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Statistical properties and broken symmetries within the shell model
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Shell-model calculations in the s-d shell have been utilized to examine how the statistical behavior of
eigenvalues and reduced transition probabilities are affected by broken isospin symmetry. Calculations have been
performed for the nuclides 22Na, 26Al, and 34Cl and have been compared to existing experimental data for 26Al
and 30P. The eigenvalue statistics depend on the magnitude of the Coulomb matrix element, and this is reflected
in a sensitivity to the choice of single-particle energies. The distributions of reduced transition probabilities are
not universal but depend upon the particular transition mode chosen; this behavior is qualitatively similar to
experimental results.
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I. INTRODUCTION

Random-matrix theory (RMT) has been used to describe
certain statistical properties of nuclear levels since the early
work of Wigner [1] almost 50 years ago. Significant develop-
ments in the early years included discussion of reduced width
distributions by Porter and Thomas [2], the extension to re-
duced width amplitude distributions by Krieger and Porter [3],
and the exploration of eigenvalue statistics in a series of papers
by Dyson and Mehta [4–9]. A monograph summarizing the
status of RMT at the time was published by Mehta in 1967 [10].

Ensuing years provided not only the additional development
of the theory but also the acquisition of high quality data
that provided some of the first good experimental tests of
random-matrix theory. The Gaussian orthogonal ensemble
(GOE) version of RMT was utilized to describe statistical
properties of neutron resonances by the Columbia group
(e.g., [11,12]) and proton resonances by the TUNL group
(e.g., [13,14]). The status of RMT in the early 1980s was
summarized in a review by Brody et al. [15].

Interest in RMT showed a resurgence after Bohigas,
Giannoni, and Schmit suggested in 1984 a connection between
RMT and chaos [16]. Analysis of numerous theoretical
systems was consistent with this conjecture and suggested
that RMT could be a valuable tool for studying chaos and
regularity in quantum systems. A second, expanded edition of
Mehta’s monograph was published [17]. Although it had long
been realized that RMT should apply to systems other than
just nuclear ones (see, e.g., [18]), interest in applying random-
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matrix theory to non-nuclear systems expanded greatly once a
connection with chaos was established. A new, comprehensive
review of random-matrix theory was published by Guhr,
Müller-Groeling, and Weidenmüller in 1998 [19].

Comparison of RMT with experimental data requires
knowledge of the symmetries of the system, since the pre-
dictions of RMT in their simplest forms apply only to a set
of levels which share the same symmetries. This aspect of
random-matrix theory is one of the primary reasons why there
are relatively few experimental tests of RMT. This is especially
true in nuclear physics. Such tests require data of exceptional
quality: the set of levels must be both complete (few or no
missing levels) and pure (few or no spurious levels due to
mistakenly identifying a level or to incorrect quantum number
assignments to a true level). Failure to meet this requirement
biases the data so strongly that eigenvalue statistics for such
data convey little if any information (the situation is not as
severe for transition statistics).

Despite these difficulties, in recent years there has been
significant progress, both theoretical and experimental, in
moving beyond systems where all quantum numbers are good
to understand how broken symmetries affect eigenvalue and
transition statistics. In this paper, we utilize the nuclear shell
model to examine how both eigenvalue and transition statistics
are affected by breaking of isospin symmetry in the s-d shell.
We review in Sec. II some of the previous work dealing with
broken symmetries, and we present details of the specific shell-
model calculations analyzed here. Section III discusses the
statistics used and methods of analysis. Eigenvalue statistics
of shell-model calculations for the nuclides 22Na, 26Al, and
34Cl are discussed in Sec. IV (the work on 26Al has already
been published [20]), and transition statistics for those same
nuclides are presented in Sec. V. The results are summarized
in Sec. VI.
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II. BACKGROUND

A. Broken symmetries

General discussion of how a broken symmetry would affect
eigenvalue statistics dates back to Dyson in 1962 [7], and it
was again discussed in detail by Pandey in 1981 [21]. Their
findings can be summarized by Pandey’s statement that “even
a small breaking of a fundamental or model symmetry is
shown to yield fluctuation patterns which would be found in
the complete absence of the symmetry.”

