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Calculation of heavy ion e+e− pair production to all orders in Zα
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The heavy ion cross section for continuum e+e− pair production has been calculated to all orders in Zα.
The formula resulting from an exact solution of the semiclassical Dirac equation in the ultrarelativistic limit is
evaluated numerically. An energy-dependent spatial cutoff of the heavy ion potential is used, leading to an exact
formula agreeing with the known perturbative formula in the ultrarelativistic, perturbative limit. Cross sections
and sample momentum distributions are evaluated for heavy ion beams at SPS, RHIC, and LHC energies. e+e−

pair production probabilities are found to be reduced from perturbation theory with increasing charge of the
colliding heavy ions and for all energy and momentum regions investigated.
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I. INTRODUCTION

The calculation of heavy ion-induced continuum e+e− pair
production to all orders in Zα is of continuing interest because
until now it has only been carried out for total cross sections
and in a limiting approximation [1–3]. Recent progress on
this topic began with the realization that in an appropriate
gauge [4], the electromagnetic field of a relativistic heavy ion
is to a very good approximation a δ function in the direction
of motion of the heavy ion times the two-dimensional solution
of Maxwell’s equations in the transverse direction [5]. This
realization led to an exact solution of the appropriate Dirac
equation for excitation of bound-electron positron pairs and
a predicted reduction from perturbation theory of a little less
than 10% for Au + Au at RHIC [6]. This reduction can be
identified as a Coulomb correction to bound-electron pair
production.

It soon followed that an analytical solution of the Dirac
equation was obtained independently and practically si-
multaneously by two different collaborations [7–9] for the
analagous case of continuum e+e− pair production induced
by the corresponding countermoving delta function potentials
produced by ultrarelativistic heavy ions in a collider such as
RHIC. An extended discussion and reanalyis of this solution,
with comments on early parallel work in the literature, shortly
followed [10]. Baltz and McLerran [8] noted the apparent
agreement of the obtained amplitude with that of perturbation
theory even for large Z. Segev and Wells [9] further noted the
perturbative scaling with Z2

1Z
2
2 seen in CERN SPS data [11].

These data were obtained from reactions of 160 GeV/nucleon
Pb ions on C, Al, Pa, and Au targets as well as from
200 GeV/nucleon S ions on the same C, Al, Pa, and Au
targets. The group presenting the CERN data, Vane et al.,
stated their findings in summary: “Cross sections scale as the
product of the squares of the projectile and target nuclear
charges.” Conversely, it is well known that photoproduction
of e+e− pairs on a heavy target shows a negative (Coulomb)
correction proportional to Z2 that is well described by the
Bethe-Maximon theory [12].

Several authors subsequently argued [1–3] that a correct
regularization of the exact Dirac equation amplitude should
lead to a reduction of the total cross section for pair

production from perturbation theory, the so-called Coulomb
corrections. The first analysis was done in a Weizsacker-
Williams approximation [1]. Subsequently, Lee and Milstein
computed [2,3] the total cross section for e+e− pairs using
approximations to the exact amplitude that led to a higher order
correction to the well-known Landau-Lifshitz expression [13].
In a previous article [14] I have tried to explicate the Lee
and Milstein approximate results and argued their qualitative
correctness.

In the present article I undertake the full numerical cal-
culation of electromagnetically induced ultrarelativistic heavy
ion electron-positron pair production. I utilize a cross section
formula derived from the exact solution of the Dirac equation
with an appropriate energy dependent cutoff of the transversely
eikonalized potential employed.

II. CROSS SECTIONS WITH HIGHER ORDER
COULOMB CORRECTIONS

For production of continuum pairs in an ultrarelativistic
heavy ion reaction one may work in a frame of two coun-
termoving heavy ions with the same relativistic γ , and the
electromagnetic interaction arising from them goes to the limit
of two δ function potentials as follows:

V (ρ, z, t) = δ(z − t)(1 −αz)�
−(ρ) + δ(z + t)(1 +αz)�

+(ρ)

(1)

where

�±(ρ) = −Zα ln
(ρ ± b/2)2

(b/2)2
. (2)

The previously derived semiclassical amplitude for
electron-positron pair production [7–10] written in the notation
of Lee and Milstein [2] takes the following form:

