PHYSICAL REVIEW C 71, 024318 (2005)

Supersymmetry transformation for excitation processes
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Quantum mechanics super symmetry (SuSy) provides a general framework for studies using phenomenological
potentials for nucleons (or clusters) interacting with a core. The SuSy potentials result from the transformation of
the mean-field potential to account for the Pauli blocking of the core orbitals. In this article, we discuss how other
potentials (such as external probes or residual interactions between the valence nucleons) are affected by the SuSy
transformation. We illustrate how the SuSy transformations induce off-diagonal terms in coordinate space that
play an essential role on the induced transition probabilities for two examples: electric operators and Gaussian
external fields. We show that excitation operators, doorway states, strength, and sum rules are all modified.
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I. INTRODUCTION

Almost all branches of many-body physics have developed
methods to simplify a many-body self-interacting system into a
local “effective” mean potential affecting the pertinent degrees
of freedom. This simplification often provides an adequate
starting point for more sophisticated approaches. For exam-
ple, phenomenological potentials replacing the Schrodinger
equation of N self-interacting particles by a one-body potential
whose orbits simulate an experimentally known structure have
been widely used in nuclear physics. Of particular interest are
the halo systems, which are often described in terms of valence
nucleons interacting with a core. An elegant way to justify
the effective core-nucleon phenomenological interaction is
to invoke a supersymmetric (SuSy) transformation of the
mean-field potential of an N-body system [1-5]. Indeed, since
the core is made of nucleons occupying the lowest orbitals
of the mean-field potential, the halo nucleons cannot fill in
these occupied states because of the Pauli exclusion principle.
SuSy transformations including the forbidden states removal
(states removal potential, SRP) and the restoration of phase
shifts (phase equivalent potential, PEP) provide an exact way
to remove the states occupied by the core without altering
the remaining states’ properties. Hence, SuSy transformation,
which can be fully analytical for some classes of potentials [5],
provides an equivalent effective interaction between composite
systems and thus can be safely used to describe nuclear
structure and reaction of nuclei presenting a high degree of
clusterization.

SuSy transformations have been applied to breakup mecha-
nisms involving halo nuclei [6,7]. Indeed, the phenomenolog-
ical treatment of halo nuclei in terms of nucleons interacting
with a core should take into account the fact that some intrinsic
bound states of the nucleon-core potential are Pauli blocked.
For instance, the 1s orbital is generally occupied by the core
nucleons. In the case of a one-neutron halo, such as for
"Be or 'C, SuSy-PEP potentials have been used to calculate
B(E1) matrix elements [6], Coulomb breakup [7], and transfer
reactions [8]. In the case of a two-neutron halo, such as for
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5He, 'Li, or “Be, SuSy transformations have been applied to
remove the forbidden states and to analyze binding energies
and radii of these nuclei [9—12]. Finally, SuSy transformations
have also been included in coupled-channel calculations
[13-15]. In all these calculations, the SuSy transformation
has been applied under the following approximation: Only
the internal part of the Hamiltonian (the core-halo potential)
is SuSy transformed whereas the additional fields (external
potentials and two-body correlations in the halo) remain
unmodified. This approximation will be called the internal
SuSy approximation because it concerns only the core-halo
potential. In the framework of this approximation, the SuSy
transformation is not equivalent to the exact treatment in which
the Pauli-blocked states are projected out. In this article, we
discuss a consistent SuSy framework that is always equivalent
to the full projection method.

The accuracy of the internal SuSy transformation has been
discussed in several papers. For instance, Ridikas ez al. [6] have
analyzed the radii of several halo nuclei as well as B(E'1) matrix
elements before and after the SuSy transformation. Thompson
et al. [10] and Descouvemont et al. [12] have performed a
comparison of the full projector method with the internal
SuSy. Because the consistent SuSy framework we discuss is
totally equivalent to the full projection method, the comparison
between the internal approximation and the consistent SuSy
treatment is thus an alternative method for estimating the
accuracy of the internal approximation. From the theoretical
point of view, the consistent SuSy approach provides a unique
and exact framework to compute excitation processes or to
take into account residual interaction between valence nuclei.
Such a consistent framework is essential interpret the results
of inverse problems in scattering theory [16].

This article is organized in the following way. In Sec. II,
we develop a consistent formalism to map the original
Hamiltonian into the SuSy partner Hamiltonian. In the case
of a static problem, this mapping is the usual one, but we will
show in Sec. III that in the case of a Hamiltonian modified by
either an external field or a two-body interaction (for instance,
two neutrons in the halo), one should transform these fields
into the new space. In Sec. IV, we will illustrate the SuSy
transformation, showing both analytical results and numerical
implementations for two potentials that are important in

©2005 The American Physical Society



JEROME MARGUERON AND PHILIPPE CHOMAZ

nuclear physics. We will then discuss the transformation of
an external field: the response to an electric excitation of the
general form #*¥; 4 in Sec. V, and the response to a Gaussian
potential in Sec. VL.

II. SUSY TRANSFORMATION FOR THE
ONE-BODY HAMILTONIAN

The application of supersymmetry to Schrédinger quantum
mechanics [1-5] has shed new light on the problem of
constructing phase-equivalent potentials. In this section, we
review the SuSy transformations that remove a state (SRP) and
impose that the phase shifts are conserved (PEP) [17,18]. We
will introduce mapping operators that change the Hamiltonian
as well as the bound states. Finally we will present effects
on the external potential and residual interaction of composite
systems described through effective Hamiltonians.

A. Initial Hamiltonian: izo

Quantum mechanics SuSy has been extensively studied for
one-dimensional systems. There are two ways to perform the
multidimensional generalization depending on the choice of
space coordinates. In three dimensions, one can choose Carte-
sian coordinates (x, y, z) [2] or spherical coordinates (r, 2)
[3]. We choose the latter, which is often used for excitation
processes. Hence, the representation of the one-particle Hilbert
space H is given by a sum over the subspaces ' associated
with the angular momentum /: H = H° + H' + H> + .

Let us introduce the initial Hamiltonian

a2
ho= 2 13, (1
2m
where P is the momentum operator and the potential operator
9 is assumed to be local. Since fj is rotationally invariant we
can introduce angular momentum as a good quantum number
and thus the wave functions associated with an energy E can
be written as |po(E)) = %|(p(’,(E)) ® |Y;). In the subspace H/,
the radial, static Schrodinger equation associated with the /th
partial wave is

~2
hy |eo(E)) = (f—m + ﬁg) () = E |ep(E)), ()

where p =ih V, is the radial momentum operator. The
effective radial potential ﬁé includes the centrifugal force

A

P (S I
UO —

=0 T 3)

To simplify the discussion, we do not include the spin-orbit
potential. Nevertheless, the generalization of this framework
to include spin-orbit potential is not difficult.