The first experimental data suitable for testing these ideas
were from 26Al. Careful study of the 25Mg(p, γ ) reaction
by Endt and collaborators [22,23] had been combined with
previous measurements on the 26Al system to establish a
detailed level scheme; comparison with shell-model calcu-
lations [24] suggested that the positive-parity levels were pure
and complete from the ground state up to Ex ≈ 8 MeV. This
provided the first time in a nuclear system that data were
considered pure and complete over such a large energy range.
Analysis of eigenvalue statistics [25,26] showed behavior that
was attributed to isospin symmetry breaking. A subsequent
theoretical study by Guhr and Weidenmüller [27] demon-
strated that this interpretation was consistent with the 26Al data.
Hussein and Pato [28] obtained similar results. Subsequently,
measurements were performed to establish a complete level
scheme in a second nuclide, 30P [29], and these data showed
very similar behavior for the eigenvalue statistics [30].

Additional experiments in “analog” systems—classical
systems that mimic quantum systems in that they have energy
eigenvalues—have allowed experimentalists to study how
the eigenvalue statistics change as the amount of symmetry
breaking is varied. High-statistics measurements of acoustic
resonances in quartz blocks [31] and of microwave resonances
in superconducting cavities [32] are consistent with RMT
predictions.

Transition statistics have also played an important role in
our understanding of statistical properties. For example, width
distributions have been utilized for many years to estimate the
number of missing levels in the determination of level densities
near the neutron separation energy. In this area, however, the
understanding of how a broken symmetry affects the statistics
has trailed that of eigenvalue statistics. When a system’s
symmetries are all good ones, its reduced widths are expected
to follow a Porter-Thomas distribution [2]—a χ2 distribution
with one degree of freedom. However, the distribution of
reduced transition probabilities in 26Al appears to show a
deviation from the Porter-Thomas distribution [33]. While
the distribution is certainly distorted somewhat by the fact
that the smallest transitions are not observed experimentally,
this effect did not appear to explain the deviation. Again the
suggestion was that this deviation was a consequence of
the broken isospin symmetry. At the time there was no
theoretical guidance as to how this distribution was affected
by a broken symmetry. Soon thereafter, two independent
studies by Barbosa, Guhr, and Harney [34] and by Hussein
and Pato [35] showed that symmetry breaking could affect
the reduced transition probability distributions in a manner at
least qualitatively consistent with the 26Al data. A second set
of experimental data for 30P also showed similar behavior [30].

A recent analog measurement of two coupled superconducting
microwave cavities determined the distribution of the product
of partial widths [36], and it was found that the experimental
data deviate from the K0 distribution (the product of two
Porter-Thomas distributions).

B. Shell model

To explore the question of how a broken symmetry
affects transition strength distributions in a manner that
avoids completely the issue of missing transitions, we have
utilized the nuclear shell-model code OXBASH [37] to perform
calculations for the s-d shell nuclides 22Na, 26Al, and 34Cl.
Nuclides in the s-d shell were chosen because the available
experimental data, for 26Al and 30P, are in that mass region.
Calculations were performed both for an isospin-conserving
(IC) Hamiltonian and for a Hamiltonian which did not
conserve isospin (hereafter labeled INC); the INC calculations
utilized the method of Ormand and Brown [38]. For 26Al,
two different sets of single-particle energies were utilized with
the INC Hamiltonian—one set based on the A = 39 system,
labeled INCA, and the other based on the A = 17 system,
labeled INCB .

The calculation is carried out in the proton-neutron for-
malism with the two-body interaction from Ref. [38]. The
two-body part of the interaction is obtained with the USD
Hamiltonian for the isospin-conserving part plus (a) the
Coulomb interaction between two protons, (b) a charge-
dependent strong interaction between protons and neutrons,
and (c) a small charge-symmetry breaking interaction. The
single-particle part of the Hamiltonian was taken either from
the spectra of 39Ca-39K (INCA) or from the spectra of 17F-17O
(INCB). The 400 keV shift of the s1/2 state in 17F relative to
17O is understood as a Thomas-Ehrman shift of the loosely
bound s1/2 single-particle state outside of an 16O closed
shell. The calculation of the Thomas-Ehrman shift requires
the use of a Woods-Saxon potential (with the Coulomb
interaction for protons) with the neutron single-particle energy
constrained to the experimental value in 17O. Our application
of a constant Thomas-Ehrman shift to all of the many-body
states is an approximation. A better calculation would require
an expansion of the n-particle wave functions in terms of
the parentage to the complete set of (n − 1)-particle wave
functions with an analysis of the associated spectroscopic
factors and separation energies for the 1s1/2 orbit. This is
beyond the scope of the present paper, but it should be
considered in future analyses.