M(p, q) =
∫

d2k

(2π )2
exp[ik · b]M(k)FB(k)FA(q⊥ + p⊥ − k),

(3)
where p and q are the four-momenta of the produced elec-
tron and positron, respectively, p± = p0 ± pz, q± = q0 ± pz,
γ± = γ0 ± γz, and α = γ0γ ; k is an intermediate transverse
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momentum transfer from the ion to be integrated over the
following:

M(k) = ū(p)
α · (k − p⊥) + γ0m

−p+q− − (k − p⊥)2 − m2 + iε
γ−u(−q)

+ ū(p)
−α · (k − q⊥) + γ0m

−p−q+ − (k − q⊥)2 − m2 + iε
γ+u(−q);

(4)

and the effect of the potential described in Eqs. (1) and (2) is
contained in integrals FB and FA over the following transverse
spatial coordinates [7–10]:

F (k) =
∫

d2ρ exp[−i k · ρ]{exp[−i2Zα ln ρ] − 1}. (5)

F (k) has to be regularized or cut off at large ρ. How
it is regularized is the key to understanding Coulomb
corrections.

Although, as has been pointed out [15], the derived
exact semiclassical Dirac amplitude is not simply the exact
amplitude for the excitation of a particular (correlated)
electron-positron pair, there are observables, such as the
total pair production cross section, that can be constructed
straightforwardly from this derived amplitude [16–19]. This
point has a long history of discussion in the literature [20–23].
The exact amplitude for a correlated electron-positron pair
will not be treated here. The point is that the exact solution
of the semiclassical Dirac equation may be used to compute
the inclusive average number of pairs—not an exclusive
amplitude for a particular pair. Calculating the exact exclusive
amplitude to all orders in Zα is not easily tractable because of
the need for Feynman propagators [15]. The possibility of
solutions of the semiclassical Dirac equation is connected to
the retarded propagators involved. In this article we do not
consider the exclusive (Feynman propagator) amplitude at all.
We concentrate on observables that can be constructed from

the above amplitude and investigate the Coulomb corrections
contained in them.

In a previous article [14] I have discussed these matters in
more detail. There the uncorrelated cross-section expressions
for dσ (p), dσ (q), and σT were presented as follows:

dσ (p) =
∫

m d3q

(2π )3εq

∫
d2k

(2π )2
|M(k)|2

× |FA(q⊥ + p⊥ − k)|2|FB(k)|2, (6)

dσ (q) =
∫

m d3p

(2π )3εp

∫
d2k

(2π )2
|M(k)|2

× |FA(q⊥ + p⊥ − k)|2|FB(k)|2, (7)

σT =
∫

m2 d3p d3q

(2π )6εpεq

∫
d2k

(2π )2
|M(k)|2

× |FA(q⊥ + p⊥ − k)|2|FB(k)|2. (8)

dσ (p) is the cross section for an electron of momentum (p)
where the state of the positron is unspecified. Likewise, dσ (q)
is the cross section for a positron of momentum (q) with the
state of the electron unspecified. Note that σT corresponds to
a peculiar type of inclusive cross section that we should call
the “number weighted total cross section”:

σT =
∫

d2b N =
∫

d2b

∞∑
n=1

nPn(b), (9)

in contrast to the usual definition of an inclusive total cross
section σI for pair production,

σI =
∫

d2b

∞∑
n=1

Pn(b). (10)

In Eqs. (6)–(8), it is assumed that the sums have been taken
over the electron and positron polarizations in |M(k)|2. Taking
traces with the aid of the computer program FORM [24] one
obtains

|M(k)|2 = 2p+q−[(k − p⊥)2 + m2]

m2[p+q− + (k − p⊥)2 + m2]2
+ 2p−q+[(k − q⊥)2 + m2]

m2[p−q+ + (k − q⊥)2 + m2]2

+ 4[k · p⊥q+q− + k · q⊥p+p− − 2k · p⊥k · q⊥ + k2(p⊥ · q⊥ − m2) − p+p−q+q−]

m2[p+q− + (k − p⊥)2 + m2][p−q+ + (k − q⊥)2 + m2]
. (11)