To simplify the notation, when there is no ambiguity we will
drop the label / since the SuSy transformations considered are
defined in a subspace of angular momentum / (and m) (i.e.,
they are block-diagonal in the complete space. Thus, they
affect differently the potential 9’ associated with different /.
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B. Hamiltonian after k£ SuSy transformations: e

The elementary SuSy transformations remove a single state
with or without restoring the phase shifts. To remove several
states we will iterate the SuSy transformation. Therefore,
let us assume that after & transformations the radial, static
Schrodinger equation associated with the /th partial wave can
be written as

. p?

hi |o(E)) = (% + ﬁ,i) (E)) = E g (B)). &)
It should be noticed that, since the SuSy transformations
are block diagonal and different in each subspace of angular
momentum /, the different radial potentials do not correspond
to the same potential; that is, the various \72,

B2 I+ 1)
2m 72

are different for different angular momenta /. We call E,i')
(i = n, 1) the energy of the ith bound state of A%, which is thus
(21 4 1)-fold degenerate.

The bound states correspond to the square integrable
solutions of the differential equation (4). However, we will
not restrict the solution of Eq. (4) to bound states but rather
consider all solutions |¢x(E)). Given a particular solution
|@r(E)) of Eq. (4) whose inverse is square integrable, the
general solution of Eq. (4) can be recast as [3]

o0 dr/
E,a;r) = ¢.(E; 1 _
u(E, o) = Gi ,r)( ta / [ak<E;r'>]2>’ ©)

where the parameter o can vary freely to construct
all the possible solutions of the second-order differential
equation (4), up to a multiplicative factor and provided that
a = oo is allowed. In Eq. (6), we use the r representation and
the Dirac notation: @, (E;r) = (r |gr(E)). For future use let
us define the constantﬁ = [fooo dr /(i (E; r))z]’l.

The Hamiltonians % can always be factorized as

INEN
Vi =V —

: ®

hy = afa; + &, (7

where & is the factorization energy and the first-order
differential operators @i [a; = (a;)'] are of the following
form:
i = —— (i T 1) ®)
a; = — (hp Fip),
CT e
where W, = wi(7) is the superpotential. Notice that, in the
literature, capital letters are usually used for the differential
operators &ki. Here, we dedicate capital letters for many-body
operators and use lowercase letters for the one-body operator.
It is possible to show that the general solution | (&, o))
of Eq. (4) with E = & is equivalently the solution of the
first-order differential equation

a lo(E =&, a)) =0. €))

As a consequence, the superpotential is the local operator
defined by

d
wi(E =&, ayr) = I Ingi(E = &, a;r). (10)

r
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For a given factorization energy &, there is a family of
solutions that depends on the parameter o generating the su-
perpotential wk(E &, a). Note that ¢ (E = &, o; r) must
be nodeless for a ak to be bound. Hence 5k must be less than
or equal to the ground-state energy Ej of /i and this requires
also that @ > —fB. The choice of the factorization energy &
and the selection of a member from the family of solutions wy
must clearly be physically motivated.

In this section we have defined the notation used in the
following. In the next section we will present a two-step
method that removes the lowest energy state and preserves
the phase shifts.

C. State removal potential: 9.,

The SRP transformation is defined so that it removes the
lowest energy state of a given subspace H'. For the given
angular momentum /, we choose & = E,?, the energy of the
lowest energy state of the Hamiltonian /. It follows that
the inverse of the particular solution |@;(E)) is not square
integrable, which imposes o =0. With these definitions, we
associate with /1, a supersymmetric partner A, defined by

2

~ A 14 ~

Ris1 =aka/j+5k=%+vk+l, (11)
h2

Dpy1 = O — E(ar Wi (&, a = 0)). (12)

The Hamiltonians /1 and /i, share the same spectrum except
for the lowest energy state of /i, which has been suppressed
in ﬁk+1- The states [|@r1(E))] of fzkﬂ can be obtained from
those [|¢r(E))] of ﬁk according to

1
\/ﬁk+1 — &

Conversely, except for the ground state, the states of hy. can be
obtained from those of /1, by

lp+1(E)) = ap lek(E)) =0y lge(E)) . (13)

lo(E)) = 4 |1 (E)) = 0f lppi1 (E)).

1
Ve —&
In these equations, we have introduced the pseudo-unitary SRP
operators (i, and ﬁ,j, which are defined as (the products &,'{"&,:
and a; a;" being definite positive)

0 =ay = &,f, (14)

(15)

At A—
ay ay

[
ay
/ avart
These operators are pseudo-unitary since uk = (O )T
0 uk =1, and uk 0, = p, where the projector p suppresses
the lowest energy state |<pk) of the Hamiltonian hk from the
subspace ' and can be written as p = 1 — |(pk ) (gok|
The relation between hk and hk+1 is

[32 132
~ ~ ~l ~ At Al oA
hir = m + Dpgr = 0y (% + Uk) O =0, he 0. (16)
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However it is important to remark that 0y # 0 vkﬁk and
p? £ G, p uk+ In fact the SuSy transformation of a local
potentlal is not local. The simple diagonal form of the potential
given by Eq. (12) is recovered because, by construction, the
modifications of the kinetic part just cancel the off-diagonal
terms in the transformed potential. Then, the kinetic and
the potential parts of the Hamiltonian should be transformed
together to get the relation (16) with simple potential (local in

r space) and kinetic (diagonal in the p representation) terms.

D. Phase equivalent potential: ;.4

It can be shown that SRP transformations change the
phase shifts. To solve this problem, Baye [4] has proposed
performing a second SuSy transformation and associating to
th a new supersymmetric partner h Ny SO that

o3
A PR P N
hk+1 =a;af +& = m + Uiy (17

with £, = E}, the ground-state energy of hy, and a = —B.
In this case, the solution ¢~ of hk 41 and its inverse are
not square integrable. The spectra of /i, and & hy, are strictly
identical; the second SuSy transformation does not suppress
nor add any state, but it restores the phase shifts so that the
Hamiltonian /, 41 1 equivalent to hy as far as the scatterlng
properties are concerned. Note that the energy £, = = E} isnow
below the ground-state energy E? sl OF g

The corresponding superpotentlal W k(é' ) 1s deduced from
the wave function |¢;, (& = E? ) of hk+1 within the follow-
ing relation:

d
W& o) = g (E = &, o), (18)

which is equivalent to Eq. (10). It can also be deduced directly
from the ground state of flk according to [17]:

[ e

wi(Ex: ), 19)

wi(Esr) =

—In o
dr @p(r)
=w (&) —

where we have used the relation £, = & and introduced the
modified superpotential w . (Exsr) as

d : / / 2
gk(é‘k;r) = ln/0 dr (gp,?(r )) . (20)

