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Microscopic approach of fission dynamics applied to fragment kinetic energy
and mass distributions in 238U
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The collective dynamics of low-energy fission in 238U is described within a time-dependent formalism based on
the Gaussian overlap approximation of the time-dependent generator coordinate method. The intrinsic deformed
configurations of the nucleus are determined from the self-consistent Hartree-Fock-Bogoliubov procedure
employing the effective force D1S with constraints on the quadrupole and octupole moments. Fragment kinetic
energy and mass distributions are calculated and compared with experimental evaluations. The effect of the
collective dynamics along the fission paths and the influence of initial conditions on these distributions are
analyzed and discussed.
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I. INTRODUCTION

Interest in fission has recently increased since it is proposed
to be used in new applications such as accelerator-driven
systems, new electro-nuclear cycles such as a thorium-based
fuel cycle, and the next generation of exotic beam facilities.
For these applications, there is an important need for fission
cross sections in a large range of excitation energies and
for mass-charge fission fragment distributions. For instance,
precise knowledge of production rates of secondary long-lived
fission residues and of neutron-rich isotopes is crucial for
designing and simulating these new facilities. It is worth
pointing out that relevant measurements of mass and charge
distributions have been performed recently. For instance, the
production of exotic nuclei has been measured from spallation
reactions of 1A GeV 238U projectiles on a hydrogen target [1]
and isotopic yields have been deduced for elements between
58Ni and 163Eu. Furthermore, thanks to secondary beam
facilities, fission properties of 70 short-lived radioactive nuclei
can be found in Refs. [2,3]. Such a systematic analysis of
the fission properties covers a wide region of the nuclide
chart, and the transition between single- and double-humped
mass distributions has been observed with a triple-humped
structure for 227Th. It is important to test the accuracy of a
theoretical prediction using data in order to gain confidence in
its predictions when applied to widely extended domains such
as the fission of nuclei far from stability and fission for a large
range of excitation energies.

From a theoretical point of view, the description of the
fission process stands at the crossroads of many subjects in the
forefront of research. Both static and dynamic properties of
the fissioning system are required, namely, nuclear configu-
rations far from equilibrium, the interplay of collective and
intrinsic degrees of freedom, and the dynamics of large-
amplitude collective motion. Theoretical works generally
focus on the static part of fission. For instance, many studies
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have been devoted to multidimensional potential energy
surfaces [4,5] from which fission barriers are extracted and
to nuclear configurations at scission and associated fragment
distributions [6,7]. On the other hand, there are very few
dynamic studies of fission, although dynamic effects are
expected to play an essential role in the process, particularly
in the descent from saddle to scission. Fragment mass distri-
butions have recently been obtained by solving the classical
three-dimensional Langevin equations [8]. The influence of the
mass asymmetry degree of freedom on the variance of the mass
distribution has been highlighted. Two types of microscopic
quantum dynamic calculations have also been performed in
the past. First, in 1978, the time-dependent Hartree-Fock
method [9] was applied to fission. Second, time-dependent
calculations based on the generator coordinate method using
Hartree-Fock-Bogoliubov states were performed, and the most
probable fission configuration of 240Pu was analyzed [10]. The
present study is an extension of this pioneering work.

In the present work, we have chosen to derive the collective
dynamics of fission using a time-dependent formalism based
on the Gaussian overlap approximation of the time-dependent
generator coordinate (GC) theory. An alternative method could
have been to first determine the stationary solutions of the GC
equations within the relevant domain of generator coordinates
with appropriate boundary conditions. The solutions of the
time-dependent GC equations would then be expressed in
a straightforward manner. However, the precise form of the
boundary conditions to be used is difficult to obtain when
more than one generator coordinates is employed. Applying a
time-dependent method allows one to avoid this problem. The
only input of the calculation is the collective wave function
chosen at t = 0. Spurious reflections of the time-dependent
collective wave function at the edge of the finite domain are
eliminated using a standard absorption technique as explained
in Sec. III.

In this paper, we focus on low-energy fission-fragment
distributions of 238U and on several physical aspects that can
be clearly analyzed in this even-even fissioning system. Let us
recall that at low energy, elongation and asymmetry degrees
of freedom are among the most relevant ones and that the

0556-2813/2005/71(2)/024316(13)/$23.00 024316-1 ©2005 The American Physical Society



H. GOUTTE, J. F. BERGER, P. CASOLI, AND D. GOGNY PHYSICAL REVIEW C 71, 024316 (2005)

adiabatic assumption is to a large extent justified [11]. As we
explain later, time evolution in the fission channel is described
in terms of a wave function of Hill-Wheeler type. The latter is
taken as a linear combination of the Hartree-Fock-Bogoliubov
(HFB) solutions characterized by the two collective degrees
of freedom just mentioned. It is worth pointing out that this
work relies only on the D1S effective interaction used at
Bruyères-le-Châtel.

The calculation proceeds in two steps: first the potential
energy surface and the collective inertia are determined from
the first well to scission, and then the dynamic treatment of
fission is performed using an approximate time-dependent
generator coordinate method (TDGCM). Potential energy
surfaces and associated collective inertia tensors are calculated
using the constrained Hartree-Fock-Bogoliubov approach with
the D1S finite-range effective force [12,13]. Fission wave
functions at time zero are constructed from the quasistationary
collective states in the first well. Their time evolution is
calculated numerically by discretizing on a mesh a time-
dependent Schrödinger-like equation. Mass distributions are
derived from the flux of the wave function through scission at
given AH/AL fragmentations.

The present work is organized as follows. The HFB
formalism and the TDGCM method are presented in Sec. II
and numerical procedures are detailed in Sec. III. Section IV
is devoted to the static results, where the potential energy
surface and pairing correlations are discussed. A first estimate
of kinetic energy and fragment mass distributions, obtained
from a “static” calculation at scission, are discussed. Mass
distributions obtained from the full time-dependent calcula-
tions are presented in Sec. V, and the crucial role played by
dynamic effects is analyzed.

II. FORMALISM

In low-energy fission, the adiabatic hypothesis seems to be
justified [11] and, therefore, collective and intrinsic degrees of
freedom can be decoupled. Furthermore, we assume that the
collective motion of the system can be described in terms of a
few collective variables characterizing the shape evolution of
the nucleus. In a self-consistent formalism, these shapes can
be generated by means of external fields represented by the
operators
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These moments govern mass axial deformation and left-right
asymmetry of the nucleus, respectively. For well-separated
fragments, we can express the mean values of these operators in
terms of 〈QH

20〉(〈QH
30〉) and 〈QL

20〉(〈QL
30〉), the mean quadrupole

(octupole) deformations of the heavy and light fragments,
respectively; dm the distance between their centers of mass;
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with

µ = AHAL

AH + AL

. (4)

Relations (3) and (4) have only been used in the present work to
check the validity of the computer program for configurations
close to scission.

