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Within the constrained Hartree-Fock (CHF) theory, an analytic condition is derived to estimate whether a
concept of the self-consistent mean field is realized in the level repulsive region. The derived condition states
that an iterative calculation of the CHF equation does not converge when the quantum fluctuations coming from
two-body residual interaction and quadrupole deformation become larger than a single-particle energy difference
between two avoided crossing orbits. By means of numerical calculation, it is shown that the analytic condition
works well for a realistic case.
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I. INTRODUCTION

The Hartree-Fock (HF) mean-field theory has been applied
successfully to various quantum many-fermion systems. By
violating various conservation laws satisfied by the Hamil-
tonian, one obtains an appropriate mean field that could
incorporate as many various correlations of the system as
possible. Its many important theoretical concepts—such as
a stability of the mean field and an appearance of massless
collective motion in association with restoration dynamics of
broken symmetries—constitute an outstanding virtue of the
self-consistent mean-field theory. Here it should be noticed that
the mean field is characterized by various averaged quantities,
which express an amount of symmetry breaking such as a shape
deformation in the coordinate space or a gauge deformation
in the quasispin (pairing) space. These averaged quantities as
well as the concept of mean field are expected to have physical
reality only when the many-body system under consideration
is near stationary, at least locally homogeneous, and well
isolated from the other local minimum. To the best of our
knowledge, there has been no discussion of when a concept
of the self-consistent mean field is realized or how and why
it breaks down. In this paper, we will discuss to what extent
the self-consistent one-body potential exists when two orbits
around the Fermi surface interact with each other.

Theoretically, an avoided crossing occurs rather frequently
in various fields of physics such as molecular, atomic, and
biological systems, as well as in the quantum dot and atomic
nuclear systems [1–4]. In the development of nuclear structure
physics, there have been many discussions on the applicability
of the cranked mean-field theory near an avoided level crossing
region [5–8], where large angular momentum fluctuations
and spurious interactions between two crossing orbits have
been explored. An argument for removing a certain spurious
interaction and for introducing a set of diabatic single particle
(s.p.) states in the cranked mean field [7–14] seems to be
reasonable, because the angular momentum is a constant of
motion and the interaction between different rotational bands
should act at a given angular momentum rather than at a given
rotational frequency. However, these treatments seem to still
be in a phenomenological stage.

The above argument may not be simply extended to
deformation-constrained mean-field theory. In this case, an
interaction between two potential energy surfaces (PESs)
with different quadrupole deformation may not necessarily be
regarded as spurious, because the Hamiltonian and quadrupole
operator do not commute with each other. Interestingly, it
has been suggested that the pairing interaction between two
orbits located below and above the Fermi surface and having
spherical and deformed shape might be spurious in the level
crossing region [9]. By eliminating the spurious interactions
and comparing with experiments, very interesting conclusions
have been deduced such as “a flat PES does not automatically
lead to large fluctuation of the shape” [9]. However, there still
remains a decisive question of how the above statement is
justified from the underlying dynamics.

To understand how the mean field changes by itself when
it acquires additional deformation, and to study more deeply
what actually happens in the self-consistent mean field near
the level crossing region from the underlying microscopic
dynamics, a rather heavy numerical method called the
configuration-dictated constrained HF (CHF) method [15] has
been developed. Applying this method to realistic cases, one
may get many PESs which are approximately characterized
by the s.p. configurations relative to the lowest PES [16]. As
pointed out in our previous papers [16,17], the CHF iterative
calculation sometimes meets a difficulty of poor convergence
or even nonconvergence near the level repulsive region, no
matter how much effort one makes to get convergence.

In this paper, we will explore how competition between the
mean field and the quantum fluctuations coming from two-
body residual interaction and quadrupole deformation plays a
decisive role in breaking the concept of a self-consistent mean
field near the level repulsive region.

II. THEORETICAL METHOD

The nuclear Hamiltonian is given by

Ĥ =
∑
αβ

tαβc†αcβ + 1

4

∑
αβγ δ

v̄αβγ δc
†
αc

†
βcδcγ . (1)
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Here and hereafter, α, β, . . . are used to denote numerical
basis. To define the self-consistent CHF state |�(q)〉 with a
given quadrupole moment q, we apply the deformation CHF
equation with quadratic constraints given by

δ
(〈�(q)|Ĥ |�(q)〉 + 1

2w(〈�(q)|Q̂20|�(q)〉 − µ)2

+ 1
2αx〈�(q)|x̂|�(q)〉2

) = 0, (2)

with

〈�(q)|Q̂20|�(q)〉 = q, 〈�(q)|x̂|�(q)〉 = 0, (3)

where x̂ denotes a center-of-mass (c.m.) coordinate. Our
numerical method of solving the CHF equation has been
discussed in Ref. [16], where the Gogny D1S interaction
[18–23], the Coulomb force, and the c.m. motion up to the
exchange terms are taken into account. In Eq. (2), µ denotes
an input parameter that allows us to vary an expectation value
〈�(q)|Q̂20|�(q)〉. The meaning of parabola width w was
discussed in Ref. [24] and is chosen to be 1.0 × 10−3 MeV/fm4

in our calculation. The Lagrange multiplier λ(q) is given by

λ(q) = w(µ − 〈�(q)|Q̂20|�(q)〉), (4)

and an effective value of λ(q) is allowed to change during the
iterations. The symmetries P̂ e−iπĴz (z simplex) and P̂ e−iπĴy τ̂