The corresponding potential ¥, ; is

h2
— — (9, W (&)
m

Qk+1 = ﬁk+1

h2
= 0= (0, () @D

According to this discussion, the spectra of /i, and A iy
are identical. All the states of hk, except its lowest energy state,
are mapped onto the states of /1, +1 and those two Hamiltonians
have the same phase shifts. This mapping is simply

1
191 (B)) = o8 dy le(E)) = loi(E)), (22)

0
Ek T Lkt
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L
lpr(E)) = ma;ak |(Pk+1(E)> =

llg, (B, (23)
k — Mk

with the pseudo-unitary PEP operators
1 1

At atat _ At At
U = —apdy aat permpemiU/ Y72 24
ap dy & Y
. | P |
W =754 4 =4 4 7=, 7> (25)
ke G ke
The relation between Ay and A, is
2 A= At
ﬁk+1 =0, hy OF. (26)

The advantage of using the operators uk and G uk is that all
the relations we will deduce hereafter will be algebraically
equivalent for SRP and PEP transformations. In the following,
as long as no confusion is p0551ble we will write the relations
fulfilled by the general operator uk , which can be replaced by
either the operator " for the SRP transformation or d; for the
PEP one.

III. SUSY TRANSFORMATION FOR
GENERAL HAMILTONIANS

In nuclear physics, we are often interested in the description
of A interacting nucleons assuming that these nucleons can
be separated into a frozen core containing A, nucleons and
a valence space containing A, nucleons. Hence, the wave
function of this system is assumed to factorize into a core
and a valence part, |[©(A. + Ay)) = [P(AL)) ® [DPy(AyY)).
The core state is described at the mean-field level as a
Slater determinant, |®.(A.)), of A. single-particle states |¢;,)
occupying the & =1, A. lowest energy eigenstates of the

mean-field potential fg: |Dc(A)) = ]_[hA;l |¢p), where .
stands for the antisymmetrization sign. As a consequence of
the Pauli principle, the valence nucleons cannot occupy the
lowest orbitals of the core-valence potential, which are already
occupied by the core nucleons. The evolution of |®,(A,)) is
thus ruled by the Hamiltonian Hv, which contains a pI'OJCCthIl
out of the occupied space P, = ]—Ih L 6,65, where ¢ (¢,)isthe
creation (annihilation) operator of a nucleon in the occupied
orbital |¢y,). H, is assumed to contain the confining effect of the
mean field A¢. For cases with several nucleons in the valence
space, the residual interaction among valence nucleons, \70,
should be taken into account when the problem of correlations
is addressed. Finally, an external field, fo, should be introduced
to compute excitation properties. Then the Hamiltonian reads

A

A, = b, AP, 27)
with
A, 1 Ay A,
= Xl:ho(l') +3 'Zl Voli, j) + Zl foli). (28)
1= 1,j= 1=

In the following, we propose to generalize the SuSy
transformation so that it remains totally equivalent to the
projector method for every kind of additional potential.
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The first step of this method is to remove, from the
single-particle states accessible to a valence nucleon i, the
A, orbitals occupied by the core nucleons. To perform this,
for each particle i of the valence state, we introduce the full
operator U;C (i), which is the product of A, different SuSy
transformations (i, (i) removing the occupied core states A
[cf. Egs. (14) and (24)],

U, () =1, (D), () ... 0, (1) O, (). (29)

In this equation, the operator i, removing the occupied state
h = (n,l,m) with a principal quantum number 7, orbital
angular momentum /, and projection m (recalling that for
simplicity we have not introduced the isospin and spin quantum
numbers because these extensions are straightforward) affects
only the (/, m) subspace. In the (I, m) subspace the operator is
nothing but the (n — 1) SuSy transformation Ai: | associated
with the Hamiltonian h’ and it is the identity in all the other
subspaces. The conjugated operator U+ (i) reads

U5.G) =y, (D1, ()... B, (), (). (30)

Since those different transformations affect only a given
single-particle (/, m) subspace, the total operator U L) s
block diagonal in spin representatlon Being the product
of pseudo-unitary transformations, U (@) is also pseudo-
umtary since U ()= (U+ @', U (z)UJr (i) = 1(i), and
U+C (l)U C(z) =p v(i), where 1(1) and P v(i) are respectively,
the identity 1 and projection operator 13\, restricted to the
single-particle space of the particle i.

The second step is to apply the complete SuSy transforma-
tion U (l) on each valence nucleon i,

U, = ]_[jS(i). 31)

i=1

Because UiA is a simple repetition on each single-particle
space of the same operator pseudo-unitary transforma-
t10ns UA (@), it is also a pseudo-unitary transformation, so

(UAC)T, UAC A= =1, and UACUAC =P, where 1 and
f’v are, respectively, the identity and projection operators in
the A,-body Hilbert space associated with the A, valence
particles. .

Using UA UA = PV, we can thus write H, = IAJ\,I-AIISV and

explicitly
A, = U3 U5 AUL 05 = UF A, 05, (32)

where we have introduced the transformed Hamiltonian

/\ AA

UA

= Uy,
A, 1 A, A
;ﬁ A D+ 5 D0 Vi )+ ) fakd. (33)

ij=1 i=1

It is clear from this relation not only that A is transformed but
also that the two-body interaction is changed into VA @i, j).
Using Eq. (31) andU (z)UJr (i) = l(z) we get

Vali. j) = Uy Vo, HUL, (34)
= U, OO0, DOV, UL OUL ) (35)
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and the external potential f; is mapped into
fai) = Uy fo)UF, =03 0O f0OUR 0. (36)
Because fA (i) can induce transitions between two different
angular momentum spaces, the mapping operators 0 o’ w (@),
which are important in U (i) on the right and on the
left of Eq. (36), may not correspond to the same angular
momentum /.
It should also be noticed that not only is the Hamiltonian

changed but also the wave functions since the state of the
valence nucleons is transformed into

|@ya (1) = Uy 1Dy (1) 37)

The evolution of a state |®,(7)) is driven by the time-
dependent Schrodinger equation

m%«ma»=ﬂn¢m», (38)

which can be mapped into the new Hilbert space where
the Pauli-blocked states have been removed within SuSy
transformations:

lh_|q)vA(t)> VA

Dy . (1))- (39)

It is important to remark that the projectors P, involved
in the definition of the valence Hamiltonian [cf. Eq. (27)]
have been removed in the mapped Hamiltonian H, A, Lef.
Eq. (33)]. Hence, the time-dependent Schrodinger equation
in the SuSy space is simpler than the original Schrédinger
equation, which involves projection operators. Nevertheless,
the two Schrodinger equations written in the original space
or in the SuSy-transformed Hilbert space contain strictly the
same physical ingredients and are mathematically equivalent.

