recombination of a
quark at �p1 and an antiquark at �p2 that are not only collinear
in momentum vectors but also spatially overlapping within
a transverse space of the order of a hadron. In other words,
because we determine the soft parton distribution from the
final state, the result automatically implies that only those
partons can recombine to give the observed hadron. The 1D
formulation of recombination is therefore appropriate for the
way in which it is applied.

II. PION PRODUCTION AT η = 0

We summarize first the production of pions by parton
recombination at midrapidity in d + Au collisions and make
minor adjustments to align our calculation for the centrality
cuts of the BRAHMS experiment [9]. We use the formalism for
hadronization described in Refs. [10,11], where the inclusive
distribution of a pion at η = 0 in a 1D description is given by

p
dNπ

dp
=

∫
dp1

p1

dp2

p2
Fqq̄ ′ (p1, p2)Rπ (p1, p2, p), (1)

where p is in the direction of the detected pion, Fqq̄ ′ (p1, p2)
is the joint distribution of a q and a q̄ ′ at p1 and p2,
and Rπ (p1, p2, p) is the recombination function for forming
a pion at p: Rπ (p1, p2, p) = (p1p2/p)δ(p1 + p2 − p). For
p in the transverse plane so that pT = p, the distribution
dNπ/d2p dη|η=0, averaged over all φ, is

dNπ

pdp
= 1

p3

∫ p

0
dp1Fqq̄ ′ (p1, p − p1). (2)

The distribution Fqq̄ has three components:

Fqq̄ ′ = T T + T S + SS, (3)

where T stands for soft parton distribution and S for shower
parton distribution. For Au + Au collisions T would refer to
the thermal partons [10], but in d + Au collisions the notion of
thermalization is inappropriate, but soft partons nevertheless
exist. Since they are treated in the same way, the same notation
is used with T , which can be regarded as referring to the last
letter of “soft.” At low pT the observed pion distribution is
exponential, which suggests the form

T (p1) = p1
dNT

q

dp1
= Cp1 exp(−p1/T ), (4)

so that the T T component in Eq. (3) yields

dNT T
π

pdp
= C2

6
exp(−p/T ). (5)

The values of C and T have been determined in Ref. [11]
already from the low-pT d + Au data. Since our approach
to hadron production at intermediate pT at RHIC is to
emphasize parton recombination in the final state, we use
the phenomenological input for the soft component, without
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relying on any specific model for soft partons so that our result
will be independent of the reliability of such models.

The distribution S is a convolution of the hard parton
distribution fi(k) with transverse momentum k and the shower
parton distribution (SPD) S

j

i (z) from hard parton i to semihard
parton j,

Sj (p1) =
∑

i

∫
kmin

dk kfi(k) S
j

i (p1/k) (6)

where kmin is set at 3 GeV/c, below which the pQCD derivation
of fi(k) is invalid. For each i, fi(k) depends on the parton
distribution functions, nuclear shadowing, and hard scattering
cross sections. The result is presented in power-law form,
whose parameters are tabulated in Ref. [11]. The SPDs are
obtained from the FFs and are given in Ref. [22].

It is sufficient with this specification of T and S to calculate
the pT spectrum of the pion by use of Eq. (2). However, for
comparison with the BRAHMS data we need the values of C
for the corresponding centrality cuts. Let us use β to denote the
centrality cut, which is an experimental quantity related to the
impact parameter b. In Ref. [11] it is found that C(β, η) varies
with β at η = 0 as C(β, 0) = 12, 11, 7.8, and 5.65 (GeV/c)−1

for β = 0–20, 20–40, 40–60, and 60–90%, respectively. The
centrality cuts of BRAHMS [9] are β = 0–20, 30–50, and 60–
80%. We therefore make the interpolation and set C(β, 0) =
12, 9.0, and 6.55 (GeV/c)−1, respectively. The value of the
inverse slope is T = 0.208 GeV/c, as determined in Ref. [11].

Before showing the result, we remark that the SS compo-
nent in Eq. (3) corresponds to fragmentation, if the two shower
partons originate from the same hard parton, that is,

(SjSj ′ )(p1, p2) =
∑

i

∫
kmin

dk kfi(k)

×
{
S

j

i

(p1

k

)
, S

j ′
i

(
p2

k − p1

)}
, (7)

where the curly braces signify the symmetrization of the
leading parton momentum fraction [10,22]. If the two shower
partons are from two independent jets, then there would be
two fi(k) distributions. The recombination of such partons is
very unlikely to occur in d + Au collisions at 200 GeV/c and
will be ignored.