(ŜT
y ) [25,26] are imposed in our numerical calculation, where

P̂ is the parity operator, e−iπĴi the rotation operator around the
i axis by an angle π , and τ̂ the time-reversal operator. To keep
the c.m. motion fixed, we impose a quadratic constraint in the
x-axis direction with the Lagrange multiplier

λ′ = αx〈�(q)|x̂|�(q)〉, (5)

and take αx = 1.0 × 10−4 MeV/fm2 in our numerical
calculation.

Having solved the CHF equation (2), one obtains a set of
s.p. energies {εk(q)} as well as the s.p. states {ϕk(q)}. Hereafter,
the particle states are denoted by µ, ν and the hole states by
i, j . The letters k, l are used when no distinction is needed. To
understand how the CHF state undergoes a structure change
depending on the quadrupole deformation, it is desirable to
obtain |�(q + �q)〉 in such a way that it can be regarded as a
smooth function of q. For this aim, we apply the configuration-
dictated CHF method, which is briefly recapitulated below.
Let |�(q)〉 be a known CHF state satisfying the condition
〈�(q)|Q̂20|�(q)〉 = q. To find a new CHF state |�(q + �q)〉
that is supposed to be continuously connected with |�(q)〉, we
exploit the following condition

lim
�q→0

〈ϕi(q)|ϕj (q + �q)〉 = δi,j , (6)

where {ϕi(q)} denotes a set of occupied wave functions
constructing the single Slater determinant |�(q)〉. That is, a
small increment �q is numerically adjusted by the maximum
overlap criterion in Eq. (6) under a given accuracy, so
as to maintain a characteristic property of the CHF state.
In our calculation, �q is determined so as to fulfill the
condition

|〈ϕi(q)|ϕi(q + �q)〉|2 > 0.9. (7)

In this way, the configuration specifying |�(q)〉 is kept
continuously as a function of q. Since the CHF state at q + �q

is dictated by the configuration of the preceding CHF state
at q, this method is called the configuration-dictated CHF
method. It can also be generalized to get the excited HF states
and the continuously connected PESs. Applications of the
configuration-dictated constrained Hartree-Fock-Bogoliubov
(CHFB) method in the level crossing region as well as in the
shape coexistence phenomena, with and without the pairing
effect, have been reported elsewhere [16].

In our numerical calculation, a convergence condition is
given in eV as ∑

k

∣∣ε(n)
k (q) − ε

(n−1)
k (q)

∣∣ � 10, (8)

where ε
(n)
k denotes the s.p. energies in the nth iteration.

III. FRAGILITY OF MEAN FIELD

A. Difficulty of nonconvergence near the level
repulsive region in CHF theory

In our calculation, the s.p. wave functions are expanded
on a three-dimensional harmonic oscillator basis up to the
principal quantum number N0 = 8. The ground state of
66Se is obtained after having optimized triaxial deformation
parameters of the Hermite polynomials. The optimized range
parameters thus obtained include some effects of higher major
shells. Note that no optimization has been done in most HF
and Hartree-Fock-Bogoliubov (HFB) calculations [27–30],
although a larger configuration space is adopted. It is well
known that the optimum parameters change depending on the
number of major shells and become rather stable as the number
increases [24]. To examine the reliability of the optimized
configuration space, the ground state properties of 66Se both
in HF and HFB calculations are listed in Table I, together with
the experimental binding energy [31]. The binding energies in
both calculations reproduce the experimental data well, though
the total binding energy in the HFB is about 1.1 MeV lower
than that in the HF calculation. A comparison between the
HF and HFB calculations in Table I indicates that the nuclear
deformation becomes small (favors the spherical shape) when
one includes the pairing correlation into the mean field. In the
following discussion, the number of major shells used in our
calculation may not have decisive importance.

Starting from the ground state, the quadratic CHF cal-
culation with the configuration-dictated method is carried
out in such small steps that the solutions are considered
to be a continuous function of the deformation. Such a
point-by-point heavy calculation is needed for discussing
the dynamical structure change of the nuclear system. In

TABLE I. The optimized ground-state properties of 66Se. The
binding energy (BE), quadrupole deformation parameter (β2), and
triaxial deformation (γ ) are listed. The experimental BE is from
Ref. [31].

HF HFB Exp.