In the literature, the transformations of both the excitation
operators and the wave functions are usually neglected (i.e.,
fo is often used instead of fAC and the wave functions are
not transformed back when evaluating observables [6—11,13—
15]). In the following, we will study a particularly important
application: the evaluation of the response of the nucleus to an
external (one-body) perturbation (time dependent or not). The
use of a SuSy-transformed two-body residual interaction in
the calculation of correlations and reactions will be the subject
of forthcoming studies.

IV. EXAMPLES OF SUSY TRANSFORMATIONS

In this section, we illustrate the formalism just developed
with two important physical examples: (i) the harmonic
oscillator potential, which is mostly analytical and allows a
deeper insight into the formalism while providing numerical
tests, and (ii) the halo nuclei potential, which is of important
physical interest but can be treated only numerically since only
asymptotic relations can be deduced analytically.

A. The harmonic oscillator potential

The harmonic oscillator potential is a textbook example
[19]. We set the local potential to be Vy(r) = —Vj —|— 5. r/ b)?

PHYSICAL REVIEW C 71, 024318 (2005)

with > = i/me. In the following, we introduce a reduced
coordinate x = r/b.

The eigenstates are labeled with the quantum numbers
(n,l,m) and are associated with a set of energies E,; =
—Vo + 2n + 1 + 3/2)hw. For each [ the lowest energy state is

I+

(pgl(x) =cC X exp (——xz) (40)

with ¢; = b'=1? /734,
We deduce the following super potentials for SRP and PEP
transformations:

1 /l+1
1
=—(——x], 41
wy(x) b( B x) (41
. 1 x2[+2 e—x2
= 42
200 = et 20+ 2) “2)
with  the un—normallzed error function deﬁned by

erf(z, 1) = [ t'e™"dr. The differential operators @) are

[+1

(rlab |r'y = —(r $ig— ha)—) Iy, (43)
X

5 (

(rlag Ir')  ~ —(rli(—fii@)lr/), (44)
r,r'—00 ﬁ
where £ = \/mof and § = p//m. Note that the PEP trans-
formation could be confusing in this case because there are no
phase for the harmonic oscillator potential. This transforma-
tion conserves the asymptotic normalization constants of the
excited states, instead of the phase shifts, which are not defined
in this case. Nevertheless, it remains interesting for discussion
purposes.
From the expressions of the superpotentials removing only
one state, we deduce the transformed potentials

h(l+1)
m

vh(r) = vh(r) + ho + ———= = ST () + hw, (45)

2 21+1 —xz
viir)=v(r)y+ ————
%) = vy(r) mb? (erf(x, 21 + 2))>

x (21 + 2 — 2x®)erf(x, 21 4+ 2) + x2+3). (46)

These potentials are represented in Fig. 1. In the graphical
illustrations we will use nuclear physics scales by taking the
following parameters: Vy = 50 MeV and iw = 10 MeV. The
lowest energy state is at —35 MeV. The right-hand side of
Eq. (45) demonstrates that the SRP transformations removing
only one state have mapped the original potential UO into a new
potential, which is simply vo + hw, where the effective angular
momentum is /’ = [ 4 1. This is illustrated in Fig. 1, where we
have represented the original potential with / =0,/ = 1, and
| = 2 (thick lines) and the SRP potential obtained numerically
(dotted line). These numerical results have been obtained
on a mesh containing 400 points, ranging from 0 to 20 fm
and with a vanishing boundary condition. The thin solid
line is the analytical result given by Eq. (45). The slight
difference between the thin solid line and the dotted line gives
an estimate of the error of the numerical algorithm, which
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FIG. 1. (Color online) Radial part of the harmonic oscillator
potential (H-O) for / = 0, 1, and 2 (thick lines) compared with its
SRP (dotted line) and PEP (dashed line) transformation of the / = 0
potential. The thin solid line stands for vg-o(l = 1) + hw.

appears to be very small. This illustrates the shape invariance
property [4] of the harmonic oscillator.

Generalizing this result to the removal of several core
states we remark that, in the new radial Hilbert space, up
to a translation of n.w, where n. is the number of removed
core orbitals with angular momentum /, the Pauli principle
maps the original potential with angular momentum / to a new
potential analogous to the radial potential with an effective
angular momentum " = [ 4 n.. However, only the radial wave
function is affected by the effective angular momentum; the
angular part of the wave function is unchanged by the SuSy
mapping.

As we have already mentioned, this SRP transformation
changes the phases. The restoration of the phases is ensured
by the PEP transformation. From the analytic expression of gll
[cf. Eq. (46)], we see that near r ~ 0, v} (r) 7" vh*(r), and
asymptotically, y’l(r)o’zvo(r). The potential y’l (r) is repre-
sented in Fig. 1 (dashed line). The restoration of the phases
imposes a nontrivial transformation of the potential: near zero,
the potential v, is mapped to a new potential analogous to
v(’) with a centrifugal force analogous to an effective angular
momentum [’ =/ + 2n., and asymptotically, the potential
remains unchanged as required by phase conservation. This
behavior is the consequence of the Pauli principle and phase
restoration.

The mapping operators ﬁé can also be analytically derived,
and we will discuss the properties of these operators from their
asymptotic (where all radii go to infinity) expressions:

1/v2

iy~ —vlﬁ G+, @)
ror'— p\z/zm _ EO
(ridg™Ir'y  ~ 8 =r'). (48)

Hence, whereas the operator ﬁf)i is never trivial, even at large
distances the operator gf,i reduces to the unity operator for
large r. This is a consequence of phase restoration. As a result,
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FIG. 2. (Color online) Radial part of the core-halo potentials v
(solid lines) for/ = 0, 1, and 2 and the SuSy-transformed v’fo (dashed
line) and v/~ (dotted line).

the PEP transformations do not modify observables, which are
only sensitive to the asymptotic part of the wave functions.
These asymptotic properties are also valid for other potentials,
as illustrated for halo nuclei potential in the next paragraph.

B. Halo nuclei potentials

The study of the properties of weakly bound systems has
received renewed interest after the discovery of halo nuclei
[20]. These systems have very large mean-square radii and
small separation energies. In fact, the separation energy of
the nucleons forming the halo is so small that their degrees
of freedom can be separated from those of the nucleon
constituents of the core. Up to now, this property has only
been observed in light nuclei close to the nucleon drip-lines
such as %He, !'Be, or '°C. In Ref. [21], the proposed core-halo
potential for ! Be is the sum of a Wood-Saxon potential and a
surface potential

df(r)>2

v50(r) = vo f(r) + 16aia; ( -

where f(r) = [1 + e "/%]~1 is a Wood-Saxon potential
and the parameters are vp = —44.1 MeV, a; = —10.15 MeV,
ro = r5A1/3 with rg =1.27 fm, and a9 = 0.75 fm. The
bound states of this potential are ls states at —25.0 and
—0.5 MeV and a 1p state at —11 MeV. For simplicity we
omit the spin-orbit coupling and consider a model case where
the 1s and 1p orbitals are occupied by the core neutrons.
Thus, these two orbitals are Pauli blocked and cannot be filled
in by the neutron of the halo. In its ground state the latter
occupies the 2s state.