The intrinsic axially deformed states |�(q20, q30)〉 of the
fissile system are taken as the solutions of the constrained
Hartree-Fock-Bogoliubov variational principle [13]

δ〈�(q20, q30)|Ĥ − λNN̂ − λZẐ

−
∑

i

λiQ̂i |�(q20, q30)〉 = 0, (5)

where the Lagrange parameters λN, λZ , and λi are deduced
from

〈�(q20, q30)|N̂ |�(q20, q30)〉 = N,
(6)

〈�(q20, q30)|Ẑ|�(q20, q30)〉 = Z,

and

〈�(q20, q30)|Q̂i |�(q20, q30)〉 = qi.

In Eq. (5), Q̂i is the set of external field operators
(Q̂20, Q̂30, Q̂10), and Ĥ is the nuclear many-body effective
Hamiltonian built with the finite-range effective force D1S
[13]. The additional constraint on the dipole mass operator is
used to fix the position of the center of mass of the whole
system. This is accomplished by setting 〈Q̂10〉 = 0, where

Q̂10 =
√

4π

3

A∑
i=1

riY10 =
A∑

i=1

zi . (7)

The system of Eqs. (5) and (6) is solved numerically for
each set of deformations by expanding the single particle
states onto an axial harmonic oscillator (HO) basis. For small
elongation, 0 < q20 � 190 b, one-center bases with N = 14
major shells have been considered, whereas for well-elongated
configurations q20 > 190 b, two-center bases with N = 11 for
each displaced HO basis have been used. Because calculations
are performed in an even-even nucleus for which K = 0 (with
K the projection of the spin onto the symmetry axis), the
HFB nuclear states are even under time-reversal symmetry T̂ .
Furthermore, we restrict the Bogoliubov space by imposing
the self-consistent symmetry T̂ �̂2, where �̂2 is the reflection
with respect to the xOz plane. Let us mention that the
octupole operator breaks the parity symmetry. However,
since P̂ Q̂30P̂

−1 = −Q̂30 and P̂ Ĥ P̂ = Ĥ with P̂ the parity
operator, constrained HFB calculations can be restricted to
positive values of q30, and negative ones are obtained from
|φ(q20,−q30)〉 = P̂ |φ(q20, q30)〉.
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The nucleus time-dependent state is defined as a linear
combination of the basis states |φ(q20, q30)〉

|�(t)〉 =
∫ ∫

dq20 dq30 f (q20, q30, t) |φ(q20, q30)〉, (8)

where f (q20, q30, t) is a time-dependent weight function
obtained by applying the variational principle

δ

δf ∗(q20, q30, t)

∫ t2

t1

〈�(t)|Ĥ − ih̄
δ

δt
|�(t)〉 dt = 0, (9)

where Ĥ is the same microscopic Hamiltonian as the one in-
troduced in Eq. (5). The result is the well-known Hill-Wheeler
equation which reduces to a time-dependent Schrödinger
equation when the GCM problem is solved using the Gaussian
overlap approximation (GOA) [16]:

Ĥcoll g(q20, q30, t) = ih̄
∂g(q20, q30, t)

∂t
. (10)

The collective wave functions g(q20, q30, t), solutions of
Eq. (10), are related to the weight functions f (q20, q30, t)
through the relation
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∫ ∫
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20dq ′
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′
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1
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30), (11)
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1
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′
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30) is the square root kernel of the

overlap kernel
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′
20, q

′
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20, q
′
30)〉.

The exact form of the collective Hamiltonian Ĥcoll deduced
from the GOA can be found in [14,15]. In the present
derivation of this Hamiltonian, the widths G22, G23, and
G33 of the Gaussian overlap between differently deformed
constrained HFB states have been assumed to be constant.
Numerical calculation of these widths shows that they vary
very slowly in the whole q20-q30 domain considered here and
that their variations can be neglected. With this assumption,
the two-dimensional collective Hamiltonian reads

Ĥcoll = −h̄2

2

3∑
i,j=2

∂

∂qi0
Bij (q20, q30)

∂

∂qj0
+ V (q20, q30)

−
3∑

i,j=2

	Vij (q20, q30), (12)

where V (q20, q30) is the constrained HFB deformation energy,
	Vij (q20, q30) are the so-called zero-point-energy correc-
tions, and Bij (q20, q30) is the inverse of the inertia tensor
Mij (q20, q30) associated with the quadrupole and octupole
modes. In this work, we have taken for Mij , instead of the
GCM + GOA inertia tensor, the one deduced from the adia-
batic time-dependent Hartree-Fock (ATDHF) theory with the
Inglis-Belyaev approximation. The reason for this replacement
is that the ATDHF theory appears to give a better account of
the nuclear collective inertia than does the GCM theory. This
question has been extensively discussed in the literature (see,
e.g., [16] and references therein).

The element ij of the Inglis-Belyaev inertia tensor can be
expressed as

Mij =
∑

k,l=2,3

(M (−1))−1
ik (M (−3))kl(M

(−1))−1
lj . (13)

In Eq. (13) the moments of order −k are calculated as

M
(−k)
ij =

∑
µν

〈φ(q20, q30)|Q̂i0|µν〉〈µν|Q̂j0|φ(q20, q30)〉
(Eµ + Eν)k

,

(14)
where |µν〉 are two quasiparticle states with energies Eµ +
Eν built on |φ(q20, q30)〉, and Q̂i0 the quadrupole/octupole
deformation operator defined in Eqs. (1) and (2), respectively.

Let us mention that the collective Hamiltonian Ĥcoll in
Eq. (12) is Hermitian because (i) all inertia are real, and
(ii) B23 = B32.

In addition, from Eq. (9), we find that the collective Hamil-
tonian and the overlap kernel are even under the change of
q30 into −q30. Hence, Eq. (10) propagates the collective wave
function g(q20, q30, t) without mixing parity components. In
particular, if the initial wave function g(q20, q30, t = 0) has a
good parity π , the full time-dependent state Eq. (11) will be
an eigenstate of P̂ with eigenvalue π .

It is important to emphasize at this stage that the approach
presented here requires only the use of an effective force. We
recall that the interaction D1S permits us to employ the full
HFB theory and consequently to treat the mean field and the
pairing correlations on the same footing at each deformation.
Also, the collective Hamiltonian Ĥcoll, as derived from the
GCM procedure, is fully microscopic and relies exclusively
on the interaction D1S. Finally, let us also add that the original
D1S force is used, which means that no readjustment of the
parameters has been made for the application reported in this
paper.