The results of our calculation for π+ production are shown
in Fig. 1 for the three centralities, displaced by factors of 102

from neighboring ones. The light solid lines show the soft-soft
(T T ) components that are straight lines in the log plot. The
dashed lines show the soft-shower (T S) contributions and
the dash-dotted lines the shower-shower (SS) contributions.
The heavy solid lines are the sums, whose deviations from the
straight lines are indicative of the effects of hard scattering.
Note that the T S contribution becomes less important as β

increases because C(β, 0) decreases. Indeed, if the β = 60–
80% case is regarded as being almost like the pp collision,
we see from Fig. 1 that the neglect of the T S contribution
does not constitute a bad approximation, and the large pT

behavior is essentially governed by jet fragmentation, as has
traditionally been used to treat pp collisions. However, that is
not the case for central d + Au collisions. The T S contribution
to the spectra is what accounts for the Cronin enhancement at
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FIG. 1. Transverse momentum distributions of π+ produced at
midrapidity in d + Au collisions for three centrality cuts. Light solid
lines are for the recombination from the T T component, dashed
lines for T S, and dashed-dotted lines for SS components. Heavy
solid lines are the sums of all three components.

intermediate pT without kT broadening due to ISI [11]. The
pT distributions have been shown to agree with the PHENIX
data [16]. The RCP ratio for the β values of the BRAHMS data
will be shown in Fig. 5 later.

III. PION PRODUCTION AT η > 0

Because the formalism for pion production at η = 0
described in the preceding section successfully reproduces the
experimental pT spectra at all centralities, we now make a
straightforward extension to the η > 0 region. This extension
should be made with no change in the basic physics underlying
the formalism to provide a baseline for comparison with the
data before the search for the signature of any other physical
origin.

The quantities that must be modified for the η > 0 region
are C(β, η) for T and fi(k) for S. For the inverse slope T
we shall proceed in two steps. First, we keep T fixed as η is
increased, since no data on low-pT π+ spectra are available to
serve as our guide for its modification. It is of interest to see
how close the calculated RCP will turn out to be in comparison
to the data, when the constant-T assumption is applied for the
purpose of introducing no adjustable parameter. Later, we shall
allow T to depend weakly on β and η and show that the fit of
RCP can be improved.

Since the observed rapidity density dNch/dη is an integral
over the pT distribution, which is dominated by the soft
contribution at low pT , we see from Eq. (5) that dNch/dη

should be proportional to C2(β, η). We can therefore determine
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TABLE I. Values of C(β, η) in (GeV/c)−1.

β η

0 1 2.2 3.2

0–20% 12.0 11.1 9.01 7.05
30–50% 9.0 8.5 7.9 6.0
60–80% 6.55 6.6 6.1 5.1

C(β, η) by use of the formula

C(β, η) = C(β, 0)

[
dNch/dη(β)

dNch/dη|η=0(β)

]1/2

, (8)

where C(β, 0) is given in the preceding section, and
dNch/dη(β) is known from PHOBOS data [23]. We thus obtain
the values of C(β, η) as shown in Table I. Since PHOBOS does
not have exactly the same centrality cuts as BRAHMS, some
interpolation between neighboring values have been made to
deduce the numbers in Table I.

We have parametrized the hard parton distributions
fi(kT , y), as before [11,24], in the power-law form

fi(kT , y) ≡ 1

σin

dσd+Au
i

d2kT dy
= KAi

(
1 + kT

Bi

)−ni

(9)

for y � 1. For larger values of y the spectra are increas-
ingly suppressed at high kT because of the phase space
boundary that requires kT < k0(y). The kinematic limit is
given by k0(η) = √

s/(2 cosh y) and takes the values 21.9 and

8.13 GeV/c for y = 2.2 and 3.2, respectively. To take into
account the change of fi(kT , y) from positive to negative
curvature around kT ≈ 0.5 k0, Eq. (9) must be modified by
a dampening factor. Therefore we use the parametrization

fi(kT , y) = KAi

(
±1 + kT

Bi

)−ni
(

1 − kT

k0

)mi

(10)

for y > 1, where the ±1 sign is used in accordance to whether
the given value of Bi is preceded by a + or − sign.