BE (MeV) 544.502 545.623 547.827
β2 0.241 0.234
γ (degree) 47.256 59.541
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FIG. 1. CHF calculation for 66Se. (a) The calculated quadrupole
moment as a function of input quadrupole moment parameter µ;
(b) binding energy as a function of quadrupole moment q.

numerically obtaining the PES, the same range parameters as
those in the ground state are used to trace an evolution of the
ground state configuration as a function of deformation, which
makes the s.p. level crossing dynamics transparent. Figure 1
shows (a) the quadrupole moment as a function of µ and
(b) the lowest PES for 66Se. One may observe that both the
quadrupole deformation and PES change smoothly, except for
a missing region around q = 150 fm2. When the constrained
quadrupole moment is decreased by a small amount �q from
a critical point at q0 = 177.365 fm2, the CHF iteration meets
a difficulty of nonconvergence no matter how much effort
one makes to get convergence. After the missing region, the
continuously connected PES passing through an excited local
minimum (q ≈ 100 fm2) is obtained.

The nonlinear CHF equation is solved in an iterative way
until the CHF Hamiltonian h(q) and density ρ(q) are diago-
nalized simultaneously such that [h(q), ρ(q)] = 0. In the nu-
merical basis, the s.p. wave function ϕ

(n)
k (q) at the nth iteration

is expressed as ϕ
(n)
αk (q), and ρ(n)(q) and h(n)(q) are given as

ρ
(n)
αβ (q) ≡

∑
i

ϕ
(n−1)
αi (q)ϕ(n−1)

βi

∗
(q),

h
(n)
αβ (q) ≡ tαβ + �

(n)
αβ (q) − λ(n)(q)Qαβ,

�
(n)
αβ (q) ≡

∑
γ δ

v̄αγβδρ
(n)
δγ (q). (9)
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FIG. 2. Diagonal components of (a) proton and (b) neutron
density as a function of number of iterations for a nonconvergent
case with µ = 150 fm2. The single-particle basis where h is diagonal
is used. Occ. and Unocc. stand for occupied and unoccupied orbits,
respectively. (π, α) denotes the parity and signature, and its subscripts
A and A + 1 represent the orbits responsible for the nonconvergent
difficulty.

Here �(q) denotes the HF potential, and

λ(n)(q) ≡ w(µ − 〈�(n−1)(q)|Q̂20|�(n−1)(q)〉), (10)

where |�(n−1)(q)〉 is the Slater determinant constructed by
{ϕ(n−1)

i (q)}.
On a way to convergence, expectation values of one-body

density ρ(n)(q) in a representation of using {ϕ(n)
k (q)}, i.e.,

ρ
(n)
kk (q) ≡

∑
αβ

ϕ
(n)
αk

∗
(q)ρ(n)

αβ (q)ϕ(n)
βk (q), (11)

with respect to the hole and particle states are supposed
to gradually reach 1 and 0, respectively. To explain what
prevents the CHF iterative calculation from convergence,
Fig. 2 depicts the diagonal components of proton and neutron
densities as functions of number of iterations for a case of
nonconvergence with µ = 150 fm2 [see Fig. 1(a)]. In the case
of nonconvergence, the quadrupole deformation parameter µ

is used in place of q. One may observe that the expectation
values of proton density for the unoccupied orbits converge
to 0, while those for occupied orbits to 1. For the case of
neutron density, there appears a similar situation for most
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FIG. 3. Neutron single-particle energies near the Fermi surface.
Occ. and Unocc. stand for occupied and unoccupied orbits, respec-
tively. The symbols are the same as those in Fig. 2.

single-hole and single-particle states, except for two specific
orbits labeled (−,−)A and (−,−)A+1. Here, A denotes the
number of neutron-occupied orbits, and the s.p. states are
specified by the parity and signature quantum numbers (π, α),
since the asymptotic Nilsson quantum numbers are not good
quantum numbers when the reflection symmetry is lost. For
convenience, a subscript A and A + 1 for (π, α) is introduced to
identify the occupied and unoccupied orbits responsible for the
difficulty of nonconvergence. As seen from Fig. 3, these two
specific neutron orbits with opposite quadrupole moments, i.e.,
one is deformation driving and the other is antidriving, lying
just below and above the Fermi surface are interacting. One
may expect that the two specific orbits (−,−)A and (−,−)A+1

play a dominant role in preventing the CHF calculation from
convergence.

To exhibit the crucial effects of two neutron orbits on
the nonconvergence property in the CHF calculation, an
absolute value of off-diagonal CHF Hamiltonian |h̃(n)

A,A+1| and

a difference of diagonal components h̃
(n)
A+1,A+1 − h̃

(n)
A,A for the

case with µ = 150.0 fm2 are shown in Fig. 4 as a function of the
number of iterations. Here, the CHF Hamiltonian is expressed
in a representation where density matrix ρ(n) is diagonal, i.e.,

h̃
(n)
kl (q) ≡

∑
αβ

ϕ
(n−1)
αk

∗
(q)h(n)

αβ (q)ϕ(n−1)
βl (q). (12)

In the CHF theory, it is usual to employ the above representa-
tion where the nth quantities are entirely expressed in terms of
the (n − 1)th s.p. wave function {ϕ(n−1)

αk }.
In a case of convergence, the off-diagonal component

of the CHF Hamiltonian would become smaller and finally
reach 0, as the number of iterations increased. In the present
nonconvergent case, a staggering property appears in both the
diagonal and offdiagonal components. During the iteration,
|h̃(n)

A,A+1| increases first and then starts to oscillate around some
central value. In this case, the off-diagonal component always
remains and never reaches 0, rather than being included into
the mean field. Figure 4 indicates that the two interacting orbits
make it difficult to apply the CHF mean-field theory.
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FIG. 4. The absolute value of off-diagonal component and the
difference of diagonal components of the CHF Hamiltonian between
two specific orbits as a function of number of iterations for the
nonconvergent case with µ = 150.0 fm2. A representation of using
s.p. basis where density ρ(n) is diagonal is used.