The collective Hamiltonian extracted with our procedure
looks like those employed in phenomenological approaches.
However, the form used in the present work directly follows
from the TDGCM theory and the GOA ansatz. We emphasize
that the 2 × 2 inertia tensor depends on the coordinates and is
nondiagonal. Since this situation has not been much studied,
the numerical methods used to solve Eq. (10) are presented
in Sec. III. They differ from the ones previously discussed in
Ref. [10] because of, first the large domain of deformation
considered here, and second the symmetries of the constraints,
which lead to numerical uncertainties when implementing the
previously-used procedures.

III. NUMERICAL METHODS

A. Discretization of the collective variables

To preserve the Hermiticity of the collective Hamiltonian,
the discretization of the collective variables has been per-
formed by expressing the double integral of the function as

F (t) =
∫ ∫

dq20 dq30 g∗(q20, q30, t)

×
(

Ĥcoll − ih̄
∂

∂t

)
g(q20, q30, t), (15)
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with finite differences

F (t) =
∑
ik,j l

g∗(i, k, t) Kik,j l g(j, l, t), (16)

and by deriving the discretized equation from the variational
principle,

∂F (t)

∂g∗(i, k, t)
= 0. (17)

In Eq. (16), K is the symmetric matrix representing Ĥcoll

(whose full expression is given in Appendix A), and the labels
ik and j l correspond to the q20 and q30 variables through
q20(i) = (i − 1)	q20, and q30(k) = (k − 1)	q30.

The time-dependent GCM + GOA equation becomes
∑
j l

Kik,j l g(j, l, t) = ih̄
∂

∂t
g(i, k, t). (18)

In practice, the two-dimensional discretized form Eq. (18)
has been reduced to a one-dimensional problem by defining a
linear index m = l + (k − 1) × lmax, with lmax the largest value
of l on the grid, which yields

∑
m

Knmgm(t) = ih̄
∂

∂t
gn(t). (19)

The resulting 2 × 2 discretized Hamiltonian matrix Hmn is
symmetric, and the Hermitian character of the kinetic energy
operator is preserved. From a numerical point of view, Hmn is a
sparse matrix. The corresponding nonzero elements are stored
using the “row-indexed storage” method [17], an efficient
technique for reducing computing times.

B. Time evolution

In matrix form, the evolution of g between t and t + 	t

can be written

g(t + 	t) = e−i K	t
h̄ g(t). (20)

Using the Crank-Nicholson method [17,18], a unitary and
stable algorithm, Eq. (20) becomes

G(t + 	t) = 1 − i K	t
2h̄

1 + i K	t
2h̄

G(t) + O[(K	t)3]. (21)

This equation can be transformed into the linear system:(
1 + i

K	t

2h̄

)
g(t + 	t) =

(
1 − i

K	t

2h̄

)
g(t). (22)

In this study, Eq. (22) is solved by successive iterations until
convergence. The wave function g(t + 	t) at time t + 	t is
determined from the previously known wave function g(t) at
time t as follows:



g(n=0)(t + 	t) = g(t)

g(n+1)(t + 	t) =
(

1 − i
K	t

2h̄

)
g(t)

− i
K	t

2h̄
g(n)(t + 	t).

(23)

Equations (23) are solved in a q20-q30 box of finite extension
assuming g(q20, q30, t) = 0 along the edges of the box. This

boundary condition leads to unphysical reflections of the
time-dependent wave function on the q20 = q20max edge of
the box. To eliminate these unphysical reflections, the same
technique as that detailed in Ref. [13] has been implemented:
The wave function is progressively absorbed in the interior
of a rectangular region q ′

20max � q20 � q ′′
20max beyond the q20 =

q20max edge (in the present work q20max = 550 b, q ′
20max =

800 b, and q ′′
20max = 1300 b). Inside this region, the wave

function g(t) is multiplied at each time-step 	t by the function
of Woods-Saxon structure:

F (q20) = 1

1 + exp[−0.015(q20 − 1150)]
. (24)

As mentioned in Ref. [13], this technique is similar to adding
an imaginary potential −ih̄F (q20)/	t beyond the boundary
q20 = q ′

20max. Since 	t occurs in this imaginary potential,
F (q20) is optimized for each time step. In the present study,
the numerical values in Eq. (24) have been optimized to avoid
reflections for a time-step 	t = 1.3 × 10−24 s.

The initial wave function g(t = 0) is described in terms of
quasistationary vibrational states localized in the first well of
the potential energy surface. The states in question are in fact
taken as the eigenstates of a modified two-dimensional q20-q30

potential, where the first fission barrier is extrapolated to large
positive values as mentioned in Ref. [19]. Only the states lying
between the top of the inner barrier and 2 MeV above have
been considered in the present work.

Fragment mass distributions Y (AH ) are derived by a time-
integration of the flux �J (q20, q30, t) · �nds of the wave function
through scission at a given fragmentation,

Y (AH ) =
∫ T

0
dt �J (q20, q30, t) · �nds, (25)

where T is the time for which the time-dependent flux is
stabilized along the scission line. In Eq. (25), �n is a vector
normal to the scission line, and �J is the current defined from
the continuity equation

d

dt
|g(q20, q30, t)|2 = −div �J (q20, q30, t). (26)

The current �J = (J2, J3) as calculated with the collective
Hamiltonian defined in Eq. (12) takes the form

J2(q20, q30, t) = h̄

2i

(
g∗B22

∂g

∂q20
− gB22

∂g∗

∂q20

+ g∗B23
∂g

∂q30
− gB23

∂g∗

∂q30

)
,

(27)

J3(q20, q30, t) = h̄

2i

(
g∗B33

∂g

∂q30
− gB33

∂g∗

∂q30

+ g∗B32
∂g

∂q20
− gB32

∂g∗

∂q20

)
.

Expression (27) reveals in particular that the component of the
current in one direction involves the gradients in all directions.
This observation will be used in Sec. V, where we discuss
the contributions of interference terms between components
of different parities in the initial state.
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IV. STATIC RESULTS

A. Potential energy surface

The HFB calculations have been performed for 238U
with constraints on both the quadrupole and octupole mo-
ments, using the mesh sizes 	q20 = 5–10 b and 	q30 =
2–4 b3/2. The range of investigation extends from spherical
shapes (q20 = 0 b) up to elongations of the exit points,
which vary from qa

20max = 320 b for the most asymmetric
fission (q30 = 44 b3/2) up to qs

20max = 550 b for symmetric
fragmentation (q30 = 0 b3/2). For each value of the quadrupole
moment, the HFB calculations have been restricted to solutions
whose excitation energies are at most 30 MeV above the
ground state. For values of q20 near scission, this condition
leads to a maximum value of q30 = 120 b3/2. HFB solutions
for 120 < q30 < 200 b3/2 have been extrapolated.