An analysis of level statistics for 26Al has already been
published [20] and suggests that experimental data are better
described by INCB .

Because we were interested in comparisons with experi-
mental data for 26Al and 30P, our analysis has focused on states
with spins in the range 0−5. The lowest 30 positive-parity
eigenvalues for each spin were determined; the energies of
the 30th eigenvalues for each spin set were compared, and
the one with the lowest energy was identified. All energy
eigenvalues with energies less than or equal to this state were
then considered for further analysis; this ensured that we had a
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TABLE I. Summary of shell-model calculations in 22Na, 26Al,
and 34Cl.

Nuclide Sp (Exp.) Hamiltoniana Emax Number
(MeV) (MeV) of levels

22Na 6.739 IC 11.279 121
INCA 11.222 121

26Al 6.307 IC 9.107 132
INCA 9.056 132
INCB 8.961 133

34Cl 5.143 IC 10.076 123
INCA 10.123 123

aINCA refers to A = 39 single-particle energies; INCB refers to
A = 17 single-particle energies.

complete set of positive-parity eigenvalues for the spin range
in question. Information about each calculation is summarized
in Table I.

In this energy range for these particular nuclides, all states
in the IC calculations have isospin values of either T = 0 or
T = 1. In the INC calculations, each state’s wave function
contains a mixture of T = 0 and T = 1 components. The
isospin mixing comes from the j dependence of the isovector
single-particle energies and the J dependence of the isovector
and isotensor two-body matrix elements. If these isovector
and isotensor matrix elements are constant (all the same
for each kind) there is a constant Coulomb displacement
energy and no isospin mixing. The INC interaction is based
upon the Coulomb contribution calculated in an oscillator
basis plus an INC strong interaction with strengths obtained
from the experimental Coulomb displacement energies. For
INCA, the isospin mixing is dominated by the J dependence of
the two-body INC matrix elements. However, the j dependence
of the single-particle energies in INCB is much larger than that
of INCA due to the 400 keV Thomas-Ehrman shift of the s1/2

orbit in A = 17 relative to the d5/2 orbit. This results in isospin
mixing matrix elements for 26Al which are about four times
larger with INCB compared to INCA.

For the INC calculations, states are classified according to
their dominant isospin. The dominant isospin is determined by
calculating the overlaps of each INC wave function with the
IC wave functions for the same spin. The state is then assigned

T = 0 or T = 1 according to which isospin component is
larger. The majority of states remain dominated by a single
isospin; this is not surprising since the average level spacings
at the highest energies for states of a single J are ≈20 times
the rms interaction matrix element for INCA and ≈4 times the
rms matrix element for INCB .

Reduced transition probabilities were calculated for each
possible M1 and E2 transition among the complete set of
states. The transition operators were the same in the IC and
INC calculations; in the INC case, the isospin mixing occurs
because of mixing in the wave functions. Unlike the case
of experimental data, the calculations determine B(M1) and
B(E2) for even the weakest transitions and therefore provide
a very large and complete data set. For the IC calculations,
each transition is identified as isoscalar (IS) if the initial and
final states have the same isospin and as isovector (IV) if the
initial and final states have different isospins. For the INC
calculations, the identification of a transition as isoscalar or
isovector is based on the dominant isospins (as defined above)
of the initial and final states. A summary of the number of
transitions and the average B(M1) and B(E2) values are given
in Table II.

III. ANALYSIS METHODS

In this section, we summarize the methods of analysis
applied to these calculations.

A. Eigenvalues

As discussed above, the simplest eigenvalue statistics of
random-matrix theory apply to a group of levels which
share the same symmetries. In nuclear physics, applicable
symmetries are generally the total angular momentum J and
parity π ; other quantum numbers such as isospin T or the K
quantum number may also be relevant in some situations. In
the s-d shell at low energies, T is a useful quantum number
even though it is slightly broken. Therefore, we classify the
states according to their values of Jπ and T .

We utilize the term sequence to mean a subset of the levels
which share one or more quantum numbers; a pure sequence
will be a sequence in which the levels have all of their quantum
numbers the same. Therefore, for these data, a pure sequence

TABLE II. Summary of shell-model transition calculations in 22Na, 26Al, and 34Cl. N is the number of
transitions in the sequence.