B. Microscopic dynamics of nonconvergence

This subsection discusses how the nonconvergent diffi-
culty and the staggering property appear as a result of the
microscopic dynamics. Although the staggering phenomenon
in Fig. 4 has been known as “ping-pong” [8], it should be
noted that the following analytic understanding and underlying
physics are given here for the first time. Namely, we explore
whether one gets a convergent CHF state at q = q0 − �q (a
corresponding deformation parameter µ = µ0 − �µ) when
there exists a convergent CHF state |�(q0)〉 at q = q0 with a
corresponding set of self-consistent s.p. states {εk(q0), ϕk(q0)}.
Since the CHF state |�(q0)〉 is used as an initial trial wave
function to proceed with the iterative calculation at q =
q0 − �q, the following relations hold:

h
(0)
αβ(q0 − �q) = hαβ(q0),

ϕ
(0)
αk (q0 − �q) = ϕαk(q0). (13)

To study dynamical change of the s.p. wave functions
during the iterations, it turns out to be preferable to use a
fixed representation, i.e., the q0 representation of using the
CHF s.p. states {ϕk(q0)}, rather than the usual representation
of using n-dependent s.p. wave functions {ϕ(n−1)

k (q0 − �q)}
as in Eq. (12). The nth Hamiltonian in the q0 representation is
expressed as

h
(n)
kl (q0 − �q) ≡

∑
αβ

ϕ∗
αk(q0)h(n)

αβ (q0 − �q)ϕβl(q0)

= tkl + �
(n)
kl (q0 − �q) − λ(n)(q0 − �q)Qkl

for n �= 0,

h
(0)
kl (q0 − �q) = hkl(q0) for n = 0, (14)

where the matrix elements of kinetic energy, deformation
operator, and the HF potential in the q0 representation are
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defined as

tkl ≡
∑
αβ

ϕ∗
αk(q0)tαβϕβl(q0),

Qkl ≡
∑
αβ

ϕ∗
αk(q0)Qαβϕβl(q0),

�
(n)
kl (q0 − �q) ≡

∑
αβ

ϕ∗
αk(q0)�(n)

αβ (q0 − �q)ϕβl(q0), (15)

and

λ(n)(q0 − �q) = w(µ0 − �µ − 〈�(n−1)(q0 − �q)

× |Q̂20|�(n−1)(q0 − �q)〉), for n �= 0,

λ(0)(q0 − �q) = λ(q0) = w(µ0 − 〈�(q0)|Q̂20|�(q0)〉),
for n = 0. (16)

Making the following analytic understanding of our numer-
ical results transparent and simple, we use the approximate
expression

A−1∑
i=1

ϕαi(q0)ϕ∗
βi(q0) ≈

A−1∑
i=1

ϕ
(n)
αi (q0 − �q)ϕ(n)

βi

∗
(q0 − �q),

(17)
which states that a contribution to the mean field from the
lowest (A − 1) number of hole states is independent of small
deformation change �µ as well as number of iterations n.
It turns out that Eq. (17) is well justified by our numerical
calculation discussed in the previous subsection. Employing
the above simplification, one may explore the nonconvergent
dynamics governing the CHF iterative calculation in terms of
a 2 × 2 truncated CHF Hamiltonian expressed as(

h
(n)
A,A(q0 − �q) h

(n)
A,A+1(q0 − �q)

h
(n)
A+1,A(q0 − �q) h

(n)
A+1,A+1(q0 − �q)

)
. (18)

Although a set of eigenstates {ϕ(n)
k (q0 − �q)} is numerically

obtained by diagonalizing the full CHF Hamiltonian h(n)(q0 −
�q), the characteristic feature of two interacting orbits is
expected to be understood in terms of the truncated 2 × 2
Hamiltonian in Eq. (18) and 2 × 2 unitary matrix U (n) given
by (

ϕ
(n)
A (q0 − �q)

ϕ
(n)
A+1(q0 − �q)

)
= U (n)

(
ϕA(q0)

ϕA+1(q0)

)
,

U (n) =
(

a(n) b(n)

d (n) c(n)

)
. (19)

In accordance with using the q0 representation, the above
unitary transformation allows us to study the iterative process
in terms of a mixing between two fixed states ϕA(q0) and
ϕA+1(q0) irrespective of n. To explore the decisive influence
of the relative phase between two orbits on the nonconvergent
difficulty of the CHF iterative calculation, i.e., on the properties
of the resultant s.p. wave functions obtained after having
diagonalized h

(n)
kl (q0 − �q), we use four interdependent pa-

rameters in U (n) rather than a single independent parameter.
Mixing parameters b(n) and d (n) (b(n)2 = d (n)2

) are a measure

of the degree of mixing between the two specific orbits. In
each diagonalization, the subscripts A and A + 1 are used to
assign the s.p. states in an energy-increasing order satisfying
ε

(n)
A (q0 − �q) < ε

(n)
A+1(q0 − �q).