Figure 1 shows the most significant part of the HFB
potential energy surface as a function of the quadrupole and
octupole moments. For practical reasons, the domain of the
plot is restricted to 0 < q20 < 320 b and 0 < q30 < 72 b3/2 and
energies are truncated to 25 MeV. As expected in this actinide
nucleus, the ground state is deformed with q20 ≈ 30 b and
a super-deformed minimum appears for an elongation close
to q20 = 80 b. Beyond this second well, two valleys appear.
They are separated by a ridge for well-elongated shapes and
lead to either the symmetric or the most probable asymmetric
fragmentations.

For each asymmetry, the determination of scission config-
urations is made by increasing the elongation step by step: the
constrained HFB wave function at a given q20 is generated from
a previous solution at a slightly lower elongation while keeping
q30 fixed. This method relies on the scission mechanism
studied in [10]. It is assumed that scission occurs for a
given value of q30 when the system falls from the so-called
fission valley to the fusion valley describing well-separated
fragments.

The main criterion used to define exit points and to separate
pre- and post-scission configurations is obtained by looking at
the nucleon density in the neck. We consider that the system
is composed of two fragments when the density in the neck

FIG. 1. HFB potential energy surface as a function of q20 and q30

collective variables in 238U.
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FIG. 2. Proton plus neutron density contours at a given asym-
metry q30 = 44 b3/2 for different elongations (a) q20 = 310 b,
(b) q20 = 320 b, and (c) q20 = 330 b. Contour lines are separated
by 0.01 nucleons/fm3.

is less than 0.01 nucleon/fm3. This is illustrated in Fig. 2,
where density contours are plotted for a given asymmetry
q30 = 44 b3/2 and an increasing elongation. Contour lines
are separated by 0.01 nucleon/fm3. Figures 2(a) and 2(b)
correspond to pre-scission configurations and Fig. 2(c) to a
post-scission one. Let us note that the two criteria described
in Ref. [10] are also satisfied: a �15-MeV drop in the energy
of the total system and a �30% decrease of the hexadecapole
moment are observed when scission occurs.

It is worth pointing out that the constrained HFB method
does not impose an a priori shape to the fissioning system.
All types of deformations that are not imposed take the values
that minimize the total nuclear energy with both the nuclear
mean field and the pairing field determined self-consistently.
Results concerning fragment deformations at scission will be
presented in a forthcoming publication.

Near the exit points, the z location of the neck zneck is
determined as the z value for which the nucleon density
integrated over r is minimum. Properties of the fragments
such as their masses, charges, and deformations, and the
distance between their centers of charge are calculated from
integrations in the left and right half-spaces on either side of
the z = zneck plane. As an example, the distance d between
the centers of charge of the fragments is plotted in Fig. 3 as
a function of the heavy fragment mass. It is maximum for
AH = 119 with d = 20.27 fm and minimum for AH = 134
with d = 15.88 fm. Precise values of this fragment center
of charge distance are crucial because they govern the total
kinetic energy (TKE) distribution, as discussed in Sec. IV C.
As a test, we have checked that the analytical relations in
Eq. (3) are fulfilled.

B. Pairing correlations

Figure 4 shows the pairing energy Epair = 1
2 Tr (	κ),

where 	 and κ are the pairing field and the pairing tensor,
respectively. We clearly see that pairing is not constant as a
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FIG. 3. Distance between the centers of charge of the fragments
as a function of the heavy fragment mass.

function of elongation. As expected, minima are found inside
the wells and maxima at the top of barriers. Furthermore,
the total pairing energy Epair is predicted to be lowest in the
asymmetric valley (Epair ≈ 6 MeV) and much larger in
the symmetric one (Epair > 15 MeV). These variations of
the pairing correlations are very important because they
strongly influence both the collective flux and the occurrence
of intrinsic excitations, as is now explained.

First, the collective inertia is known to be very sensitive
to pairing correlations. The three components B22, B33, and
B23 of the inertia tensor in Eq. (12) are plotted in Figs. 5(a),
5(b), and 5(c), respectively, as functions of the elongation
along the symmetric (dotted line) and asymmetric (solid line)
paths. The two components B22 and B33 are larger in the
symmetric valley than in the asymmetric one (up to a factor of
2 at large elongation). Furthermore, whereas the nondiagonal
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FIG. 4. Pairing energy as a function of q20 along the asymmetric
(solid line) and the symmetric (dashed line) fission paths in 238U.
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FIG. 5. Components of the inertia tensor (a) B22 (in MeV b2 h̄2),
(b) B33 (in MeV b3 h̄2), and (c) B23 (in MeV b5/2 h̄2) as functions of
q20 along the asymmetric (solid line) and the symmetric (dashed line)
fission paths.

inertia component B23 is zero for q30 = 0 by definition, B23

is found to be non-negligible as soon as the system spreads
widely in the asymmetric valley. The coupling brought by B23

between the q20 and q30 modes indicates that as time evolves,
the two collective degrees of freedom exchange energy, which
will affect, among other things, the kinetics of the fission
process.

Second, pairing correlations characterize the amount of
superfluidity of the collective flux and the onset of dissipation,
particularly between the saddle point and the exit point. In
the HFB approach, dissipation requires the creation of two
quasiparticle excitations, which is a transfer of energy from the
collective motion at least equal to 2	, where 	 is the energy
necessary to break a correlated pair. One expects that small
values of 	 will favor dissipation. However, the excitation of
the intrinsic structure also depends on the coupling between
collective and intrinsic degrees of freedom, which is largely
unknown. For this reason, the question of dissipation effects
will be addressed in future work. The proton and neutron gaps
2	p, 2	n are plotted in Fig. 6 as functions of elongation along
the asymmetric path. The corresponding potential energy curve
is also plotted (dotted curve) to guide the eye. For proton
pairing correlations, we find 2	p = 2.3 MeV at the top of the
second barrier. This value appears to be in good agreement with
experimental data [20–22]. As a matter of fact, manifestations
of proton pair breaking are observed in 238U and 239U nuclei
for an excitation energy of 2.3 MeV above the barrier: first
the proton odd-even effect observed in the fragment mass
distributions decreases exponentially for an excitation energy
slightly higher than 2.3 MeV [20] and then the total kinetic
energy drops suddenly [21,22].

In Fig. 6 we also see that the proton gap decreases rapidly
during the first part of the descent beyond the saddle point;
for instance, 2	p = 1.4 MeV for q20 = 180 b. However,
experimental facts show that increasing the excitation energy
from 0 to 2.2 MeV above the barrier does not modify the
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FIG. 6. Twice the proton (solid curve) and neutron (dashed curve)
lowest quasiparticle energies and potential energy (dotted curve)
along the asymmetric path as functions of the elongation in barns.

proton odd-even effect. From our point of view, this could be
an indication that no proton pairs are broken during the descent
from saddle to scission in low-energy fission for excitation
energies below 2.2 MeV above the barrier. Our interpretation
is that the excitation energy supplied during the descent is
shared among the collective degrees of freedom and not among
intrinsic excitations. This experimental observation gives us
some confidence that the neglect of the coupling between
collective and intrinsic degrees of freedom is a reasonable
approximation to start with in low-energy fission.