Nuclide Hamiltonian M1IS M1IV E2IS E2IV

N B(M1)avg N B(M1)avg N B(E2)avg N B(E2)avg

(W.u.) (W.u.) (W.u.) (W.u.)

22Na IC 1971 0.00037 1794 0.18 2925 2.6 2532 0.11
22Na INCA 1970 0.015 1793 0.16 2924 2.3 2531 0.41
26Al IC 2464 0.00027 1918 0.11 3653 2.9 2696 0.073
26Al INCA 2464 0.0032 1919 0.11 3654 2.8 2697 0.19
26Al INCB 2561 0.013 1900 0.096 3756 2.5 2708 0.53
34Cl IC 2023 0.00041 1919 0.072 2930 2.4 2654 0.13
34Cl INCA 2023 0.0047 1919 0.068 2930 2.2 2654 0.28
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consists of a group of levels that share the same Jπ and T

values. We compare the behavior of the pure sequences to that
of mixed sequences identified by their Jπ values only.

We utilize two common eigenvalue statistics, the nearest-
neighbor spacing distribution (NNSD) first described by
Wigner [1] and the �3 statistic introduced by Dyson and Mehta
[8]. The NNSD emphasizes short-range correlations, whereas
�3 reflects long-range correlations (“spectral rigidity”) in the
eigenvalue spectrum. For a pure sequence of eigenvalues,
the GOE prediction for the NNSD is essentially the Wigner
distribution,

P (x) = πx

2
e−πx2/4, (1)

where x ≡ S/D; S is a nearest-neighbor spacing, and D is the
average spacing. On the other hand, a group of levels with
infinitely many pure sequences included in it would show an
NNSD that followed a Poisson distribution:

P (x) = e−x. (2)

An interpolation formula between these two extremes has been
defined by Brody [39] as

P (x; ω) = α (ω + 1) xωe−αxω+1

α =
[
�

(
ω + 2

ω + 1

)]ω+1

, (3)

where ω = 1 corresponds to the GOE distribution and ω = 0
corresponds to the Poisson distribution. While no physical
meaning has been attached to the parameter ω, it has become
the common way of characterizing such distributions. When
all quantum numbers represent conserved quantities, sets of
eigenvalues which contain a finite number of pure sequences
(but more than one) are expected to show NNSD’s between the
GOE and Poisson distributions; the exact distribution depends
on the number of pure sequences and the relative sizes of those
sequences.

In addition to the short-range correlations among the
eigenvalues, the GOE also predicts long-range correlations.
The Dyson-Mehta �3 statistic is commonly used to study
these long-range effects. This statistic is defined as

�3(L) = min
A,B

1

Emax − Emin

∫ Emax

Emin

[N (E) − AE − B]2dE.

(4)

Here, L is the number of average spacings in the energy interval
[Emin, Emax], and N (E) is the number of levels with energies
less than or equal to E. The �3 statistic is a measure of the
deviation of N (E) from the best straight-line fit.

The long-range order predicted by random-matrix theory
manifests itself in �3 as a logarithmic behavior. For GOE
statistics, the expected value for large L approaches

�3GOE (L) ≈ 1

π2
[ln L − 0.0687] . (5)

Poisson statistics, on the other hand, produce an expected value
of L/15. Once again, an interpolation formula between GOE
and Poisson behavior is available. Seligman and Verbaarschot
[40] have shown semiclassically that if phase space is divided

into a chaotic region with fraction µ of the phase space and
integrable regions with total fraction 1 − µ, then

�3(L) = �3GOE (µL) + �3Poisson ([1 − µ]L). (6)

The value µ = 1 corresponds to a GOE description, while
µ = 0 corresponds to Poisson statistics. As was true with the
NNSD, the effect of impure level sequences when all quantum
numbers are good is to move the �3 distribution toward the
Poisson result.

In both cases, before comparing the eigenvalue statistics
for a data set with the theoretical expectations, it is necessary
to account for the fact that the average spacing decreases as a
function of energy. The method we utilize to do that has been
outlined in detail in Ref. [41].

We note that a previous study of these two statistics with the
shell model was performed by Ormand and Broglia [42]. That
work included isospin breaking and showed generally good
agreement with the GOE predictions. However, it included
levels at significantly higher energies than those in this paper
and, therefore, represents behavior in a different range of
energies than the current work.