With the aid of Eq. (19) and the approximate expression in
(17), it is easily shown that the Lagrange multiplier λ(n)(q0 −
�q) in (16) fulfills the simple recurrence relation

λ(n+1)(q0 − �q) = λ(n)(q0 − �q) + �λ(n)(q0 − �q)

for n �= 0, (20)

where

�λ(n)(q0 − �q)

= −2wa(n)b(n)QA,A+1 − wb(n)2{QA+1,A+1 − QA,A}
for n �= 0, (21)

with an initial relation given as

λ(1)(q0 − �q) = w(µ0 − �µ − 〈�(0)(q0 − �q)

× |Q̂20|�(0)(q0 − �q)〉)
= λ(0)(q0 − �q) − w�µ

= λ(q0) − w�µ for n = 0. (22)

In the same way, one may derive the general expression of the
matrix elements of the 2 × 2 truncated CHF Hamiltonian in
Eq. (18) at the (n + 1)th iteration as

h
(n+1)
A,A+1 = h

(1)
A,A+1 + a(n)b(n)

(
v̄A+1AAA+1 + 2wQ2

A,A+1

)
+wb(n)2

QA,A+1(QA+1,A+1 − QA,A),

h
(n+1)
A,A = h

(1)
A,A + 2wa(n)b(n)QA,AQA,A+1

− b(n)2{v̄A+1AAA+1 − wQA,A

× (QA+1,A+1 − QA,A)},
h

(n+1)
A+1,A+1 = h

(1)
A+1,A+1 + 2wa(n)b(n)QA+1,A+1QA,A+1

+ b(n)2{v̄A+1AAA+1 + wQA+1,A+1

× (QA+1,A+1 − QA,A)} for n �= 0, (23)

where the antisymmetrized two-body interaction in the q0

representation is defined as

v̄k1k2k3k4 ≡
∑
αβγ δ

ϕ∗
αk1

(q0)ϕ∗
γ k2

(q0)v̄αγβδϕβk3 (q0)ϕδk4 (q0).

(24)

Here and hereafter, we use a simple notation h(n+1) instead
of h(n+1)(q0 − �q), etc., because we are only discussing the
CHF iterative process at q = q0 − �q. The matrix elements
of truncated Hamiltonian h

(1)
kl are given as

h
(1)
A,A+1 = w�µQA,A+1,

h
(1)
A,A = εA(q0) + w�µQA,A,

h
(1)
A+1,A+1 = εA+1(q0) + w�µQA+1,A+1, (25)

which are easily derived by using the initial condition in
Eq. (13) and initial relations in (14), (16), and (22) for the
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case with n = 0. In deriving Eq. (25), the relation(
h

(0)
A,A h

(0)
A,A+1

h
(0)
A+1,A h

(0)
A+1,A+1

)
=

(
εA(q0) 0

0 εA+1(q0)

)
, (26)

which is satisfied by the preceding CHF solution at q = q0, is
also used.

With the aid of Eq. (23), we get the following relations for
two successive truncated CHF Hamiltonians h(n) and h(n+1):

h
(n+1)
A,A+1 = h

(n)
A,A+1 + {a(n)b(n) − a(n−1)b(n−1)}

× {
v̄A+1AAA+1 + 2wQ2

A,A+1

}
+w

{
b(n)2 − b(n−1)2}

QA,A+1(QA+1,A+1 − QA,A),

h
(n+1)
A,A = h

(n)
A,A + 2w{a(n)b(n) − a(n−1)b(n−1)}QA,AQA,A+1

− {
b(n)2 − b(n−1)2}{v̄A+1AAA+1 − wQA,A

× (QA+1,A+1 − QA,A)},
h

(n+1)
A+1,A+1 = h

(n)
A+1,A+1 + 2w{a(n)b(n) − a(n−1)b(n−1)}

×QA+1,A+1QA,A+1 + {
b(n)2 − b(n−1)2}

×{v̄A+1AAA+1 + wQA+1,A+1

× (QA+1,A+1 − QA,A)}. (27)

In the same way, the off-diagonal component of the difference
between h(n) and h(n+2) is given as

h
(n+2)
A,A+1 = h

(n)
A,A+1 + {a(n+1)b(n+1) − a(n−1)b(n−1)}

×{
v̄A+1AAA+1 + 2wQ2

A,A+1

}
+w

{
b(n+1)2 − b(n−1)2}

QA,A+1(QA+1,A+1 − QA,A).