Finally, no strong odd-even neutron effects are observed for
the fragment mass distributions measured in the photofission of
238U, regardless of excitation energy [21]. In our calculations,
the neutron pairing gap is much lower than the proton one,
except for 160 < q20 < 190 b, as displayed in Fig. 6. At the
top of the second barrier, the neutron gap is only 2	n =
1.6 MeV. This tends to indicate that neutron pairs are more
likely to be broken than proton ones in the even-even 238U
nucleus at low excitation energy. But no definite compar-
ison with experimental data can be made since a precise
knowledge of the neutron number of the fission fragments
is made extremely difficult by the neutron evaporation. All
these remarks concerning pairing correlations a posteriori
illustrate the fact that pairing correlations play an essential
role and that they should be introduced in dynamical studies
of fission.

C. Total kinetic energy distribution

As a first estimate, the total kinetic energy TKE of the
fragments can be roughly calculated as the Coulomb potential
energy EK = ZH ZLe2

d
, with d the distance between the centers

of charge of the fragments at scission. Theoretical values
calculated along the scission line are shown in Fig. 7 as a
function of AH , the heavy fragment mass. They are compared
to experimental data obtained from the photofission of 238U
using 6.2 MeV bremsstrahlung γ rays, corresponding to an
excitation energy close to the inner fission barrier height [21].
We first notice that the general trend of the distribution is
rather well reproduced, with a dip at AH = 119 and a peak at
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FIG. 7. Total kinetic energy distributions as functions of the
heavy fragment mass. Dots indicate experimental data [21], and the
continuous line represents predictions.

AH = 134. Symmetric and asymmetric wings are surprisingly
close to experimental data. The agreement indicates that
our microscopic approach, together with the prescription
explained in Sec. IV A, is able to give a realistic description of
scission configurations. The main difference with experimen-
tal data occurs in the region of the most probable asymmetric
fission where the theoretical results overestimate TKE values
by �6%. This discrepancy mainly comes from the fact that
the nuclear contribution entering the mutual energy between
the two fragments is not strictly zero for the corresponding
scission configurations. Furthermore, the attractive exchange
Coulomb energy between the fragments has been neglected.
These two effects could lead to a decrease of TKE values that
may reach 10–15 MeV.

D. “One-dimensional” fragment mass distribution

As a first approximation, mass distributions can be derived
using the fragmentation model detailed in Ref. [23]. Namely,
collective stationary vibrations are studied along the sole
mass-asymmetry degree of freedom for nuclear configurations
just before scission. The probability of occurrence of a mass
asymmetry (AH,AL) corresponding to a value q30 of the
octupole moment is then taken as

Y (AH,AL) = ∣∣�+1
0 (q30)

∣∣2
, (28)

where �+1
0 is the positive parity eigenstate with the lowest

energy of the one-dimension collective Hamiltonian Ĥ ′
coll in

the q30 variable,

Ĥ ′
coll

(
q30,

∂

∂q30

)
= −h̄2

2

∂

∂q30

1

M3(q30)

∂

∂q30

+V (q30) − 	V3(q30). (29)

Here, V (q30) is the HFB deformation energy along the scission
line q20 = qs

20 = f (q30),M3(q30) is the collective inertia,
and 	V3(q30) is the zero-point-energy (ZPE) correction. The
Hamiltonian of Eq. (29) is derived from the usual GOA
reduction of the one-dimensional Hill-Wheeler stationary
equation obtained by taking for the generator coordinate
the curvilinear abscissa s(q20, q30) along the scission line. A
change of variable is then performed in order to express all
quantities as functions of q30. It is easy to show that the inertia
and ZPE correction appearing in Eq. (29) are related to those
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FIG. 8. Potential energy along the scission line as a function of
the octupole moment.

entering the full two-dimensional Hamiltonian (12); that is,

M3(q30) =
(

df

dq30

)2

M22 + 2

(
df

dq30

)
M23 + M33, (30)

	V3(q30) = G3(q30)

2M3(q30)
, (31)

with

G3(q30) =
(

df

dq30

)2

G22 + 2

(
df

dq30

)
G23 + G33, (32)

where Mij are the inertia defined in Eq. (13) and Gij the
components of the overlap tensor calculated in the cranking
approximation using the moments of Eq. (14).

Clearly, the model based on the Hamiltonian (29) ignores
all the effects of the dynamics along the elongation degree
of freedom from the first well to scission. We call the mass
distribution obtained in this way a “one-dimensional” mass
distribution.

The HFB potential energy V (q30) calculated along the
scission line is plotted in Fig. 8 as a function of the octupole
moment. The lowest energy is obtained for q30 = ±44 b,
corresponding to the most probable fission. A secondary
minimum is found for q30 = 0 b. These two wells are separated
by an 11-MeV-high barrier.

One-dimensional distributions are shown in Fig. 9 where
the mass yield Eq. (28) is plotted (solid line) together with
the Wahl evaluation (dashed line) for 46 keV neutron-induced
fission on 237U [24]. The maxima of the theoretical curve occur
at AH = 134, AL = 94 values corresponding to the minima of
the potential energy along the scission line. The fact that the
experimental curve maxima lie close to these values indicates
that the most probable fragmentation is due essentially to the
properties of the potential energy surface at scission, i.e.,
mainly to shell effects in the nascent fragments. However,
the one-dimensional approach does not reproduce either the
experimental peak-to-valley ratio or the experimental widths of
the distributions—the theoretical widths are two times smaller
than the Wahl evaluated ones.
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FIG. 9. Comparison between the one-dimensional mass fragment
distribution obtained from (28) (solid line) and the Wahl evaluation
(dashed line) [24].

One must note, however, that only the solution of Eq. (29)
with lowest energy �+1

0 has so far been considered. This
is certainly an oversimplifying assumption since the wave
function describing the collective evolution of the nucleus will
undoubtedly possess a more complicated structure at the time
of reaching the scission line. In particular, as mentioned in
Ref. [25], for n > 0 states �π

n , solutions of Eq. (29) may
become excited because of the interaction between q20 and
q30 degrees of freedom. Let us mention that in Ref. [25]
the population of the eigenstates was assumed to follow
a Boltzmann law governed by a temperature parameter. In
Ref. [26], the elongation degree of freedom was introduced
using a classical approximation.