This expression exhibits the expected property that |M(k)|2
vanishes as k goes to zero; the positive squares of the direct and
crossed amplitudes (terms one and two) are canceled by the
negative product of direct and crossed amplitudes of term three.
These background terms can be subtracted off analytically
from the expression for |M(k)|2 to obtain an expression
exhibiting only terms dependent on k in the numerators:

|M(k)|2 = 2D2
1η11 − 2A11

(
2D1β1 + β2

1

)
m2D2

1(D1 + β1)2

+ 2D2
2η22 − 2A22

(
2D2β2 + β2

2

)
m2D2

2(D2 + β2)2

+ 4
D1D2η12 − A12(D2β1 + D1β2 + β1β2)

m2D1D2(D1 + β1)(D2 + β2)
(12)

where

A11 = p+q−(p⊥2 + m2) A22 = p−q+(q⊥2 + m2)

A12 = −(p⊥2 + m2)(q⊥2 + m2)

D1 = p+q− + p⊥2 + m2 D2 = p−q+ + q⊥2 + m2
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β1 = −2k · p⊥ + k2 β2 = −2k · q⊥ + k2

η11 = p+q−β1 η22 = p−q+β2

η12 = k · p⊥q+q− + k · q⊥p+p−
− 2k · p⊥k · q⊥ + k2(p⊥ · q⊥ − m2). (13)

Every term in the numerators now has at least a linear
dependence on k. This subtraction turned out to be necessary
to limit roundoff error in calculations at the highest beam
energies such as LHC.

If one merely regularizes the integral itself at large ρ one
obtains [8–10], apart from a trivial phase, the following:

F (k) = 4παZ

k2−2iαZ
. (14)

Then all the higher order Zα effects in M(p, q) are contained
only in the phase of the denominator of Eq. (14). Then, because
the cross sections described in Eqs. (6)–(8) go as |F (k)|2,
the phase falls out of the problem and it directly follows
that calculable observables are equal to perturbative results.
However, in this approach a lower k cutoff at some ω/γ has
to be put in by hand to obtain dependence on the beam energy
and to agree with the known perturbative result in that limit.

Our present strategy is to apply a spatial cutoff to the
transverse potential χ (ρ) (which has been up to now set
to 2Zα ln ρ) to obtain an expression consistent with the
perturbation theory formula [25,26] in the ultrarelativistic
limit. Instead of regularizing the transverse integral itself
[Eq. (5)] and letting the cutoff radius go to infinity, as was
originally done [7–10], we will rather apply an appropriate
physical cutoff to the interaction potential. In the Weizsacker-
Williams or equivalent photon treatment of electromagnetic
interactions the effect of the potential is cut off at impact
parameter b � γ /ω, where γ is the relativistic boost of the ion
producing the photon and ω is the energy of the photon. If

χ (ρ) =
∫ ∞

−∞
dz V

(√
z2 + ρ2

)
(15)

and V (r) is cut off in such a physically motivated way, then [3]

V (r) = −Zα exp[−rωA,B/γ ]

r
(16)

where

ωA = p+ + q+
2

; ωB = p− + q−
2

(17)

with ωA the energy of the photon from ion A moving in the
positive z direction and ωB the energy of the photon from
ion B moving in the negative z direction. Note that we work
in a different gauge than that used to obtain the original
perturbation theory formula, and thus our potential picture is
somewhat different. The transverse potential will be smoothly
cut off at a distance where the the longitudinal potential δ

function approximation is no longer valid.
The integral Eq. (15) can be carried out to obtain the

following:

χ (ρ) = −2ZαK0(ρωA,B/γ ), (18)

and Eq. (5) is modified to the following:

FA,B(k) = 2π

∫
dρ ρJ0(kρ){exp[2iZA,BαK0(ρωA,B/γ )]−1},

(19)
where FA(k) and FB(k) are functions of virtual photon ωA and
ωB , respectively. The modified Bessel function K0(ρω/γ ) =
− ln(ρ) plus constants for small ρ and cuts off exponentially at
ρ ∼ γ /ω. This is the physical cutoff to the transverse potential.