The parametrizations are obtained from leading order
minijet calculations using the CTEQ5 parton distributions
[25]. EKS98 shadowing [26] was used for the Au nucleus
whereas the deuteron was treated as a superposition of a
proton and a neutron without further nuclear modifications.
The values of all the parameters for central d + Au collisions
(β = 0–20%) are given in Table II, corresponding to σin =
40.3 mb and an unspecified K factor. For other centralities,
scaling in the number of binary collisions, Ncoll, is assumed.
We set K = 2 in our calculation that follows.

Using C(β, η) in Eq. (4) and fi(kT , y) in Eq. (6), neglecting
the difference between η and y for η � 1, and fixing T at
0.208 GeV/c as for η = 0, we can now calculate dNπ+/pdpdη

according to Eqs. (2) and (3) and obtain the results shown in
Fig. 2 for β = 0–20% and 60–80%, with that for 30–50% being
in between the two. Clearly, the pT distributions are affected
by the increase of η mainly in the large-pT region. There are
smaller changes at low pT as seen in the log scale, although
they are not negligible in the linear scale, since the spectra
there are proportional to C2(β, η), which varies substantially

TABLE II. Parameters in Eqs. (9) and (10).

y i g u d s ū d̄

−0.75 A 196.52 55.65 60.74 3.114 11.55 12.23
B 1.442 1.064 1.045 1.657 1.330 1.292
n 8.654 7.533 7.483 8.798 8.385 8.319

−0.25 A 254.06 61.64 65.26 3.953 13.35 13.27
B 1.265 0.996 0.990 1.456 1.228 1.223
n 8.207 7.314 7.293 8.320 8.102 8.101

0.25 A 244.63 59.51 61.57 3.786 13.02 12.50
B 1.260 0.991 0.993 1.453 1.218 1.229
n 8.175 7.281 7.280 8.292 8.068 8.099

0.75 A 177.86 51.35 51.93 2.745 10.88 10.34
B 1.419 1.039 1.050 1.646 1.291 1.308
n 8.546 7.420 7.439 8.711 8.263 8.308

1.0 A 132.78 43.64 43.70 2.030 9.016 8.580
B 1.600 1.103 1.120 1.874 1.384 1.402
n 8.959 7.590 7.621 9.192 8.496 8.544

2.2 A 12460 5.68 × 106 1.77 × 107 65.35 6.562 × 1012 1.045 × 108

(k0 = 21.9) B 0.3184 (−)0.03396 (−)0.0277 0.4420 0.2662 × 10−3 0.02054
n 5.939 4.873 4.897 5.900 5.191 5.241
m 7.000 5.320 5.341 7.657 5.966 5.951

3.2 A 10080 2.391 × 105 2.349 × 105 30.396 485.45 814.80
(k0 = 8.13) B 0.3360 (−)0.05117 (−)0.05218 0.6214 (−)0.1410 (−)0.1287

n 5.977 4.539 4.555 6.545 4.574 4.607
m 6.024 4.548 4.559 6.189 4.943 4.948
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FIG. 2. Transverse momentum distributions of π+ produced at
different pseudorapidities for two centrality cuts.

with η according to Table I. The η dependence of the pT

distributions in Fig. 2 is our prediction for which we have not
adjusted any free parameters. No data on identified pions are
currently available to check those results.

The notable feature of Fig. 2 is that at η = 3.2 the pT

distributions behave nearly as straight lines in the log plot.
The exponential behavior suggests that only the soft partons
contribute to the pion formation. To see this more clearly, we
show in Fig. 3 the different contributions to the spectra for
β = 0–20% and η = 3.2. Indeed, the T S and SS components
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FIG. 3. Transverse momentum distributions of π+ produced at
η = 3.2 for 0–20% centrality, showing the three components.
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FIG. 4. Distribution of gluons produced in central d + Au colli-
sions at four pseudorapidities.