Amplitudes of the first six collective states �π
n , n =

0, . . . , 5, solutions of Eq. (29) are displayed in Fig. 10 as
functions of the fragment mass. As is well known, such �π

n

states are eigenstates of the parity operator � with eigenvalues
π . Positive and negative parity states are plotted in solid
and dotted lines, respectively. Each pair of π = +1 and
π = −1 levels is degenerate in energy because the potential
is symmetric with respect to the q30 → −q30 transformation
and because the barrier between the two asymmetric wells is
high (11 MeV) (see Fig. 8). We observe in Fig. 10 that the
excited states are more spread over mass than is the ground
state. For example, the wave functions �+1

4 and �−1
5 displayed

in Fig. 10(c) display nonzero values up to AH ≈ 156, whereas
the lowest energy wave functions �+1

0 and �−1
1 in Fig. 10(a)

are localized in the domain 132 < AH < 144. Therefore, we
can expect that the introduction of these excited states in the
definition of the mass yield Eq. (28) will broaden the mass
distribution in the asymmetric region.

V. DYNAMIC RESULTS

A. Initial states

The time-dependent evolution of the system has been
calculated using different initial conditions in the first well of
the potential energy surface. Calculations have been performed
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FIG. 10. Amplitudes of the first six collective states in the
asymmetry variable at scission as functions of the fragment mass.
Positive (negative) parity states are plotted in solid (dotted) lines.
Excitation energies, measured from the lowest energy state, are (a)
E = 0 MeV, (b) E = 3.09 MeV, and (c) E = 4.76 MeV.

from t = 0 up to maximum times for which the flux of the
time-dependent collective wave function along the scission
line has become stabilized.

We first discuss the effect of the structure of the initial
state on the mass distribution. To define the initial conditions,
we imagine that the nucleus is a compound system described
in terms of complicated quasistationary states that decay into
various channels (neutron and γ -ray emission and fission). In
the case of the even-even K = 0 238U nucleus studied here,
we assume that states which decay through fission can be
described by the simple form

|�P,K=0,I,M〉 = (2π )−
1
2 YM

I ()
∫

dq f π
n (q, t = 0) |φ(q)〉,

(33)
where YM

I () are spherical harmonics and  the Euler angles
relating the intrinsic axes of the nucleus to the laboratory frame
of reference.

The parity quantum number P is related to the intrinsic
parity π by the following relation:

P = π (−1)I , (34)

where I is the spin of the fissioning system. In Eq. (33), q is
the set of all relevant nuclear collective deformations which in
the present work [see Eq. (8)] is restricted to (q20, q30).

As already mentioned in Sec. II, initial states
gπ

n (q20, q30, t = 0) [related to the f π
n (q20, q30, t = 0) func-

tions as in Eq. (11)] are taken as eigenstates of the modified
two-dimensional first well V ′(q20, q30), where the potential
has been extrapolated at large deformations as shown in
Fig. 11. They are solutions of the equation

Ĥ ′
coll gπ

n (q20, q30, t = 0) = Eπ
n gπ

n (q20, q30, t = 0), (35)

where Ĥ ′
coll is the Hamiltonian defined in Eq. (12) with

V (q20, q30) replaced by V ′(q20, q30).
Because H ′

coll(q20, q30,
∂

∂q20
, ∂

∂q30
) = H ′

coll(q20,−q30,
∂

∂q20
,

− ∂
∂q30

), these initial states can be chosen as eigenstates of
the parity operator with eigenvalues π = ±1 [27]:

gπ
n (q20,−q30, t = 0) = π gπ

n (q20, q30, t = 0). (36)
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FIG. 11. Potential curves V (q20, q30 = 0) and V ′(q20, q30 = 0)
including zero-point-energy corrections (continuous and dotted lines,
respectively), and collective eigenstates of the modified V ′(q20, q30 =
0) potential (horizontal segments).

The potential curves V (q20, q30 = 0) and V ′(q20, q30 = 0)
including zero-point-energy corrections are displayed in
Fig. 11. The eigenenergies of H ′

coll are also shown. Excitation
energies of the compound nucleus in the interval [BI , BI +
2.5 MeV] will be considered in this work focusing on low-
energy fission, where BI is the first barrier height. In this
energy range, the mean level spacing is around 130 keV.
Therefore, 19 states are possible initial candidates for our
dynamic calculations. All these states are located above the
outer symmetric saddle point but below the outer asymmetric
one. They correspond to multiple quadrupole and octupole
phonons and have different components along the q30 and
q20 directions. Significant effects on the fragment mass
distributions are mainly due to the parity of the initial states.

In Fig. 12, fragment mass distributions calculated with
formula (25) for initial states of definite parity are plotted
separately. The solid and dotted curves correspond to initial
states whose intrinsic parity is exclusively positive or negative.
They are located at 2.4 and 2.3 MeV above the first barrier,
respectively.
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FIG. 12. Fragment mass distributions obtained for initial states
having positive parity (solid line) and negative parity (dotted line).
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We see that the main difference between the two results
is the peak-to-valley ratio, which is near 50 for the positive
parity initial state and infinite for the negative one. The fact
that no symmetric fission is found when the initial state has a
negative parity is because g−1

n (q20, q30 = 0, t) = 0 if π = −1
for any time t . As a consequence, the flux of the wave function
through the scission line at q30 = 0 vanishes.

In the applications presented below we use initial states
that do not have a definite parity. As we observed at the end
of Sec. III, there are interferences between states of different
parities in the calculation of the flux. However, because of
the symmetries of the inertia tensor, these interferences do
not contribute to the symmetric mass fragmentation. From the
previous discussion, we infer that our predictions of symmetric
fission will be affected by the proportions of collective states
with negative and postive intrinsic parity. To get an estimate of
these proportions, we assume that they are the same as in the
compound sytem n + 237U. More precisely, by using Eq. (34)
we define fission cross sections, σ (π = +1, E) and σ (π =
−1, E), corresponding to components of intrinsic parity in the
compound system through the relations

σ (π = −1, E) =
∑

I=2p,P=−1

σCN (P, I,E) Pf (P, I,E)

+
∑

I=2p+1,P=+1

σCN (P, I,E) Pf (P, I,E),

σ (π = +1, E) =
∑

I=2p,P=+1

σCN (P, I,E) Pf (P, I,E)

+
∑

I=2p+1,P=−1

σCN (P, I,E) Pf (P, I,E),

(37)

where E,P, σCN (P, I,E), and Pf (P, I,E) are the energy, the
parity [defined in Eq. (34)], the formation cross section, and
the fission probability of the compound nucleus, respectively.

Formation cross sections were calculated using the Hauser-
Feschbach theory with the optical potential model of Ref. [28]
and fission probabilities were deduced from a statistical model
calculation [29].