One may define ξ = kρ and rewrite Eq. (19) in terms of a
normalized integral IA,B(γ k/ω) as follows:

FA,B(k) = 4πZA,Bα

k2
IA,B(γ k/ω) (20)

where

IA,B(γ k/ω) = 1

2iZA,Bα

∫
dξ ξJ0(ξ )

×{exp[2iZA,BαK0(ξω/γ k)] − 1}. (21)

It is now clear that FA,B is a function of 4πZA,B/k2 times
a function of (γ k/ω). The limit as Z → 0 of I 0

A,B(γ k/ω) is
analytically soluble as follows:

I 0
A,B(γ k/ω) = 1

1 + ω2/k2γ 2
, (22)

and one has F 0
A,B(k), the familiar perturbation theory form

F 0
A,B(k) = 4πZA,Bα

k2 + ω2/γ 2
. (23)

As I have shown in a previous article [14], one might use
some other physical cutoff and still obtain the Lee-Milstein
Coulomb correction as long as one was expanding the
Coulomb cross-section correction only to lowest order in k2.
However, such an alternate physical cutoff would not lead to
this correct perturbation theory form for F 0

A,B(k) and would
lead to modified results for the Coulomb corrections in a full
integration over k.

Figure 1 displays the results of numerical calculation of
|I (kγ /ω)|2 for Z = 82 and in the perturbative limit. Note that
the upper cutoff of ρ at γ /ω has the effect of regularizing F (k)
at small k. F (k) goes to the constant 4πγ 2/ω2 as k goes to zero
in the perturbative case; it goes to a reduced constant value as
k goes to zero for Z = 82. The form of the original solution
Eq. (14)

F (k) = 4παZ

k2−2iαZ
(24)

is simply wrong because it is unphysical. Because it lacks a
proper physical cutoff in ρ, it not only blows up at k = 0 but
also fails to exhibit the correct reduction in magnitude that
occurs when kγ /ω is not too large.

It is clear from Fig. 1 that for large Z = 82 Coulomb
corrections reduce |F (k)|2 from the perturbative result for
kγ /ω � 100. Only for k > ∼100 ω/γ does the magnitude
of F (k) go over into the perturbative result.
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FIG. 1. The sold curve is the normalized integral squared for
Z = 82. The dashed line is the corresponding perturbation theory
result.

III. CALCULATIONS: NUMERICAL TECHNIQUE
AND RESULTS

The expression for the total cross section, Eq. (8), involves
an eight-dimensional integral over the positron and electron
momenta as well as the virtual photon transverse momentum.
This integral reduces to seven dimensions in the usual way by
symmetry, for example, let the positron transverse momentum
define the x axis. The usual method of evaluation, for example,
in perturbation theory, is via Monte Carlo. However, I have
chosen to do the seven-dimensional integral directly on meshes
uniform on a logarithmic scale in each radial momentum
dimension. It was possible to carry out the calculation without
using Monte Carlo because the integrand is very smooth and
smoothly goes to zero at both the high end and low end of the
momentum ranges. No artificial cutoffs were applied.

Calculations labeled exact and perturbative differ only in
the expressions used for FA,B(k). The analytical expression
Eq. (23) is used for perturbative calculations. The exact
calculations makes use the expression Eq. (19), which must be
evaluated numerically, but only once for each ZA,B of interest.

Results of the numerical calculations will be compared with
previously derived closed formulas for total cross sections. It
is useful here to review those formulas. The Racah formula for
the total e+e− cross section in perturbation theory is [27] as
follows:

σR = (Z1α)2(Z2α)2

πm2

[
28

27
L3 − 178

27
L2 + 370 + 7π2

27
L

− 116

9
− 13π2

54
+ 7

9
ζ (3)

]
(25)

where

L = log

[
2
P1 · P2

M1M2

]
= [log 2(2γ 2 − 1)], (26)

the relativistic γ is that of each colliding ion in an equal and
opposite ion velocity frame, and the Riemann ζ function is as
follows:

ζ (3) =
∞∑

n=1

1

n3
= 1.2020569. (27)

The log3(γ 2) term is the same as the original Landau-
Lifshitz formula [13], but the other additional terms are an
improvement that allows this very early formula to attain a
remarkable degree of accuracy as demonstrated by comparison
with recent Monte Carlo evaluations.