are much smaller than the T T component, and they are
insignificant for pT < 3 GeV/c. The reasons are twofold: The
soft parton density is lower at η = 3.2, and the hard parton
distributions are severely suppressed at high kT . The former is
evident in Table I; the latter is not as obvious in Table II. We
plot the gluon distributions in Fig. 4 for the four values of η,
and we see the precipitous fall for η = 3.2, as kT approaches
the kinematical limit at kT = 8.13 GeV/c. The suppression of
fi(kT , η) does not reduce the S term quadratically because
fi(kT , η) appears only once in Eq. (7). Consequently, the
T S and SS components can have comparable magnitudes in
Fig. 3. Their significantly reduced contribution to the overall
distribution exposes the T T contribution to be the dominant
component for pT up to 3 GeV/c. One can reasonably question
the validity of extrapolating the soft parton distribution T (p1)
to p1 ∼ 1.5 GeV/c in its exponential form. Our view is that,
instead of adopting some low-pT model, which has its own
ambiguities, it is sensible to use the exponential form of Eq. (4)
for the soft parton distribution as a working hypothesis without
introducing extra free parameters so as to make predictions
that can be tested experimentally. The important observation
is that the hard partons are suppressed at high η and that any
prediction by pQCD should not neglect the soft background,
which is shown to be more important than fragmentation at
high η.

Having obtained the pion spectra at all β and η, we can now
calculate the central-to-peripheral ratio

RCP(β, η) = dNπ/pT dpT dη(β)/〈Ncoll(β)〉
dNπ/pT dpT dη(βp)/〈Ncoll(βp)〉 , (11)

where the reference βp = 60–80% and 〈Ncoll(β)〉 is the
average number of binary collisions at β. The results for β

= 0–20% and 30–50% are shown in Fig. 5 for the four values
of η. The data points are for (h+ + h−)/2 for η = 0 and 1, and
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FIG. 5. RCP for 0–20%/60–80% (filled circles and solid lines)
and 30–50%/60–80% (open circles and dashed lines) for four
pseudorapidities when T is assumed to be constant. Data are from [9].
No momentum degradation is considered in the calculation.

for h− for η = 2.2 and 3.2 [9]. The case of η = 0 shows the
Cronin effect, which is well described by our result, where the
solid line is for β = 0–20% and the dashed line for β =
30–50%. As in Ref. [11], no kT broadening by multiple
scattering in ISI has been put in. For η � 1, although the
agreement of our results with the data is not perfect, they
nevertheless exhibit the essence of the trend; that is, RCP

becomes smaller as η is increased. That feature has been
regarded as a distinctive characteristic of forward production
and is now approximately reproduced by our treatment, which
contains no new physics and no adjustable parameters. The
case of η = 3.2 is the simplest to interpret, since the shower
contribution is insignificant. The constancy of RCP in our
result for pT < 3 GeV/c is a consequence of the fact that we
have fixed the value of the inverse slope T for the soft parton
distribution, independent of centrality. The suppression of RCP

at η = 3.2 is due to the decrease of C(β, η) with increasing η

and the insufficiently fast decrease of C(β, η) with increasing
β to overcome the decrease of 〈Ncoll(β)〉 that rescales the
spectra in Eq. (11). In short, since the density of soft partons
diminishes as one goes far into the deuteron side, less particles
are produced by the recombination of those soft partons.

In the foregoing we have fixed T for all β and η as
an assumption for the sake of not making it an adjustable
parameter. The theoretical results, as shown in Fig. 5, are
remarkably close to the data. However, a mild dependence of
T on β and η cannot be excluded. Indeed, the increase of RCP

with pT in the data at η = 3.2 suggests a decrease of T with
β. We adopt a simple parametrization of that dependence as
follows:

T (β, η) = T0(1 − εβη). (12)

Since RCP is plotted in linear scale in Fig. 5, it is possible
to determine ε by fitting the data at η = 3.2, despite the
absence of the spectra themselves (which would be in log scale
and insufficiently accurate to determine small differences in
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FIG. 6. Same as for Fig. 5 but with T (β, η) given by Eqs. (12)
and (13).