B. Transitions

To study the transitions, we utilized the distributions of re-
duced transition probabilities. We define a transition sequence
as a set of reduced transition probabilities which have the same
electric or magnetic character, the same multipolarity, and the
same isospin characterization (isoscalar or isovector). Thus,
these calculations have four distinct transition sequences:
M1IS,M1IV, E2IS, and E2IV. Each transition sequence is
analyzed independently.

It has been traditional to express the distributions in terms
of a dimensionless variable by normalizing the B values by
their local average:

y = B/〈B〉. (7)

When all quantum numbers are good, the expectation is that a
single transition sequence will show behavior that follows the
Porter-Thomas distribution:

P (y) = (2πy)−1/2 e−y/2. (8)

However, there are two good reasons to change to a logarithmic
variable z = log10 y. One is that the values of y typically cover
a wide range, and logarithmic variables are convenient in such
situations. The other is that various model studies [43–46] have
suggested that transition strengths in chaotic systems follow a
χ2(ν) distribution with ν = 1 (the Porter-Thomas distribution)
whereas transition strengths in integrable systems follow a
χ2(ν) distribution with ν < 1. When expressed in terms of
the variable z, the χ2 probability density functions have a
maximum at z = 0 for all values of ν; therefore, expressing
results in terms of the variable z allows a simpler comparison
with the entire family of χ2 density functions. In terms of z,
the Porter-Thomas probability density function is

P (z) = ln 10 (z/2π )1/2 e−z/2. (9)
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TABLE III. Spacing distribution and �3 fits in shell-model
calculations, along with experimental values, for 26Al and 30P. For
each set of levels, results are presented for the case when the data are
sorted into sequences identified by J π and T and for the case when
the data are sorted into sequences identified only by J π .

Nuclide Hamiltonian Sequence Nspacings ω µ

identifiers

22Na IC J π ; T 105 1.31 ± 0.16 1.10 ± 0.02
J π 115 0.34+0.10

−0.11 0.75 ± 0.02
INCA J π ; T 105 1.32 ± 0.16 1.09 ± 0.02

J π 115 0.37+0.10
−0.11 0.75 ± 0.02

26Al IC J π ; T 112 0.89 ± 0.13 0.99 ± 0.02
J π 126 0.49 ± 0.10 0.81 ± 0.02

INCA J π ; T 112 0.87 ± 0.13 0.98 ± 0.02
J π 126 0.46 ± 0.10 0.79 ± 0.02

INCB J π ; T 113 0.77 ± 0.12 0.92 ± 0.03
J π 127 0.48 ± 0.10 0.80 ± 0.02

34Cl IC J π ; T 108 1.07 ± 0.15 1.10 ± 0.02
J π 117 0.43 ± 0.11 0.84 ± 0.03

INCA J π ; T 108 1.09 ± 0.15 1.10 ± 0.02
J π 117 0.54 ± 0.11 0.87 ± 0.02

26Al Exp. J π ; T 118 0.51 ± 0.11 0.93 ± 0.04
J π 133 0.47 ± 0.10 0.85 ± 0.02

30P Exp. J π ; T 64 0.47 ± 0.15 0.93 ± 0.04
J π 87 0.39 ± 0.12 0.84 ± 0.06

Following Barbosa et al. [34], we utilize a generalized
entropy to compare the calculations with a theoretical

model:

S = −
∫

p(x) ln
p(x)

P (x)
dx, (10)

where p(x) is the probability density function of the calcula-
tions, and P (x) is the probability density function of the model,
in this case the Porter-Thomas distribution. This quantity will
vanish if and only if p = P , and it will be negative otherwise.
In practice, we histogram the calculations into bins with
centroids xk and widths �xk . The appropriate approximation
is then

S ≈ −
∑

k

p(xk) ln
p(xk)

P (xk)
�xk. (11)

In order to allow for changes in 〈B〉 with energy, we
determine those values locally for each transition. For a
transition from an initial state Ei to a final state Ef , the
corresponding value of 〈B〉 is determined by averaging all
reduced transition probabilities from the appropriate transition
sequence that have their initial and final states within 10 states
of the initial and final states of the transition in question.

IV. EIGENVALUE ANALYSES

As described in Sec. III, nearest-neighbor spacing
distributions can be characterized by the parameter ω, and
the �3 statistic can be characterized by the parameter µ.
Those values are listed in Table III for the various shell-model
calculations as well as for experimental data in 26Al and 30P.