Then, we define probabilities by the following fractions:

p−(E) = σ (π = −1, E)

σ (π = −1, E) + σ (π = +1, E)
,

(38)

p+(E) = σ (π = +1, E)

σ (π = −1, E) + σ (π = +1, E)
.

They represent the population of states in the compound
system that have a given intrinsic parity and decay to fission.
With the help of these probabilities, we determine the mixing
of parities in the initial states. Numerical values for the reaction
n + 237U are given in Table I for two excitation energies as
measured from the top of the first barrier.

Mass distributions obtained for these two energies are
displayed in Fig. 13; the solid and dashed lines correspond
to the two energies, 2.4 and 1.1 MeV, respectively. We
observe that the symmetric fragmentation is slightly higher
at excitation energy 1.1 MeV than at 2.4 MeV. Clearly, this
approach does not reproduce an essential feature of measured

TABLE I. Percentages of positive and negative intrin-
sic parity states populated in the compound nucleus 238U
by the n + 237U reaction for two excitation energies.

E (MeV) 1.1 2.4
p+(E) % 77 54
p−(E) % 23 46

or evaluated mass fragment distributions, namely, a sensitive
increase of the symmetric fission yield with increasing neutron
energy. As can be inferred from previous discussions, this
discrepancy is a direct consequence of the rapid decrease with
increasing energy of positive parity components in the initial
state. More detailed comparisons of the theoretical predictions
with Wahl evaluations [24] in Fig. 14 indicate, however,
that the microscopic approach reproduces successfully various
characteristics of the mass distribution.

For instance, the comparison at 2.4 MeV shows that the
main features of Wahl’s distribution—position and height
of the maxima, peak-to-valley ratio, and broadening of the
distribution—are satisfactorily reproduced by the theory. The
agreement at lower energy is not as good, essentially because
of the discrepancy mentioned earlier.

Initial conditions appear to be crucial for the prediction of
mass distributions at low energy. In view of the quality of the
results presented, we are considering studying this question
more carefully in future works.

B. Dynamic effects

To analyze the influence of dynamic effects, we compare in
Fig. 15 the fragment mass distribution obtained for the initial
state located 2.4 MeV above the first barrier shown in Fig. 14(a)
with our previous one-dimensional distribution. Fig. 15 also
shows the evaluated data from the Wahl systematics (dashed
curve) [24].

We first note that the maxima of the two theoretical distri-
butions are both located around AH = 134 and AL = 104, in
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FIG. 13. Fragment mass distributions obtained for two initial
states. Solid line: E = 2.4 MeV with p+ = 54% and p− = 46%.
Dashed line: E = 1.1 MeV with p+ = 77% and p− = 23%.
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FIG. 14. Theoretical mass distributions (solid lines) are compared
with the Wahl evaluations of neutron-induced fission of 238U [24]
(dashed lines). Excitation energies of the compound 238U nucleus
measured above the barrier are (a) E = 2.4 MeV, (b) E = 1.1 MeV.

good agreement with the evaluated data. As already mentioned
in Sec. IV D, this is a confirmation that the most probable
fragmentation is due essentially to shell effects in the nascent
fragments and not to dynamic effects. The widths of the peaks
obtained from the full dynamic calculation are much larger—
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FIG. 15. Comparison between the one-dimensional mass distri-
bution of Fig. 9 (dotted line), the mass distribution resulting from the
dynamic calculation (solid line) with the initial state located 2.4 MeV
above the barrier, and the Wahl evaluation (dashed line) [24].

TABLE II. Percentages of the one-dimensional states
contained in the dynamic solution at scission for t =
0.96 × 10−20 s.

n 1–2 3–4 5–6 7–8 9–10

Rn % 35.2 8.6 36.7 6.9 12.6

about twice as large—than those of the one-dimensional case,
and consequently they are in much better agreement with
the Wahl evaluated data. Clearly the dynamics play a major
role in the broadening of the fragment mass distributions. In
the present dynamic calculation, the broadening is clearly due
to the interaction between the elongation and the asymmetry
degrees of freedom, which results from both the potential
energy and the inertia variations. As already discussed in
Sec. III, these effects are especially important in the descent
from saddle to scission, where the inertia component B23

is large (see Fig. 5). In fact, the cross term in the kinetic
energy of the collective Hamiltonian appears to be responsible
for exchanges of energy between the two modes and for
the spreading of the time-dependent wave function in the
asymmetric valley.

To quantitatively analyze those effects, we expanded the
time-dependent wave function g(q20, q30, t) over the one-
dimensional states �π

n (q30) described in Sec. IV D along the
line q20 = (q20)s = f (q30) such that

g[(q20)s , q30, t] =
∑

n

Cn(t) �π
n (q30). (39)

The weight coefficients Cn(t) can be calculated as

Cn(t) =
∫

dq30 g[(q20)s , q30, t] �π
n (q30), (40)

and the fraction of each one-dimensional state contained in the
dynamic solution at scission is given by

Rn(t) = |Cn(t)|2∑
m |Cm(t)|2 . (41)

Results for Rn(t = 0.96 × 10−20 s) are listed in Table II in the
case of the dynamic wave function corresponding to the initial
state considered here.

These results indicate that the dynamic wave function is
spread over many one-dimensional states �π

n and that the
relative contribution of the two low-energy states is only
35.2%. As it appears, the one-dimensional definition (28) of
the fragment yield is not pertinent, and dynamic effects should
be fully taken into account to obtain realistic predictions for
fragment mass distributions.

VI. CONCLUSION

In this work, we have presented a theoretical framework
and numerical techniques allowing us to describe fission mass
distribution in a completely microscopic way. The method is
based on an HFB description of the internal structure of the
fissioning system. The collective dynamics is derived from
a time-dependent quantum-mechanical formalism where the
wave function of the system is of GCM form. A reduction
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of the GCM equation to a Schrödinger equation is made
by means of the usual techniques based on the Gaussian
overlap approximation. Such an approach has the advantage
of describing the evolution of heavy nuclei toward fission
in a completely quantum-mechanical fashion and without
phenomenological parameters.

Properties of the fissioning system that have a large
influence on collective dynamics have been discussed. Among
them, the most important is the variation with deformation
of the nuclear superfluidity induced by pairing correlations. In
addition to strongly influencing the magnitude of the collective
inertia, these correlations are essential in our approach because
they validate the adiabatic hypothesis as a first approximation
for the description of low-energy fission.