T by themselves separately). We fix T0 = 0.208 GeV (more
precisely, T −1

0 = 4.8/GeV), and we set β = 0.1, 0.4, and 0.7
for 0–20%, 30–50%, and 60–80% centrality, respectively. We
vary ε to obtain the best fit of the data in open circles at η =
3.2 in Fig. 5, obtaining

ε = 0.0205. (13)
The results for all other values of β and η are shown in Fig. 6.
Compared to Fig. 5, there is a slight improvement of the
agreement with data at η = 1.0, but the theoretical result is
a little higher than the data at η = 2.2 for pT > 2.5 GeV/c.
Generally speaking, the trend of the data with increasing pT is
better reproduced when T (β, η) is allowed to decrease slightly
with β and η. That decrease is less than 4.6%, even at the
highest values of β (0.7) and η (3.2). Thus the constant-T
assumption is not a bad approximation and serves to reproduce
the data reasonably well as in Fig. 5. However, we have not
yet exhausted all aspects of physics that can influence the fit
of the data.

IV. MOMENTUM DEGRADATION

There is a piece of physics that we have not yet considered,
but it is a phenomenological fact that should not be ignored.
Baryon stopping generally refers to the loss of projectile
proton momentum in pA collisions, as it passes through a
target nucleus. Although such nomenclature is misleading
from the point of view of the role that the proton constituents
play, empirical evidence for the momentum degradation of
the detected nucleon as a function of the nuclear size is not
disputed. A number of experiments have shown that the pro-
duced nucleon distribution in pA collisions has an exponential
form in xF :

dNN

dxF

∝ exp[−�(ν) xF ], (14)

where the slope �(ν) depends on the average number of
collisions ν [27,28]. Baryon stopping loosely refers to the
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phenomenon that �(ν) increases with ν. Our question here is
whether such a behavior has a dynamical origin that can affect
our treatment of forward production in d + Au collisions. The
question is relevant, since in both problems there is suppression
of production probability at high η.

The production of leading nucleon in pA collisions has
been studied in the framework of the valon model for low-pT

processes [29], and the distribution in Eq. (14) is obtained by
attributing the momentum degradation effect to the projectile
valons as they traverse the target nucleus [30]. This is not
contradictory to the information gained from the more recent
experiments at RHIC, where energy loss effects are found to
be absent at large pT in d + Au collisions [31–34]. The former
problem is at low pT and valons are dressed valence quarks
of the proton, whereas the latter refers to hard partons that go
through the nucleus at large angles with negligible interaction
with the cold medium. It is the interpolation between these two
extremes that is pertinent to the η dependence in our problem
here.

The nucleon distribution in Eq. (14) has been converted in
the valon model to the pion distribution in the form

dNπ

dxF

∝ exp[−λ(ν − 1) xF ], (15)

where λ = 0.2 [35]. There is no reliable way to relate that
behavior in xF at low pT to the η dependence at intermediate
pT without treating the transition from soft to hard processes.
Since the boundary condition is that there is no energy loss at
η = 0, we adopt the ansatz that the degradation factor is

ζ (β, η) = exp[−κ(Nc − 1)η], (16)

where Nc = 〈Ncoll(β)〉 and κ is a parameter to be determined
from λ by matching Eqs. (15) and (16) at forward rapidity. The
expression for ζ (β, η) represents the property that the larger
η is, the more time the constituents of the projectile spend in
the valon state, while the valons propagate through the nuclear
medium and suffer momentum degradation.

To relate Eqs. (15) and (16) we note that at η = 3.2, if
〈pT 〉 = 2 GeV/c, the corresponding 〈xF 〉 = 0.25. For β =
0–20%, we use the values ν ≈ 9 (for p+Au collisions) and
Nc ≈ 15 (for d + Au collisions) and get

κ ≈ 0.01. (17)

We now use this value of κ in Eq. (16) and apply ζ (β, η)
multiplicatively to the shower distribution S, but not to the
soft distribution T , since the effect of degradation is already
included in the determination of C(β, η) through the use of the
experimental values of dNch/dη(β) in Eq. (8). Equation (12)
is used for T (β, η). For SS recombination we do not apply
ζ (β, η) quadratically, since the shower partons are from one
jet.