We show the results for nearest-neighbor spacing distribu-
tions for the three 26Al calculations and the 26Al experimental
data in Fig. 1 and for the two 34Cl calculations in Fig. 2. The
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FIG. 1. Nearest-neighbor spacing distributions for shell-model eigenvalues and experimental eigenvalues in 26Al. The labels on each
graph indicate which quantum numbers identify the sequences and which Hamiltonian was used in the calculation. Solid curves show GOE
distributions, and dashed curves show the corresponding Poisson distributions.
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FIG. 2. Nearest-neighbor spacing distributions for shell-model
eigenvalues in 34Cl. The labels on each graph indicate which quantum
numbers identify the sequences and which Hamiltonian was used in
the calculation. Solid curves show GOE distributions, and dashed
curves show the corresponding Poisson distributions.

results for �3 are shown for 26Al in Fig. 3 and for 22Na in
Fig. 4.

Several results are apparent. One is that while the 26Al and
34Cl IC results are in reasonable agreement with the GOE
prediction, both ω and µ are larger than 1 for the 22Na IC
results; these calculations show even more level repulsion in
this nuclide than is predicted by the GOE. It is not clear why
this is so.

Another notable result is that as measured by these two
eigenvalue statistics, there is little difference between the
isospin-conserving calculations and the INCA calculations:
the values of both ω and µ are essentially unchanged. This
suggests that the amount of isospin mixing in this particular
INC calculation is relatively small.

In contrast, the INCB calculations do show differences
from the IC calculations. As explained in Sec. II, the
Coulomb matrix element is significantly larger in INCB

than in INCA (≈24 keV in INCB for 26Al as opposed to
≈6 keV in INCA). This manifests itself as changes of ω

from 0.89 ± 0.13 to 0.77 ± 0.12 and of µ from 0.99 ± 0.02
to 0.92 ± 0.03.

However, the INCB NNSD still shows significant differ-
ences from the experimental data in two ways. One is that
the value of ω for the 26Al experimental data is lower than it
is for the calculation (0.51 ± 0.11 vs. 0.77 ± 0.12), although
the large uncertainties make it difficult to draw a definitive
conclusion. The second is that ignoring T as a quantum number
makes no difference to the value of ω for the experimental data,
whereas ignoring T causes a large drop in values of ω for the
calculation. This large drop in ω is what would be expected
if T were a good quantum number. These results suggest that
isospin is more strongly broken in the experimental data than
in the calculation.

However, this hypothesis is not borne out by estimates
of the Coulomb matrix element. Guhr and Weidenmüller
[27] obtained a value of ≈20 keV in the 26Al experimental
data by examining the behavior of �3 for the experimental
data. The INCB calculations give a Coulomb matrix ele-
ment of ≈24 keV, which is consistent with the Guhr and
Weidenmüller analysis and certainly does not suggest that
there should be less isospin breaking in the calculation. It
is also important to note that the �3 statistic, as measured
by the parameter µ, shows very similar behavior for the two
cases.

It remains a puzzle why the spacing distributions for
the shell model and the experiment differ as much as they
do when �3 for the shell model and experiment appear
to agree. One possible explanation could be that levels in
26Al are missing, or that spins and/or parities have been
misassigned in the data set; those effects are known [41] to
shift spacing distributions in a fashion similar to what has
been observed in 26Al. However, the spin, parity, and isospin
assignments in 26Al represent the combined results of many
different experiments and extensive analyses (see especially
Ref. [24]) and are believed to be of the highest quality.
Such an explanation would also appear inconsistent with
the nearly one-to-one correspondence between experimental
positive-parity states and shell-model states described in
Ref. [24] and the fact that very similar spacing distributions
are also observed in independent data for 30P (also listed in
Table III).

A second explanation could be that for some reason the
shell model does not reproduce the short-range correlations.
This does not seem likely, because the shell model with
isospin conserved produces good agreement with the Wigner
distribution. A third possible explanation is that the experi-
mental value of the Coulomb matrix element may be even
larger than 24 keV. As discussed above, the isospin mixing
in INCB is determined primarily by the Thomas-Ehrman shift
of the s1/2 orbit. In this context, the experimental data would
suggest that the effective Thomas-Ehrman shift for the s1/2

component of the excited states in 26Al is as large or even
larger than the 400 keV observed in A = 17. However, as
we discussed above, a full many-body treatment of this issue
is not available at present. The extraction of the Coulomb
matrix element for these data by Guhr and Weidenmüller
[27] utilized only �3, and a determination of the Coulomb
matrix element directly from the spacing distribution has not
been performed. We note that there is evidence [41] that
�3 values for small sample sizes are much more variable
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FIG. 3. �3 for shell-model eigenvalues and experimental eigenvalues in 26Al. The labels on each graph indicate which quantum numbers
identify the sequences and which Hamiltonian was used in the calculation. Solid curves show GOE distributions, and dashed curves show the
corresponding Poisson distributions.

than spacing distributions; this allows the possibility that the
spacing distribution might be consistent with a larger matrix
element.