(28)

Since the second term in the right-hand side of Eq. (27)
contains a factor a(n)b(n) whereas the third term has a factor
b(n)2, the former term is retained in the following discussions
because parameter b(n) is small.

Numerical values of h
(n)
A,A − h

(n)
A+1,A+1 and h

(n)
A,A+1 are

shown in Fig. 5(a) for the nonconvergent case with µ =
150 fm2. From this figure, one may observe that both com-
ponents exhibit a staggering property around some averaged
values. Notice also that the off-diagonal component h

(n)
A,A+1

changes its sign from iteration to iteration, whereas
h

(n)
AA − h

(n)
A+1A+1 is always negative. The latter is easily

understood because a couple of states ϕ
(n)
A (q − �q) and

ϕ
(n)
A+1(q − �q) are defined so as to satisfy the relation ε

(n)
A (q0 −

�q) < ε
(n)
A+1(q0 − �q). According to the perturbation theory

of the 2 × 2 Hamiltonian, the sign of a(n)b(n) for character-
izing the lower state ϕ

(n)
A (q0 − �q) is the same as that of

(h(n)
A,A+1)/(h(n)

A,A − h
(n)
A+1,A+1). In Fig. 5(b), the numerical value

of a(n)b(n) is shown as a function of the number of iterations.
By comparing Fig. 5(a) with 5(b), our numerical results are
well understood in terms of the above simplified analytic
expression in the two-dimensional truncated space and the
perturbation theory for the 2 × 2 Hamiltonian. Since the sign
of a(n)b(n) changes from iteration to iteration, it is clear that the
higher state ϕ

(n)
A+1(q0 − �q) and the lower state ϕ

(n)
A (q0 − �q)

interchange their properties from iteration to iteration.
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FIG. 5. For the nonconvergent case with µ = 150 fm2, (a) the
off-diagonal Hamiltonian and difference of diagonal components as
a function of number of iterations; (b) the relative phase a(n)b(n) of
wave function for the orbit ϕ

(n)
A .

With the aid of coefficient a(n)b(n) − a(n−1)b(n−1) in the
second term of the right-hand side of Eq. (27) and from
the above discussion on different signs between a(n)b(n) and
a(n−1)b(n−1), one may understand why h

(n+1)
A,A+1 becomes large.

Since there is a coefficient a(n+1)b(n+1) − a(n−1)b(n−1) in the
second term of the right-hand side of Eq. (28), and since
the signs of a(n+1)b(n+1) and a(n−1)b(n−1) are the same, it is
easily recognized why the ph component at (n + 2)th iteration
becomes small. These equations clearly state that the quantum
fluctuations coming from the two-body residual interaction
and quadrupole deformation become small in one iteration and
become large in the next, forming the staggering property. In
other words, the major part of the two-body interaction could
not be approximated successfully by the averaged one-body
potential when the sign of a(n)b(n) changes from one iteration to
the next. Physically one may understand the above situation as
follows: two mean fields, one characterized by occupied ϕA(q0)
and the other by occupied ϕA+1(q0), interact too strongly by the
two-body residual interaction to be approximated by a single
mean field.

In contrast with the nonconvergent case, the same quantities
for convergent CHF calculation at µ = 180 fm2 are shown in
Fig. 6. One may observe that the sign of the off-diagonal

024315-6



APPLICABILITY OF SELF-CONSISTENT MEAN-FIELD . . . PHYSICAL REVIEW C 71, 024315 (2005)

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0 20 40 60 80 100

C
H

F
 H

am
ilt

on
ia

n

Number of Iterations

(a) Hamiltonian

hAA+1
hAA−hA+1A+1

-0.16

-0.12

-0.08

-0.04

0.00

0 20 40 60 80 100

R
el

at
iv

e 
ph

as
e 

ab

Number of Iterations

(b) Wave function

FIG. 6. For the convergent case with µ = 180 fm2. Notation is
the same as Fig. 5.

Hamiltonian stays the same during the iteration, and the
sign of a(n)b(n) is always the same during the iteration until
convergence is achieved. Since the sign of a(n)b(n) does not
change during the iterations in the case of convergence,
the quantum fluctuations characterized by the coefficient
a(n)b(n) − a(n−1)b(n−1) in Eq. (27) and by a(n+1)b(n+1) −
a(n−1)b(n−1) in Eq. (28) become small as n increases. That
is, the quantum fluctuations are successfully incorporated into
the mean field during the iterations. The above analytic and
numerical results indicate clearly that the sign of a(n)b(n)

between two successive iterations is important in deter-
mining whether the self-consistent CHF theory would be
applicable.