With the degradation effect taken into account the results
on the ratio RCP are shown in Fig. 7. We note that there
is improvement in the agreement with data compared to
Fig. 6, especially at η = 2.2. At η = 1.0 the solid line no longer
overshoots the dashed line at high pT . There is no change at
η = 0 since ζ (β, 0) = 1, and there is an improvement of the
fit at η = 3.2. Since the data are for either (h+ + h−)/2 or
h−, whereas our calculation is for π+ specifically, perfect
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FIG. 7. Same as for Fig. 6 but with momentum degradation
considered.

agreement between theory and experiment should not be
expected. The effect of momentum degradation is at most
30% on the pT distributions at η = 2.2, so such changes are
barely perceptible in the log plots of the spectra in Fig. 2,
which therefore remain as the prediction of our treatment. The
ratio RCP in linear scale reveals the degradation effect more
sensitively. It is evident from Fig. 7 that the essence of forward
production of pions in d + Au collisions is essentially captured
in our description of hadronization by parton recombination,
when T is allowed to depend on β and η, and when the effects
of momentum degradation is taken into account.

V. ASYMMETRY RATIO FOR BACKWARD TO
FORWARD RAPIDITIES

So far we have restricted our study to only the forward
region. The backward region on the gold side contains the
properties of the nucleus not present at large η and should
therefore behave differently from what we have obtained in
previous sections. Recent data from STAR show significant
asymmetry in the ratio of the charged hadron spectra for
backward to forward rapidities in the range 0.5 < |η| <

1.0 [36]. That ratio reaches a peak higher than 1.3 for
2 < pT < 3 GeV/c. At a qualitative level the phenomenon
can easily be understood in our approach to the problem, since
there are more soft partons at η < 0 than at η > 0. We now
want to examine the asymmetry quantitatively as another test
of our treatment of hadronization.

The formalism for particle production at η < 0 is the same
as for η > 0. Both T and S must, however, change, as η

enters the negative region. The parametrizations of the hard
parton distributions fi(kT , y) are already given in Table II.
Since the data for the backward region are for the range
−1.0 < η < −0.5, we shall use the parameters for y = −0.75
in Table II. Similarly, the values for y = 0.75 will be used for
the forward region. For the soft parton distribution T (p1) we
continue to use Eq. (8) to determine C(β, η) with dNch/dη(β)
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FIG. 8. Ratio of pT distributions for backward to forward pseu-
dorapidities at |η| = 0.75. Data are for all charged hadrons from [36].
Solid line is the calculated ratio for π+ + π− + p + p̄.

taken directly from the data [23]. For β = 0–20%, we obtain
C(β,−0.75) = 12.372 and C(β, 0.75) = 11.527 (GeV/c)−1.
This represents a small, but significant, asymmetry of the soft
parton density. For the η dependence of the inverse slope
T (β, η) we use the formula, Eq. (12), already determined in
Sec. III from the region η > 0, now applied to η = ±0.75.

We now can calculate the pT distributions for π+ using the
appropriate values of C, T , and fi at η = ±0.75. The results
are, of course, not visually distinguishable from that at η = 0
in Fig. 2 plotted in log scale. However, their ratio plotted
in linear scale is more sensitive to the small changes. The
backward/forward asymmetry ratio is defined by

RB/F(pT , |η|) = dNπ/dpT dη (η = −|η|)
dNπ/dpT dη (η = +|η|) . (18)

The data for RB/F(pT , 0.75) as shown in Fig. 8 are for all
charged hadrons [36]. Thus our calculation for π+ alone is
not enough for the purpose of comparison with the currently
available data. In the same way that we have treated proton
production in Au + Au [10] and d + Au collisions [21], we
calculate the proton spectrum at η = ±0.75. Furthermore, we
take the π− yield to be the same as for π+ and take the p̄

yield to be 0.7 of that of p. The sum of π+ + π− + p + p̄ is
shown by the solid line in Fig. 8. The result has the correct
rise for pT < 2 GeV/c but is lower than the data at higher pT .
We expect that the production of kaons can further increase
the theoretical curve, but since they involve strange quarks
that are enhanced in the soft component, we do not digress
here to that peripheral subject. Our present result from the
nonstrange sector is sufficient to indicate that the asymmetry
data can be understood in our approach to hadronization. Note
that our result on RB/F has been obtained without any new free
parameter. A better way to compare theory with data would
be to have identified pions at η = ±0.75, which is within the
feasibility of some RHIC experiments.

The conclusion that one can draw from this study of the
backward-forward asymmetry is that there is no transition of

basic physics from multiple scattering in ISI on the η < 0 side
to gluon saturation on the η > 0 side [1]. Our emphasis on the
hadronization process in the final state provides a universal
framework for the description of particle production at all
η, β, and pT .