We work on a constant-step mesh containing 400 points
and ranging from O to 50 fm. We show in Fig. 2 the original
potential vf) for/ =0,/ =1, and [ = 2 (solid lines), the SRP
vi=" (dashed line), and the PEP v/~ (dotted line).

We can obtain analytical expressions near r = 0 and for
large r. Indeed, near zero, the lowest energy state, with an

energy EY, behaves like /*!; asymptotically, it behaves like
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FIG. 3. Matrix elements uj, (r, ") (top, SRP) and u, (r, r’) (bot-
tom, PEP) for several values of ' (r' = 0, r., 2r.) calculated for the
angular momentum / = 0 inside the core-halo potential. Recall that
r. is the radius of the 'Be core.

exp(—yor) with yp = v —2m Egl /h. These asymptotics and
therefore the following expressions are very general for all
potentials that are regular at the origin and vanish for large r.
We find that the superpotentials behave like (r — 0)

wé(r) el and wé(r) B2 (49)
21+ 3
we) ~ T andwl () ~ 0. (50)
=0 r—0 —0" 7 r>o0
and the potentials for » — 0 are
RPl+1
W)~ )+ s =), 51)
h? 20 +3
1 o o n _ 42
Vi)~ )+ e = vy (), (52)
and for r — oo they are
Vi)~ (), (53)
Vi)~ vy(r). (54)
The creation/annihilation operators become
st ip
ay ~ =, (55)
o, :F\/Z_m Y0
st ip
a ~ F—=" (56)
0 r—00 m Yo

Using these asymptotic expressions, one finds the following
properties of the mapping operators:

Fip/~2m —yo

(rltglry ~ (] ), (57)
VP2m + v
(rlaglr’y ~ 8@ —r). (58)
r—00

We present in Fig. 3 the matrix elements of (|0, |r') and
(rl,|r’") as a function of r for several values of r': 0, r,
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and 2r., where r. is the radius of the '°Be core. The peaks
identify the diagonal terms. We remark that the operator G,
has important off-diagonal terms (for small and large values
of r’) whereas the operator (i, converges toward a § function
when 7 increases. Hence, the restoration of the phase shift
imposes Q(jf ~ 1 for large values of r’; however, this relation
breaks down close to the core where the off-diagonal terms
become important.

V. ELECTRIC EXCITATION

In this section, we shall consider dynamical properties of
nuclei within the consistent SuSy transformation we have
developed in the previous sections and discuss how they
can be approximated. We will discuss the modifications of
the excitation operators and the doorway sensitivity will
compute some transition elements and strength associated
with monopole (EO0), dipole (E1), and quadrupole (E2)
electromagnetic excitations and the associated sum rules. The
potential considered is the Wood-Saxon potential of Sec. IV B.

We assume that, prior to any SuSy transformation, the
excitation operator takes the standard multipolar form

foOu, L, M) = £ Ym, (59)

with the radial excitation operator fi*d(1) = #*. We drop
the coupling constant because we are only interested in
the transformation of the radial excitation operator and the
relative difference between the consistent SuSy transformation
and its approximations. The EO transition is induced by
f0(2, 0, 0) and the electromagnetic transitions E are induced
by f()()»,)\,,M) (L>=1). The SuSy transformation of the
excitation operator is

fa L, M) =0y for, L, M)U}, . (60)

By introducing explicitly the angular momentum quantum
numbers and assuming that at maximum one level per
angular momentum is occupied by the core nucleons, the
radial excitation operator between two angular momenta /
and [’ occupied by the core nucleons in 4 = (n = 1,/) and
h' = (n' = 1,1) is thus given by

Al () = 0 fe () ol (61)
If I or 1 is not occupied by a core nucleon the corresponding @
should be replaced by the identity. The external operator f, /f: l (A)
allows transitions among different angular momentum spaces
according to the selection rules deduced from the relation

(I'm') fa.h, L, M)|Im) = f1 O)'m ¥ pagllm). (62)

It should be noticed that in Eq. (61) the mapping operators ﬁf)i

on the right and left sides of forad()L) may not correspond to
the same angular momentum /. Moreover, whereas the original
radial excitation operator fo“‘d()») is diagonal (in the coordinate
space), [ f\f (A)isno longer diagonal because the transformation
operators ﬁéi are nonlocal.

A. Consistent excitation operator and its approximations

In the following, we shall calculate the excitation operator
and some of the observables it induces. In the literature, the
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FIG. 4. (Color online) The normalized difference of diagonal ma-
trix elements [thl“lg (A;7) for the SRP transformation and K;‘ag(kg r)
for the PEP one] represented for several values of A (1, 2, 4, and 8)
for the electric excitation E'A inside the s subspace.

SuSy transformation is in general not applied to the excitation
operator. Hence, instead of calculating the matrix elements
induced by the consistent excitation operator fAl(A) the

authors have evaluated the matrix elements of fgad(k) with
the SuSy-transformed wave functions. We will refer to this
approximation as the internal approximation. We introduce
a second approximation called the diagonal approximation
that consists simply of neglecting the off-diagonal terms in
coordinate space of the consistent excitation operator.

As a first example we will study the EO excitation of the
halo neutron in the s subspace. In this subspace the core
blocks one orbital (1s) so that we have to perform an SRP
or a PEP transformation to remove this occupied state from
the halo Hilbert space and restore the phase shift. Of course,
to be complete we also have to remove the occupied p state
but since the SuSy transformation is block diagonal for the
angular momentum quantum numbers this does not modify
the dynamics in the s subspace.

To evaluate the difference between the consistent SuSy
transformation and its approximations, we define two quan-
tities

(r| A f)Ir)

dldg 63
i) = rlf20)Iry (©3)
R G ') — (rlfRMIr) 6
A (1 fLG)Ir)
where
ALY = Fil00 = fM o (65)

is the difference between the excitation operator consis-
tently transformed fA’(A) and the original excitation oper-
ator foad()\) The ratio R ag(k r) evaluates the difference
between the diagonal part of the consistent excitation operator
and the original operator, normalized to the value of the
diagonal part of the consistent operator. It gives an evaluation
of the approximation for the diagonal part of the excitation
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FIG. 5. The normalized off-diagonal matrix elements
[ROT(h = 4;r, r") and RST(A = 4;r, )] represented as a function of
r for several values of r’ (0, r., 2r.) for the electric excitation EX
inside s subspace.

operator. Figure 4 shows the ratio R 1ag()» r) and Rd'ag(k r)
for A = 1,2, 4, and for 8 the 15 SRP and PEP transformations,
respectively. We remark that, for large radii r, the diagonal
part of the excitation operator is close to the original one
[Rd'ag()» r) ~ 0]. This is a consequence of the asymptotic
propemes of the mapping operator as has been discussed in
Sec. IV B. For small radii r, the diagonal part of the excitation
operator is strongly modlﬁed with the ratio R ag(k r)y~1
revealing that (r| f rad|r Yy > (r] fgad|r) This dlfference persists
through a large range of radial coordinates. This range in-
creases with X and is wider for SRP transformations compared
with PEP transformations.