V. TRANSITION ANALYSES

The original motivation for this study was the question of
how a broken symmetry affected the distribution of reduced
transition probabilities. In this section, we begin to address
that issue, first by demonstrating that indeed the distributions
are affected in some cases and then by examining whether
the calculated distributions are consistent with available
experimental data.

The distributions for the IC and INCB calculations in 26Al
are illustrated in Fig. 5. Histogram bins have been chosen so
that they would have equal probability if the distribution were
Porter-Thomas.

The M1IS and E2IV transition sequences are noticeably
affected when the isospin is broken, while the M1IV and
E2IS transitions appear to change relatively little. A simple
explanation for this is that the strongly affected transition
sequences are on average much weaker than those that show
little effect [the average values of B(M1) and B(E2) are listed
in Table II]; therefore, even a small admixture of the larger
partner can have a significant effect. Likewise, the larger
transition probabilities show smaller changes when isospin
is broken because a small admixture of an effect that is
already relatively small has little effect. There are several
different ways to quantify these effects. One can compare

the average B(M1) and B(E2) values for all calculations in
Table II: when isospin is broken the average B(M1) value for
isoscalar transitions increases by factors of 10–50 over the
value when isospin is conserved, while the average B(E2)
values for isovector transitions increase by factors of 2–7.
On the other hand, the average B(M1) values for isovector
transitions and B(E2) values for isoscalar transitions decrease,
but by much smaller amounts ranging from 6–14%. One can
also utilize the statistical entropy defined in Eq. (11) as a
relative quantitative measure. Values of this quantity are listed
in Table IV and show that the trends described above for
these 26Al calculations are also present in the 22Na and 34Cl
calculations.

It is interesting that the E2IS distributions appear to
differ from the Porter-Thomas distribution even for the IC
calculations. In fact, a Kolmogorov-Smirnov test [47] suggests
that each of these four IC distributions differs from the Porter-
Thomas distribution with a statistical significance of >98%.
Brown and Bertsch [48] have shown that for shell-model
basis-vector amplitudes to follow a Gaussian distribution
(equivalent to the Porter-Thomas distribution for widths), the
level spacing must be comparable to the off-diagonal matrix
elements, a condition that is not satisfied at the lower energies
of these calculations.

To put these results in perspective, we show experimental
results for 30P in Fig. 6; we choose to show 30P data rather than
26Al data because there is insufficient information on the M1IS

and E2IV transition sequences in 26Al to perform a statistical
analysis.
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Details of the data and its analysis have been given in
Ref. [30]. We note that in each of the four L = 1 sequences,
the experimental distributions lie below the Porter-Thomas
distributions at small values of z (in contrast with the
shell-model calculations); this is especially noticeable in the
cumulative probability plots and is assumed to represent
the experimental difficulties in measuring weak transitions.
The E2 sequences do not show such effects; many of these
B(E2) values were obtained from mixed M1/E2 transitions,
and the combined width allowed the relatively weak part to be
determined as well. Both sets of B(E2) distributions show a
cumulative probability above the Porter-Thomas distribution,
which is consistent with the shell-model calculations, and the
E2IV transitions are farther from the Porter-Thomas, which is
also consistent with the calculations.

Combining the different M1 and E2 experimental transition
sequences for 26Al and 30P reduces some of the statistical limi-
tations and provides a different perspective. The combinations
are shown in Fig. 7.

As expected, the lack of weak transitions is very evident,
but another common feature is the fact that both probability
density functions peak at z ≈ −0.4. While it is true that the
missing weak transitions distort the distribution, the observed
distributions are not consistent with a Porter-Thomas distorted
by missing levels. In fact, they are very similar to the combined
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FIG. 5. (Color) distributions of reduced transition probabilities
for the IC (in red) and INCB (in blue) calculations. The smooth black
curves show the Porter-Thomas distribution.

distributions for the shell-model calculations with broken
isospin, which are shown in Fig. 8.