The Lee-Milstein formula [3] includes higher order αZ

effects in addition to the following log3(γ 2) term:

σLM = (Z1α)2(Z2α)2

πm2

28

27
[log3(γ 2) − 3[f (ZAα)

+ f (ZBα)] log2(γ 2) + 6f (ZAα)f (ZBα) log(γ 2)]

(28)

where

f (ZA,Bα) = Z2
A,Bα2

∞∑
n=1

1

n
(
n2 + Z2

A,Bα2
) . (29)

The dominant (negative) Coulomb correction in this formula
is the log2(γ 2) term, which was originally obtained by
Ivanov, Schiller, and Serbo [1] with the Weizsacker-Williams
approximation. The last (positive) log(γ 2) term in the formula
can be thought of as representing the Coulomb correction
corresponding to multiple photon emission of both ions [28]
and as we show below is relatively small.

Table I shows the results of numerical calculations. The
present perturbative computer calculations are in good agree-
ment with the Racah formula at RHIC and LHC energies,
as expected, and with the published Monte Carlo RHIC
calculations of Hencken, Trautmann, and Baur [29,30]. At
SPS energies the present perturbative computer calculation
results are a bit higher (7%) than the Racah formula and the
Hencken, Trautmann, and Baur calculation, perhaps indicating
divergence in those results from the ultrareletivistic limit of the
present treatment. The full numerical evaluation of the exact
semiclassical total cross section for e+e− production with gold
or lead ions shows reductions from perturbation theory of 28%
(SPS), 17% (RHIC), and 11% (LHC). Clearly with increasing
beam energy (and a larger value for the spatial cutoff of the
transverse integral in the formula) higher order corrections
to perturbation theory are relatively smaller. The S + Au
calculation at SPS energy shows an expected smaller reduction
from perturbation theory (15%) than the 28% reduction of
Pb + Au at the same energy.

The Lee-Milstein higher order overall correction to pertur-
bation theory (difference column) is negative but somewhat
larger than the difference evaluated here numerically. The
small positive contribution of multiple photon emission from
both ions to the overall negative Coulomb correction is
shown in parentheses in the difference column. Because of
the way the numerical calculations were organized it was
straightforward to extract this contribution from the exact
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TABLE I. Computer calculations compared with analytical formula results. γ is defined for
one of the ions in the frame of equal magnitude and opposite direction velocities. Total cross
sections are expressed in barns. The positive contribution of multiple photon emission from both
ions to the overall difference betwen exact and perturbative results is shown in parentheses.

Exact Perturbative Difference

Pb + Au Computer evaluation 2670 3720 −1050 (+80)
γ = 9.2 Racah formula 3470

Lee-Milstein 3050 5120 −2070 (+160)

S + Au Computer evaluation 119.7 141.6 −21.9 (+0.15)
γ = 9.2 Racah formula 132.0

Lee-Milstein 152.0 195.0 −43.0 (+0.30)

Pb + Pb Computer evaluation 3210 4500 −1290 (+100)
γ = 10 Racah formula 4210

Hencken, Trautmann,
Baur

4210

Lee-Milstein 3690 6160 −2470 (+190)

Au + Au Computer evaluation 28,600 34,600 −6,000 (+220)
γ = 100 Racah formula 34,200

Hencken, Trautmann,
Baur

34,000

Lee-Milstein 34,100 42,500 −8,400 (+290)

Pb + Pb Computer evaluation 201,000 227,000 −26,000 (+600)
γ = 2960 Racah formula 226,000

Lee-Milstein 226,000 258,000 −32,000 (+700)

computer evaluation. Again the Lee-Milstein formula overes-
timates this small positive contribution, especially for the SPS
case.

There is the question of whether Coulomb corrections might
become vanishingly small in some momentum regions. Let us
take the Au + Au RHIC case as an example. If one looks at
the uncorrelated positron cross section [Eq. (7)] as a function
of momentum, then one finds that throughout the transverse
and longitudinal momentum space of the final positron, the
smallest reduction from perturbation theory is 12.5% and
the largest reduction is 25% in comparison to the mean or
integrated total cross-section reduction of 17% of the table.
Thus the argument given in Ref. [1] that Coulomb corrections
contribute mostly for q⊥ = me but should disappear for larger
and smaller q⊥ is not verified.