In contrast, the ratio R/O\if()\,; r, r’) evaluates the amplitude of
the off-diagonal terms in coordinate space normalized to the
diagonal term of the consistent excitation operator. In Fig. 5,
we represent the ratio Rff()» =4;r,r’") and E‘}f(k =4d;rr)
for the SRP and PEP transformations, respectively, and for
three values of r': 0, ., and 2r.. For the SRP transformation,
off-diagonal terms are important for small ' and decrease
in relative magnitude while r’ increases. Off-diagonal terms
are nonzero over a wide range and we will show in the next
paragraphs that they can have a more important effect on ob-
servables than the diagonal terms. For the PEP transformation
the off-diagonal terms are smaller and become negligible for
intermediate and large r’ (>r.), as required by the restoration
of asymptotic behavior.

In all the cases presented here, the consistent excitation
operator is different from the original one in the space region
inside the core potential. Hence, from this observation, we
can expect that there will be important effects induced by the
consistent calculation if and only if the calculated observable
is sensitive to the space region inside the core potential.

B. Transformation of the doorway state

We want now to evaluate contributions of both the diag-
onal and the off-diagonal excitation operators to the matrix

024318-8



SUPERSYMMETRY TRANSFORMATION FOR EXCITATION . . .

o 0,(2,0-0;r)

| \
0 5 10 0 5 10

Radius r (fm) Radius r (fm)

FIG. 6. (Color online) The doorway state d¢;(A =2,0 — 0;r)
and 6(0 (A =2,0— 0;r) of electric excitations for the SRP and
the PEP transformations, respectively. The solid line stands for
the consistent excitation operator, the dotted line for the internal
approximation, and the dashed line for the diagonal approximation.

elements. For that, we introduce the doorway state defined as

L0l ),

which shows the effect of the excitation considered on the
wave functions, particurly, the contribution of the off-diagonal
elements. In the following, we have chosen for |/ A, ) the ground
state of hl

We represent in Fig. 6 the doorway state
Spi(A=2,0— 0;r) and&p (A =2,0— 0;r) for the SRP
and PEP transformations, respectlvely The solid line stands
for the consistent excitation operator, the dotted line for the
internal approximation, and the dashed line for the diagonal
approximation. We remark that the infernal approximation
and the diagonal approximation are indistinguishable. This
shows that off-diagonal terms are the most important sources
of modification of the excitation operator.

Moreover, the consistent doorway state changes sign
whereas the two approximations remain positive. This affects
the node structure of the wave function and may induce strong
modifications for forbidden transition as we will see in the
next paragraph.

We use the doorway state to evaluate the mean radius of the
halo. For the 2s state, it is defined as

(ra. = (0X | L @|e3). (66)

Using a 400-point mesh going up to 60 fm, we find that
(r¥o = (r?); = (r*); = 7.21 £ 0.03 fm, and for the internal
approximations (#?); = 6.48 fm and (#%); = 7.27 fm with
the same precision. As expected (cf. Fig. 6), the internal
SRP approximation underestimates the mean radius and the
internal PEP approximation slightly overestimates the mean
radius. The maximum value of the integrand involved in
the calculation of the mean radius is around 20 fm. At this
distance of the core, the internal approximation of the PEP
transformation is very good, and the SRP transformation is

18pa. (k1 = 1)) =

PHYSICAL REVIEW C 71, 024318 (2005)

TABLE 1. B,(EO, 25 — ns) for the PEP transformed harmonic
oscillator potential. B,(EO, 2s — ns) is the matrix element induced
by the internal approximation of the excitation operator.

i 3s 4s Ss 65 Ts
B,(E0) 1.1x10* o(107%) 0o(107%)  o(1077)  o(1077)
B,(E0) 92x10° 1.5x10' 13 71x1072 1.4x 1074

still rather good. In the following we will show that the internal
approximation of the SuSy transformation is rather good for
peripheral observables or for the excitation field, as in the case
of the mean radius of a one-neutron halo. But we expect more
important effects in the case of two neutrons interacting in
the halo because the neutron-neutron interaction occurs inside
the core potential.

C. Single-particle reduced transition probability

The single-particle reduced transition probabilities are
defined as [22]

Ba(EO, i — f) =g}

E@lel) (67)

with [y = [; and as

Ba(Er,i — f) = (ol |7 W)l (68)

with [l; = A|<Ily<[; +A and for A>1. To simplify the
notation, the states / and j are labeled according to the
original space prior to any transformation. In the halo case,
as developed here, all the final states are in the continuum so
it will not be possible to use directly these definitions. In the
next section we will introduce the strength function, a more
general way to look at transition probabilities that is suitable
for the case of excitation toward the continuum and that can
thus be used in the halo case. To get results for the transition
probabilities between discrete states, in the present section, we
will restrict the discussion to the harmonic oscillator model
(see Sec. IVA). To simplify the discussion, we will consider
that the nucleons of the core only occupy the 1s orbital and
we will study the excitation of an additional neutron in the 2s
orbital. We have computed numerically the reduced matrix
elements B (EQ) and B,(E1) for the PEP transformation.
The results are presented, respectively, in Tables I and II. In
the harmonic oscillator, because of selection rules, from the
2s state the monopole operator 72 can induce transition only
toward the 3s state. In Table I, the first line shows the result of
the matrix elements (B) induced by the consistent excitation

TABLEIIL. B,(E1,2s — np) for the PEP transformed harmonic
oscillator potential. B,(E1, 2s — np) is the matrix element induced
by the internal approximation of the excitation operator.

f Ip 2p 3p 4p 5p
B(E1) 50x10> 12x10° o(10° 0o(10"7)  o(1075)
B,(E1) 12x10° 80x10> 95 12 78x1072
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operator. As expected, the forbidden transition are zero within
the numerical uncertainty indicated in parenthesis.

The matrix elements B induced by the internal excitation
operator are shown in the second line of Table I. For allowed
transitions, the internal approximation modifies the exact
matrix element by about 20%, but the main effect of this
approximation is that it induces forbidden transitions from
2s to 4s—7s states.