IV. ANALYTIC CONDITIONS ON APPLICABILITY OF
MEAN-FIELD THEORY

Since the analytic formulas within the two-dimensional
subspace discussed in the previous section nicely explain
the characteristic feature of the numerical iterative process
of the CHF calculation near the level repulsive region, our
next task is to determine what condition is capable of
estimating the existence of the mean field. The previous
section clarified that the CHF theory breaks down when the
off-diagonal Hamiltonian h

(n)
A,A+1 changes its sign, whereas it is

successfully applied when the sign is kept the same during the
iteration. Namely, it is shown that the ratio of two successive
off-diagonal components h

(n+1)
A,A+1/h

(n)
A,A+1 (especially the first

relation, h(2)
A,A+1/h

(1)
A,A+1) plays a decisive role in the existence

of the mean field. That is, a self-consistent mean field exists
when {

h
(2)
A,A+1

h
(1)
A,A+1

}
� 0. (29)

From the discussion in the previous section, it is easily shown
that the sign of h

(n+1)
A,A+1/h

(n)
A,A+1 is always positive when the

condition in Eq. (29) is satisfied, while it changes its sign
when the condition is not satisfied.

In this section, we focus on discussing what is meant by
the condition (29). The ratio of two successive off-diagonal
components satisfies the relation

sgn

{
h

(n+1)
A,A+1

h
(n)
A,A+1

}
= sgn

{
h

(n+1)
A,A+1

/
a(n)b(n)

h
(n)
A,A+1

/
a(n)b(n)

}

= −sgn
{
h

(n+1)
A,A+1

/
a(n)b(n)

}
, (30)

because the signs of h
(n)
A,A+1 and a(n)b(n) are always opposite,

which is derived from our choice of states satisfying ε
(n)
A (q0 −

�q) < ε
(n)
A+1(q0 − �q) and from the discussion based on

the perturbation theory and is justified by our numerical
calculation. With the aid of Eq. (23), the last quantity in (30)
is expressed as

h
(n+1)
A,A+1

a(n)b(n)
= h

(1)
A,A+1 + a(n)b(n)

(
v̄A+1AAA+1 + 2wQ2

A,A+1

) + wb(n)2
QA,A+1(QA+1,A+1 − QA,A)

a(n)b(n)
. (31)

Since an applicability of the mean field is supposed to be
decided by a competition between the quantum fluctuation
(ph component of h(1)) and the mean-field part (pp and hh
components of h(1)), let us find their relation by using the
relation

U (1)h(1)U (1)† =
(

ε
(1)
A 0

0 ε
(1)
A+1

)
, (32)

which should approximately hold within the truncated space
under the assumption in Eq. (17). From an off-diagonal
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component of the above relation, we obtain

h
(1)
A+1,A+1 − h

(1)
A,A =

{
c(1)

d (1)
+ b(1)

a(1)

}
h

(1)
A,A+1. (33)

Inserting Eq. (25) for (33) produces the relation

h
(1)
A,A+1 = {εA+1(q0) − εA(q0) + w�µ(QA+1,A+1 − QA,A)}

×
{

c(1)

d (1)
+ b(1)

a(1)

}−1

. (34)

With the aid of (34), a quantity in (31) for the case with n = 1
is expressed as

h
(2)
A,A+1

a(1)b(1)
= 1

b(1)2 − a(1)2

×



εA+1(q0) − εA(q0)
−(

v̄A+1AAA+1 + 2wQ2
A,A+1

) − w�µ

× (QA,A − QA+1,A+1) − O(b)


,

(35)

where the higher-order term containing a small parameter b(1)

is written as

O(b) = −2b(1)2(
v̄A+1AAA+1 + 2wQ2

A,A+1

)
+ wb(1)

a(1)
(1 − 2b(1)2

)QA,A+1(QA+1,A+1 − QA,A).

(36)

Since the factor (b(1)2 − a(1)2
) is always negative [because the

relation |a(1)| � |b(1)| holds in the unitary transformation in
(19)], one finally obtains the relation

sgn

{
h

(2)
A,A+1

h
(1)
A,A+1

}
= −sgn

{
h

(2)
A,A+1

a(1)b(1)

}

= sgn
{
εA+1(q0) − εA(q0) − (

v̄A+1AAA+1

+ 2wQ2
A,A+1

) − w�µ(QA,A − QA+1,A+1)

−O(b)
}
. (37)

With the aid of this relation, our condition (29) is expressed as

εA+1(q0) − εA(q0) � v̄A+1AAA+1 + 2wQ2
A,A+1

+w�µ(QA,A − QA+1,A+1) + O(b),

(38)

which guarantees an existence of the self-consistent mean field,
whereas the opposite condition,

εA+1(q0) − εA(q0) < v̄A+1AAA+1 + 2wQ2
A,A+1

+w�µ(QA,A − QA+1,A+1) + O(b),

(39)

states a breakdown of the mean field. Note that the sign of the
two-body interaction is important in Eqs. (38) and (39), which
is in mark contrast with the well-known stability condition
of the mean field. Furthermore, the present condition on a
breakdown of the mean field has a single-particle character,
whereas the stability condition of the mean field has a
collective character.
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FIG. 7. (a) Energy difference between two specific orbits and
quantum fluctuations as a function of quadrupole moment; (b)
s.p. energy difference, two-body residual interaction, and the sum
of deformation fluctuation and quadrupole deformation.

The physical meaning of the condition in Eq. (38) is clear:
a two-body correlation between nucleons can be successfully
incorporated into the mean field as much as possible when
the energy difference between two interacting orbits is not
smaller than the quantum fluctuations coming from the two-
body residual interaction and quadrupole deformation.