In the present application of this method to 238U fission,
two kinds of observables have been examined and compared to
experimental data: the kinetic energy distribution and the mass
distribution of fission fragments. The kinetic energy distribu-
tion, which has been derived from the mutual Coulomb energy
of the fragments at scission, is found to be in good agreement
with data. A small discrepancy (6%) is found around the
most probable fragmentation region, which could originate
from the fact that the nuclear contribution entering the mutual
energy between the two fragments is not strictly zero for the
corresponding scission configurations and that the attractive
exchange Coulomb energy between the fragments has been
neglected. Concerning fragment mass distributions, the main
result of this study is that the dynamic effects taking place
all along the evolution of the nucleus are essential to consider
in order to obtain widths that agree with experimental data.
In contrast, the maxima of the distributions are determined
by the static properties of the potential energy surface in
the scission region, that is, by shell effects in the nascent
fragments. Finally, the influence of the choice of the initial
state has been studied. In particular, symmetric fragment yields
are found to be strongly influenced by the parity composition
of the initial state. The quality of the results reported here
encourages us to pursue further studies of fission along these

lines, with some additional improvements. For instance, as
suggested by the work cited in Ref. [30], we cannot exclude
the fact that several valleys caused by other collective modes,
such as hexadecapole or higher multipole deformation, can
appear in some fissioning systems. Extensions to microscopic
calculations involving three or more collective coordinates are
envisaged.
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APPENDIX: HAMILTONIAN MATRIX

Starting from the functional Eq. (15), the matrix elements
of the Hamiltonian matrix K can be expressed from

(Ĥcollg)(i, k, t) =
∑
j l

Kik,j l g(j, l, t), (A1)

by writing

Ĥcoll =
3∑

i,j=2

T̂ij + Ṽ (q20, q30), (A2)

with

T̂ij = −h̄2

2

∂

∂qi0
Bij (q20, q30)

∂

∂qj0
,

(A3)

Ṽ (q20, q30) = V (q20, q30) −
3∑

i,j=2

	Vi,j (q20, q30).

The different terms contributing to Eq. (A1) are

(T̂22 + T̂33)g(i, k, t) = 1

4	q2
20

{[−B22(i − 1, k) − B22(i, k)]g(i − 1, k, t) + [B22(i − 1, k) + 2B22(i, k)

+B22(i + 1, k)]g(i, k, t) + [−B22(i, k) − B22(i + 1, k)]g(i + 1, k, t)}
+ 1

4	q2
30

{[−B33(i, k − 1) − B33(i, k)]g(i, k − 1, t) + [B33(i, k − 1) + 2B33(i, k)

+B33(i, k + 1)]g(i, k, t) + [−B33(i, k) − B33(i, k + 1)]g(i, k + 1, t)}, (A4)

(T̂23 + T̂32)g(i, k, t) = 1

16	q20	q30
{[B23(i − 1, k + 1) + B23(i, k + 1) + B23(i − 1, k) + B23(i, k)]g(i − 1, k + 1, t)

+ [B23(i − 1, k − 1) + B23(i + 1, k + 1) − B23(i − 1, k + 1) − B23(i + 1, k − 1)]g(i, k, t)

+ [−B23(i − 1, k) − B23(i, k) − B23(i − 1, k − 1) − B23(i, k − 1)]g(i − 1, k − 1, t)

+ [−B23(i, k + 1) − B23(i + 1, k + 1) − B23(i, k) − B23(i + 1, k)]g(i + 1, k + 1, t)

+ [B23(i, k) + B23(i + 1, k) + B23(i, k − 1) + B23(i + 1, k − 1)]g(i + 1, k − 1, t)}, (A5)
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and

Ṽ (i, k) g(i, k, t) = {V (i, k) − 	V22(i, k) − 	V22(i, k) − 2	V23(i, k)}g(i, k, t). (A6)

The labels i and k are related to q20 and q30, respectively,
and 	q20 and 	q30 are the associated discretization steps.
The following approximation has been used for the inertia
term:

Bjj

(
i ± 1

2 , k
) ≈ 1

2 [Bjj (i, k) + Bjj (i ± 1, k)]. (A7)

For products F of two functions F1 and F2, the following
prescription has been assumed:

F
(
i + 1

2 , k
) = F1

(
i + 1

2 , k
)
F2

(
i + 1

2 , k
)

≈ 1
4 [F1(i + 1, k) + F1(i, k)][F2(i + 1, k)

+F2(i, k)]. (A8)
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Phys. Rev. C 17, 1098 (1978).
[10] J.-F. Berger, M. Girod, and D. Gogny, Nucl. Phys. A428, 23c

(1984).
[11] J. Moreau and K. Heyde, in The Nuclear Fission Process, edited

by C. Wagemans (CRC Press, Boca Raton, FL, 1991), p. 238.
[12] J. Decharge and D. Gogny, Phys. Rev. C 21, 1568 (1980).
[13] J.-F. Berger M. Girod, and D. Gogny, Comp. Phys. Comm. 63,

365 (1991).
[14] P. Ring and P. Schuck, The Nuclear Many Body Problem

(Springer-Verlag, New York, 1980).
[15] L. M. Robledo, J. L. Egido, B. Nerlo-Pomorska, and

K. Pomorski, Phys. Lett. B201, 409 (1988).
[16] J. Libert, M. Girod, and J.-P. Delaroche, Phys. Rev. C 60, 054301

(1999).

[17] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes: The Art of Scientific Computing
(Cambridge University Press, Cambridge, 1986), p. 642.

[18] N. Carjan, M. Rizea, and D. Strottman, Rom. J. Phys. 47, 221
(2002).

[19] O. Serot, N. Carjan, and D. Strottman, Nucl. Phys. A569, 562
(1994).

[20] S. Pomme, E. Jacobs, K. Persyn, D. De Frenne, K. Govaert, and
M.-L. Yoneama, Nucl. Phys. A560, 689 (1993).

[21] S. Pomme, E. Jacobs, M. Piessens, D. De Frenne, K. Persyn,
K. Govaert, and M.-L. Yoneama, Nucl. Phys. A572, 237
(1994).

[22] F. Vives, F.-J. Hambsch, H. Bax, and S. Oberstedt, Nucl. Phys.
A662, 63 (2000).

[23] P. Lichtner, D. Drechsel, J. Maruhn, and W. Greiner, Phys. Lett.
B45, 175 (1973).

[24] A. C. Wahl, Los Alamos National Laboratory Report No. LA-
13928, 2002 (unpublished).

[25] J. Maruhn and W. Greiner, Phys. Rev. Lett. 32, 548 (1974).
[26] J. A. Maruhn and W. Greiner, Phys. Rev. C 13, 2404

(1976).
[27] J. Meyer, P. Bonche, M. S. Weiss, J. Dobaczewski, H. Flocard,

and P.-H. Heenen, Nucl. Phys. A588, 597 (1995).
[28] W. Younes and H. C. Britt, Phys. Rev. C 67, 024610 (2003).
[29] W. Younes, private communication
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