However, in the case of the E'1 electromagnetic transition,
the selection rules of dipole transitions in the harmonic
oscillator allow transition from 2s states to 1p and 2p
states. The same phenomenon is observed in Tables I and
II: the internal approximation produces spurious excitation of
forbidden transitions.

D. Strength

The very important discrepancy between the internal and
the complete SuSy observed in the case of the harmonic
oscillator might be a peculiarity due to the symmetry of this
model. Let us thus return to the physical case of the !'Be
halo nuclei for which transitions between orbitals belonging
to the same I-space are all allowed. Now we should remove
the 1s (—25-MeV) and 1p (—12-MeV) orbitals occupied by
the core neutrons so that only one bound state (2s) is available
for the halo neutron. The excitations can only promote the
halo neutron to the continuum. Hereafter, the eigenstates and
the continuum states will be obtained from the diagonalization
of the Hamiltonian inside a box going up to 50 fm with 400
points.

To discuss transition toward the continuum, we introduce
the strength

SalEd i, )= |Ba(Edii— )8 — Ef + E). (69)
f

where i is the initial state, here the 2s orbital, and the final
states f are the continuum states of the box. The single-particle
energies are E; and Ey, respectively. Since we perform the
calculation in a box the continuum is discretized. To obtain
a smooth strength function one often smoothes the obtained
results with a Gaussian or a Lorentzian function. In this paper
we will do both.

Strengths for PEP transformations for E0, E1, and E2
transitions are presented in parts (a) of Figs. 7-9 with a
Lorentzian smoothing (I' = 500 keV) and in Fig. 10 with a
Gaussian smoothing. Part (b) of each figure gives directly the
ratio B (E)»)/B (EX ) computed for individual states.

For the monopole mode, using a Lorentzian smoothing
the consistent strength and the internal strength appears to be
very similar [see Fig. 7(a)], even if the ratio B (EO)/B (EOQ)
computed for individual states [see Fig. 7(b)] is very different
from 1 for large values of the final excitation energy E .

The dipole excitations connect the states of two different
l-subspaces. On the smoothed S, (E1) strength [see Fig. 8(a)],
we observe only a small overestimation of the strength for
large values of E, but again the effect seems much larger
on the ratio B (El)/B (E1). In Fig. 9, we represent the
strength S, (E 2). In the [ = 2 subspace, there are no core states
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FIG. 7. (Color online) Monopole excitation. (a) The bars are
the reduced transition probabilities B, (E0) for the continuum states
discretized in the considered box, the solid line is the strength function
resulting from a Lorentzian smoothing (I' = 500 keV), and the
dashed line is the result of the internal approximation. (b) The ratio
B (E0)/B, (E0).

and, consequently, the SuSy transformation is in fact unity. The
smoothed strength appears to be only slightly underestimated
by the internal approximation, again in contradiction with the
ratio B,(E2)/B,(E2), which exhibits a strong discrepancy.
To solve the contradiction we have first studied the role of
the smoothing. We have found that the situation is different
with a Gaussian smoothing, as illustrated in Fig. 10. This
difference is due to the difference in the tails of the two
smoothing functions: The long tails of the Lorentzian function
associated with the low-energy states, which have a large
B,(E0), dominate even at large energy when a Lorentzian
form factor is used. Indeed, since the difference between
the two calculations is small for these dominating states the
final Lorentzian-smoothed strengths for the two calculations
are rather close, in contradiction with the direct ratio of
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FIG. 8. (Color online) Same as Fig. 7 except for dipole transitions.

024318-10



SUPERSYMMETRY TRANSFORMATION FOR EXCITATION . . .

103”“””“”“‘5 1045‘”‘”“”“” 3
! @ ] i (b) ]
10° i 3 5 J
] 10°F E
1 i Q F \
- 10§ RN &S S h
‘éo . 1 el |

g R
7 SN ]
10" Ty =t 1
I 10'F E
102 | 1 : f
10—3 L nall i 100 NI IR ERRTERTEN SRR

0 20 40 60 80 0 20 40 60 80

Energy o (MeV) Energy o (MeV)
FIG. 9. (Color online) Same as Fig. 7 except for quadrupole
transitions.

individual excitation probabilities or the results of the Gaussian
smoothing.

To avoid the ambiguity of the smoothing method we
have studied the continuum limit by a direct scaling of the
numerical box size (we have also tested the role of mesh
size). We have observed that the ratio B,/B; computed for
each individual state does not change shape going to the
continuum limit whereas the smoothed strengths vary and
exhibit a strong dependence on the smoothing functional
and parameters. Therefore, the ratio B, (E0)/B(E0) provides
in fact the correct continuum limit and the large observed
discrepancy at high energy between the internal and the
complete SuSy transformation is the physical one. This is even
better illustrated by considering integrated effects like effects
on the sum rules.
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FIG. 10. (Color online) Same as Fig. 9 except with Gaussian
smoothing.
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TABLE III. Relative error induced in the calculation of the
energy-weighted sum rules by the internal approximation of PEP
transformations.

(my — ﬁo)/ﬂo (m; — &1)/&1 (m, — @2)/&2

EO 1.4%
E1l —6.8%

3.9%
—33.3%

17.4%
—93.1%

E. Sum rules
By integrating the strength over the energy, we can define
different sum rules
m,(EA) = /da) @'S(EX,i =0, w), (70)
where ¢ is the weight of the energy. In the frozen-core

approximation, the sum rules m and m; can be obtained from
the halo wave function according to

mo = (Dl foPy fol®y) — (Dol fol @), (T1)

mi = 5 (@l fobPy. [AgPy, foPy]]IDy), (72)
where fy is the excitation operator defined by Eq. (59).
Equations (71) and (72) are the standard sum rules [23]
rewritten for projected operators. We define the internal
approximation for the sum rule as 711, for which the projector
P, has been removed. The Pauli principle no longer holds. To
estimate the error induced in the calculation of 77, compared to
m,, we have estimated the ratios (m; — n1,)/m;, and the results
are presented in Table III. The relative error induced by the
internal approximation increases with weight. This result is
compatible with the results presented in Figs. 7 and 8: When
the weight increases, the contribution of large energy increases
as do the discrepancies between the consistent SuSy and its
internal approximation.