The probability density function has a maximum at z ≈
−0.5 for each of the four sets of INC calculations. Therefore,
the isospin breaking is very evident in the transition distri-
butions, even for those cases where it had little effect on the
eigenvalue distributions. This is an important result because
(1) it offers further confirmation that the types of distortion
from the Porter-Thomas distribution observed in experimental
data are consistent with being a signature of isospin mixing and
(2) it emphasizes that different statistics have sharply different
sensitivities to a broken symmetry. In this case, the eigenvalues

TABLE IV. Entropy values for different transition sequences. A
more negative value indicates greater disagreement with the Porter-
Thomas distribution.

Nuclide Hamiltonian M1IS M1IV E2IS E2IV

22Na IC −0.35 −0.27 −0.36 −0.29
INCA −0.57 −0.27 −0.30 −0.33

26Al IC −0.32 −0.29 −0.31 −0.33
INCA −0.53 −0.33 −0.31 −0.43
INCB −0.58 −0.36 −0.33 −0.43

34Cl IC −0.30 −0.41 −0.29 −0.29
INCA −0.51 −0.33 −0.27 −0.36
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duced transition probabilities for
30P experimental transition se-
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and eigenvalue statistics for the INCA calculations show no
change from when isospin is conserved, whereas the transition
distributions do show a noticeable effect.

Another important aspect of these results is the fact
that isospin mixing affects the various transition sequences
differently. The effect of symmetry breaking on the eigenvalue
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distribution is a generic effect that can be explained completely
with RMT. The fact that RMT predicts a deviation from
the Porter-Thomas distribution is certainly part of the story.
However, because the shell model shows that the distributions
for different transition sequences are different, then this must
be a dynamical effect that cannot be explained completely by
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a theory such as RMT. Thus, the approach of using a high
statistics “analog” measurement to supplement and confirm
the experimental nuclear results is not appropriate, since the
results of such a measurement must depend to some degree on
the specific dynamics of that system.

VI. CONCLUSION

We have utilized the nuclear shell model to examine how
a broken symmetry—in this case isospin—affects both eigen-
value statistics and reduced transition probability distributions.
For three nuclides in the s-d shell—22Na, 26Al, and 34Cl—
calculations have been performed with both conserved isospin
and broken isospin; two different isospin-nonconserving cal-
culations were performed for 26Al. The analyses utilized ≈100
eigenvalues with spins 0−5 and B(M1) and B(E2) values
connecting those states in order to allow comparisons with
available experimental data for 26Al and 30P.

For two eigenvalue statistics, the nearest-neighbor spacing
distribution and the �3 statistic, the INC calculations utilizing
A = 39 single-particle energies show little difference from
the calculations with isospin conserved. On the other hand,
these eigenvalue statistics for INC calculations in 26Al utilizing
A = 17 single-particle energies do show differences from
the IC case. The Coulomb matrix element is approximately
four times larger in this second case, and our conclusion is
that it is now large enough to affect the eigenvalue statistics.
For this particular case, �3 is very similar to that obtained for
experimental data, while the NNSD for the shell model still
shows some notable differences from the experimental data.

The reduced transition probability distributions also show
effects of the broken isospin but in significantly different

ways. The effects here depend on which transition sequence
is under consideration, as the M1IS and E2IV sequences are
noticeably affected, whereas the M1IV and E2IS sequences
are not. The simplest explanation for this is that the transitions
that are weaker on average are more strongly affected by the
admixtures in the wave functions. The results are qualitatively
similar to observations in the experimental data. We find
that in contrast to the eigenvalue statistics, both calculations
with broken isospin show changes compared to the IC case,
although those changes are more significant for the calculation
with the larger matrix element.

The fact that transition distributions are affected for all INC
calculations emphasizes that the sensitivity of this statistic to
the broken symmetry is much higher in this case than that of the
eigenvalue statistics. However, that higher sensitivity appears
to be due to the dynamics of this particular situation—the
relative strengths of isovector and isoscalar transitions—
and is not necessarily a general behavior. The fact that
transition distributions require information on dynamics and
are not generic, as are the eigenvalue statistics, may limit the
effectiveness of “analog” experiments to serve as surrogates
for other systems and makes very difficult the development of
a general theory to describe such distributions.
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