Figure 7(a) gives the s.p. energy difference between two
specific orbits ϕA(q) and ϕA+1(q), and the quantum fluc-
tuations which are the sum of v̄A+1AAA+1, 2wQ2

A,A+1, and
w�µ(QA,A − QA+1,A+1). In this figure and in Fig. 8, the q0

representation is used for any value of q in the convergent
region, and �q (�µ) is numerically determined by the
configuration-dictated method. In the nonconvergent region,
the q0 representation is fixed at the critical point and �µ is
treated as a changeable parameter. Effects coming from the
higher-order term O(b) are neglected. Our numerical results
clearly show how nicely the analytic condition in Eq. (38)
holds. Near the critical point, one may observe that the
difference of s.p. energies is almost equal to the quantum fluc-
tuations, i.e., εA+1(q) − εA(q) ≈ v̄A+1AAA+1 + 2wQ2

A,A+1 +
w�µ(QA,A − QA+1,A+1). Figure 7(b) shows the difference of
s.p. energies εA+1(q) − εA(q), the two-body residual interac-
tion v̄A+1AAA+1, and the effects from quadrupole deformation
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FIG. 8. (a) Ratio of off-diagonal components between the first
and second iterations for each given µ state. Conv. and nonconv.
stand for the convergent CHF states and nonconvergent region.
(b) Absolute value of off-diagonal quadrupole moment as a function
of quadrupole parameter µ.

2wQ2
A,A+1 + w�µ(QA,A − QA+1,A+1), separately. One may

observe that a competition between one-body potential εA+1 −
εA and the two-body residual interaction v̄A+1AAA+1 indeed
plays a dominant role in determining whether the concept of a
CHF mean field is realized.

Figure 8(a) depicts the ratio h
(2)
A,A+1/h

(1)
A,A+1 as a function

of quadrupole parameter µ (since the average quadrupole
moment q has no meaning in the nonconvergent region). We
see that in the convergent region, the ratio is always positive
except for some exceptional points, where the deformation
fluctuation between two specific orbits QA,A+1 is almost zero
as shown in Fig. 8(b). Near the critical point, the ratio is going
to reach zero. When one slightly decreases the deformation
�µ from the critical point, the ratio becomes negative where
the CHF calculation meets a difficulty of nonconvergence.
After the nonconvergent region, the ratio becomes positive,
and the convergent state appears again. From these numerical
calculations, it is clear that our condition in Eq. (29) actually
works well in evaluating whether the concept of the mean field
is realized or not in the many-fermion system.

We should now comment on the exceptional points dis-
cussed above. Since the ph component of the quadrupole
operator |QA,A+1| is almost zero, which just corresponds

to a full alignment state created by the angular momentum
constraint in the cranked HF theory, a new deformed state
cannot be generated by the quadrupole operator within the
truncated two-dimensional subspace. What actually happens
at these exceptional points is attributed to the importance of
the other part of the s.p. space outside the two-dimensional
subspace spanned by ϕA(q0) and ϕA+1(q0). Since our simple
analytic understanding that uses the 2 × 2 Hamilton matrix
does not work in this specific situation, the appearance
of exceptional points is outside the scope of our present
discussion.

V. SUMMARY

The present work does not include the pairing correlation.
Including the pairing correlation might make the situation
so far discussed more complicated because of the many
dynamical competitions that exist not only between the ph-type
two-body residual interaction and the HF potential, but also
between the pp-type two-body residual interaction and the
pairing potential; their cross effects also must be considered.
Moreover, the two mean fields characterized by different
configurations are mixed up by the pairing correlation, and the
uv factor introduced by the BCS theory obscures the concept
of the configuration. Although some numerical evidence of
an applicability of the CHFB theory near the level crossing
region has been discussed in Ref. [16], the role of the pairing
correlation in the level crossing dynamics will be discussed in
a separated paper.

In summary, the nonconvergent difficulty in the level
repulsive region is discussed analytically in the self-consistent
mean-field theory. It turns out that the CHF mean field
breaks down when the quantum fluctuations coming from
two-body residual interaction and quadrupole deformation
become larger than an energy difference between two avoided
crossing orbits. Deriving the analytic condition, we make it
clear that the competition between one-body potential and
quantum fluctuations mainly coming from two-body residual
interaction plays an important role whether the self-consistent
CHF mean field is realized or not. However, the breakdown
of the CHF mean field at a certain range of the quadrupole
deformation q does not mean that introducing some quantum
mechanical treatment is necessary, because the constrained
operator Q̂ in the CHF theory is put in by hand. That
is, the system does not like to be elongated or contracted
along a given direction of quadrupole deformation any more,
but it likes to develop toward a direction chosen by itself.
Further microscopic investigation is needed to answer the very
interesting conclusion in Ref. [9] by introducing dynamical
constrained operators based on the self-consistent collective
coordinate (SCC) method [32,33], because a diabolic point
related to the level crossing indicates the existence of a missing
degree of freedom.
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