VI. RESPONSE TO A GAUSSIAN EXCITATION

In the previous section, we have shown that the PEP
transformation modifies essentially the external excitation
operator in the space region located inside the core potential.
The electric operators 2% v studied in the previous section,
which can be seen as a multiple expansion of a Coulomb field
far from the nucleus or as the low momentum transfer limit
of a plane wave scattering, are strong far from the nucleus.
Hence, the effect of the PEP transformation on the excitation
process has been found not to be too large. However, this is
not always the case and, in particular, nuclear scattering and/or
large momentum transfer reactions correspond to much shorter
distances. To study the effect of the PEP transformation on this
kind of scattering, in this section, we study the response to a
Gaussian excitation that can strongly overlap the core potential
(Wood-Saxon potential of Sec. IV B). A Gaussian potential can
be induced by an external nuclear potential as well as a residual
two-body interaction between particles in the halo. In a spirit
similar to that of the previous section, we will not study a
specific process; rather, we will investigate the response to a
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FIG. 11. (Color online) (a) The initial Gaussian potential (/ = 0)
(solid line) and SRP (dotted line) and PEP (dashed line) potentials.
(b) The ratio Qd'ag(r) for SRP (dashed) and PEP (dotted) potentials.

one-body Gaussian potential centered around r( defined as

80 (r — o)’
T Wanp P2 )

where the norm of the interaction is gy = 450 MeV - fm? and
its range is u = 2 fm. For simplicity, in the present schematic
calculation we will assume ry = 0. The SuSy transformation
of this potential is

go(r) =

Al
A, = = 0 Goly'-

Similarly to the previous section, we define two quantities that

measure the modification of the SuSy transformation on the

diagonal and off-diagonal terms of the Gaussian potential:

(rliga — 80°Ir)

dlag o
Oas ()= (rlga.lr)

, (73)

(r1gIr)

(1Ll

o(r, 1) = (74)

In Fig. 11, we fix ro = 0 and we represent (a) the diagonal
part of ga, (dotted line) and 8\ (dashed line) compared
to the original potential g (sohd line) and (b) the ratio
Qd'd”(r) for the SRP transformation (dashed line) and PEP
transformation (solid line). In the very central region, the PEP
transformations modify the potential by about 30%. At large
distance r, because of the Gaussian shape centered on zero of
go(r"), an important relative weight is given to small radii in
the summation (r|ga.|r) = [ dr'(r|0~|r")go(r')(r'|0|r). The
result of this effect is that the range of (r|ga.|r) is slightly
increased compared to go(r’) and because of the exponential
behavior of the ex01tatlon operator this is enough to make the
ratio Q Aag(r)

In Flg 12, we show the ratio Q"”(r, r’) for the SRP
transformation (upper panel) and the PEP transformation
(lower panel) for three different values of r': 0, r., and 2r..
For values of r’ inside the potential, off-diagonal terms are
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FIG. 12. The ratios Q"H (r, r") in the [ = 0 channel as a function
of r for several values of r’ (0, r., and 2r,) in the case of a Gaussian
potential.

small compared to the diagonal term but they are spread over
a large range of coordinates, and their integrated effect can
counterbalance their small values. Outside the potential, the
off-diagonal terms become very important and even larger
than the diagonal term for both SRP and PEP transformations.

Both diagonal and off-diagonal terms have an effect on
the particle wave function, which can be estimated with the
doorway state

|5‘PAC(Z — l)> 2 |‘pA>

In the following, we have chosen for |¢! ) the ground state
of h[

PEP

—_
W
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o
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FIG. 13. (Color online) The doorway state in the [ = 0 channel
8¢1(0 — 0;r) produced by a Gaussian excitation for SRP and PEP
transformations. The solid line stands for the consistent excitation
operator, the dotted line for the internal approximation, and the dashed
line for the diagonal approximation. The thin line stands for the initial
wave function ¢?(r).
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In Fig. 13, we represent 8¢ (0 — 0;r) for SRP and
PEP transformations. The solid line stands for the consistent
transformation of the Gaussian interaction, the dotted line for
its internal approximation, and the dashed line for the diagonal
approximation. The internal approximation and the diagonal
approximation give about the same results but are both very
different from the consistent calculation. These two figures
illustrate the importance of the off-diagonal terms, which
induce very different doorway states.

Summarizing our results, we can assert that the Gaussian
interaction is considerably modified by the SuSy transfor-
mations and the infernal approximation is certainly a bad
approximation, as is illustrated in Fig. 13. Hence, calculations
of structure properties and reaction mechanism that involve
SuSy transformations should never neglect the transformation
of the excitation operator (or residual interaction) for radii
inside the core potential.

VII. CONCLUSION

In this article, we discussed a consistent framework to
perform a quantum mechanics SuSy transformation to take
into account the internal degrees of freedom in a core
approximation. This method is totally equivalent to the full
projector method and is formally very interesting since it
provides justifications for effective core-nucleon interactions
and nucleon-nucleon residual interaction. In this study, we
have considered several kinds of external fields and per-
formed a consistent SuSy transformation. The consistent
SuSy transformation provides equivalent effective interactions
between composite particle systems and thus can be safely
used to describe nuclear structure and reaction of nuclei. The
consistent transformation of additional fields as well as the
transformation of the wave functions (or the observables)
is usually neglected in the literature (internal approxima-
tion) and we have shown that such neglect is not always
justified.

Our conclusions are the following: For electromagnetic-
induced transitions, a consistent SuSy transformation con-
serves all selection rules whereas the internal approximation
violates it. Performing different comparisons we have shown
that the discrepancies might be large, affecting the node
structure of the doorway states and changing the transition
probabilities by sizeable factors. Even the sum rules can be
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affected by a large percentage, (e.g., 33% for the energy-
weighted sum rule of the dipole excitation). Hence, the use
of the internal approximation for the external excitation
operator might be dangerous and the results obtained should be
carefully discussed. However, the main discrepancies between
the consistent calculation and its internal approximation
appear for external fields, which strongly overlap the core
potential. For instance, such is the case of the Gaussian
interaction centered at small distance (rg < r.).

We have shown that with the SuSy transformation the off-
diagonal terms of the external fields are often more important
than the diagonal ones. This forbids an approximation that
would take into account only the SuSy modification of the
diagonal term. Hence, the SuSy transformation has to be
fully implemented to preserve the symmetry of the original
Hamiltonian.

The entire discussion related to the excitation operator
is valid for the observables. Since the wave functions are
transformed either they should be transformed back before
evaluating average values or the observables should be also
transformed before being applied on a transformed state.

In conclusion, in this article, we have stressed the im-
portance of maintaining a consistent quantum mechanics
SuSy framework when there is an overlap between the core
potential and the additional interactions (excitation operator or
observables). For instance, in a recent article Hesse et al. [9]
have performed the internal SuSy approximation and they
have shown that, to reproduce the known binding energies
and radii of °He, ''Li, and '“Be halo nuclei, a readjustment
of the core-neutron interaction is required. This effect might
be induced by the internal SuSy approximation, which treats
improperly the r? observable for the halo neutrons and
the residual interaction between them. The consistent SuSy
framework would be a way to extract information concerning
neutron-neutron interaction in the halo because there is a
unique mapping between the original known interaction and
the effective one, which includes consistent removal of core
orbits.
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