Based on saturation physics, a recent calculation of the
low-pT distribution of charged hadrons in minimum-bias
d + Au collisions at η = 3.2 appears to have good agreement
with data, when only the scattering of the qq̄ dipole on
the nucleus described as CGC is taken into account [37].
However, the contribution of gluons to the cross section is not
negligible, since the density of gluons in a proton at x = 0.25
is more than half the density of the quarks at Q � 5 GeV/c
[38]. Furthermore, hadronization by use of the fragmentation
function is subject to the usual question about the p/π ratio,
which has shown the inadequacy of the fragmentation model.
Thus the agreement with data at low pT seems fortuitous.

It has recently been stated that the Cronin effect seen
at midrapidity goes away at forward rapidities because the
supposed origin of the enhancement at η = 0 (i.e., multiple
scattering in the initial state) is replaced by CGC, which
is responsible for the suppression at η > 0 [1,2,37]. The
results of this work combined with those of Refs. [11,21]
suggest that neither mechanisms are the primary causes of
the enhancement and suppression and that both phenomena
are the consequences of the same hadronization process by
recombination.

VI. CONCLUSION

On the basis of parton recombination we have successfully
described pion production at intermediate pT in d + Au
collisions in the forward rapidity region. The formalism is
an extension of the one at midrapidity where the Cronin
effect has been explained in terms of FSI only, and where
the experimental fact R

p

CP > Rπ
CP is interpreted as a con-

sequence of the dominance of three-quark recombination
over fragmentation. In the extension to η > 0 only one
new parameter, ε, is introduced to describe the β and η

dependence of T, but no new physics has been added. The
suppression of RCP at η > 1 is due mainly to the reduction
of the density of soft partons that recombine either among
themselves or with the semihard shower partons. The effect
of momentum degradation responsible for baryon stopping
has been considered and is found to have a minor effect on
RCP, although it does render a better agreement with the data
at all η and pT . The reduction of soft parton density in the
forward direction may be related to gluon saturation, but there
is no explicit reliance on small-x physics in the calculation.
At large η the production of hard partons is suppressed, so
pQCD calculations supplemented by fragmentation is likely
to underestimate the pion spectra at intermediate pT .

Extending the consideration to the backward region, we
have used the same dependence of the inverse slope T (β, η)
on η, now extrapolated from η > 0 to η < 0. We find that
the general properties of the backward-to-forward ratio of
the charged hadron pT distributions can be reproduced by
our calculation of only the nonstrange sector. Thus, particle
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production at all η can be described by the same formalism
for all pT at any centrality. There is no need for any change of
physics in going from the backward to the forward region.

To further verify the validity of our treatment, the predicted
pion spectra in Fig. 2 should be checked by experiments.
To have the correct RCP, as in Fig. 7, is only the necessary
condition for the underlying physics to be relevant, but it is not
sufficient. Spectra themselves may disagree with the data, yet
still have their ratio come out right. Proton spectra should also
be measured at η > 0 and the p/π ratio shown as a function
of pT , β, and η. Although we have not calculated the pT

distribution of protons for η > 1, we expect that the p/π ratio
would not be small for η > 1, although it would be lower than
the maximum of the ratio for η = 0 because the lower soft
parton density at η > 1 inhibits the formation of protons more
than it does pions. The measurement of that ratio will provide
a severe test on any model of particle production at any η.

Another area of investigation that can shed light on forward
physics is to determine the presence or absence of back-to-back
jets in azimuthal correlation when a particle is detected at large
η and intermediate pT . If the pT distributions of the various
components contributing to the pion spectrum at η = 3.2 in
Fig. 3 is correct, then we do not expect any significant jet
signature until pT > 3 GeV/c. Even at pT = 4 GeV/c the
dominant component is T T recombination, so at φ = π

there should be only a small jetlike component that stands
above a high level of background uniform in φ. Some aspect
of that feature has already been observed in the preliminary
data of STAR [39].

Since hadronization of partons by recombination is a
process in the final stage of evolution of the partons, it is not in
conflict with any dynamical model that correctly describes the
beginning and subsequent evolution of those partons. Thus our
work here provides the necessary link between the predicted
parton spectra and the observed hadronic data for testing the
validity of any proposed model.
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