Figure 2 shows the transverse momentum spectrum inte-
grated over all longitudidal momenta. The overall contribution
does peak at about q⊥ = me. However, Coulomb corrections
persist to the highest and lowest values of q⊥, scaling roughly
with the perturbative cross section. Figure 3 shows the
logitudinal momentum spectrum integrated over all transverse
momenta, and likewise Coulomb corrections persist to the
highest and lowest values of qz.

Given the decrease of Coulomb corrections with increasing
beam energy one might ask, “At what γ of colliding Pb beams
would Coulomb corrections be relatively unimportant, say,
less than 1% for the total cross section?” If for the purposes of
reductio ad absurdum one takes the Lee-Milstein formula as a
reasonable order of magnitude approximation, then the answer
is γ = 1043. The point is that for any conceivable accelerator

beyond LHC the Coulomb corrections to e+e− pair production
will still be significant.

One can calculate momentum spectra to compare with the
CERN SPS data. Because the CERN data comprise positrons
uncorrelated with electrons, comparison with a full calculation
of the positron momentum spectrum dσ (q) is appropriate.
Figure 4 shows the data for a Pb projectile on a Au target.
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FIG. 2. Positron transverse momentum spectrum for Au + Au at
RHIC with γ = 100. The filled circles are the exact calculation and
the stars the perturbation theory.
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FIG. 3. As in Fig. 2 but for the positron longitudinal momentum
spectrum for Au + Au at RHIC with γ = 100.

On the whole the perturbation theory curve (dashed line)
perhaps seems closer to the data than to the solid full exact
calculation.

Figure 5 show an analogous comparison for an S pro-
jectile on a Au target. Again, the perturbation theory curve
seems closer to the data, represented by the dot-dashed line.
Figures 4 and 5 provide an illustration of the statement of the
experimental authors that the cross sections follow perturbative
scaling. However, especially given the difficulty of the SPS
experiment as described by the authors, the apparent lack of
Coulomb corrections seen here needs to be verified in other
ultrarelativistic heavy ion experiments.

The first experimental observation of e+e− pairs at RHIC
has been published by STAR [31]. Events were recorded where
pairs were accompanied by nuclear dissociation. Comparison
with perturbative QED calculations allowed a limit to be set
“on higher-order corrections to the cross section, −0.5σQED <

�σ < 0.2σQED at a 90% confidence level.”
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FIG. 4. Calculated positron momentum spectrum compared with
the CERN SPS data for Pb + Au. The solid line is the exact calculation
and the dashed line perturbation theory.
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FIG. 5. As in Fig. 4 but with an S projectile. The dot-dashed line
follows the authors’ representation of the CERN SPS data.

The present technology of the properly regualarized exact
computer code does not include an impact parameter rep-
resentation and thus does not allow for evaluating a cross
section where pair production is in coincidence with nuclear
dissociation. Furthermore, the retarded propagators are not
strictly appropriate when the range of both electrons and
positrons are restricted such as the STAR data. However, a
comparison of calculations in the STAR acceptance without
nuclear dissociation is of interest as an indication of the relative
difference between perturbation theory and the regularized
exact result. In the STAR acceptance the exact result is
calculated to be 17% lower than that with perturbation theory
(as is coincidently true for the total RHIC e+e− cross section
in Table I). This rough estimate �σ = −0.17σQED is not
excluded by the above STAR limit.

IV. SUMMARY AND CONCLUSIONS

A full numerical evaluation of the “exact” semiclassical
total cross section for e+e− production with gold or lead ions
shows reductions from those from perturbation theory of 28%
(SPS), 17% (RHIC), and 11%(LHC).

For large Z no final momentum region was found in which
there was no reduction or an insignificant reduction of the
exact cross section from the perturbative cross section.

The CERN SPS data cover a large part of the momentum
range of produced positrons, and the present theory predicts a
reduction of cross section at high Z from the perturbative
result. That the CERN SPS data apparently do not show
a reduction from perturbation theory is a puzzle. It would
be of great interest to obtain more precise data on the
variation of heavy ion pair production cross sections with
ion charge at RHIC or LHC. If the present apparent lack of
evidence for Coulomb corrections in ultrarelativistic heavy
ion e+e− pair production were to be reproduced in other
experiments, it would provide a unique challenge to our
theoretical understanding of strong-field QED.
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