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In the independent-particle model, the nuclear level density is determined from the neutron and proton single-
particle level densities. The single-particle level density for the positive-energy continuum levels is important at
high excitation energies for stable nuclei and at all excitation energies for nuclei near the drip lines. This single-
particle level density is subdivided into compound-nucleus and gas components. Two methods are considered
for this subdivision: In the subtraction method, the single-particle level density is determined from the scattering
phase shifts. In the Gamov method, only the narrow Gamov states or resonances are included. The level densities
calculated with these two methods are similar; both can be approximated by the backshifted Fermi-gas expression
with level-density parameters that are dependent on A, but with very little dependence on the neutron or proton
richness of the nucleus. However, a small decrease in the level-density parameter is predicted for some nuclei very
close to the drip lines. The largest difference between the calculations using the two methods is the deformation
dependence of the level density. The Gamov method predicts a very strong peaking of the level density at
sphericity for high excitation energies. This leads to a suppression of deformed configurations and, consequently,
the fission rate predicted by the statistical model is reduced in the Gamov method.
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I. INTRODUCTION

The nuclear level density ρ is an essential ingredient
in calculating the statistical decay of a compound nucleus
(CN) by particle evaporation, γ -ray emission, or fission. The
statistical model has widespread use in nuclear physics and
applied research. In all these areas, knowledge of the level
density is needed at low and high excitation energies, with
small and large compound-nucleus spins, and for the full range
of Z and N from around the β line of stability out toward the
drip lines. For example, the cross sections for neutron capture
on nuclei close to the neutron and proton drip lines are of
interested in r and rp nucleosynthesis calculations [1]. If the
excitation energy in these reactions is sufficient, the statistical
model is used to determined the n and γ decay rates of the
fused system. In such applications, level densities are required
for nuclei with extreme n-p asymmetries. For many of these
nuclei, it will not be possible to measure the level density
even with proposed radioactive beam facilities. Clearly a good
understanding of the dependence of the level density on the n-p
asymmetry is required to extrapolate to these systems. Even
for less exotic compound nuclei closer to the β line of stability,
an asymmetry dependence can have important consequences
on the n-p asymmetry of the evaporation residues [2].
For fission decay, the deformation dependence of the level
density is also needed. Therefore it is important to know the
excitation-energy, asymmetry, and deformation dependencies
of the level density over most regions of the chart of
nuclides.

A complete understanding of the nuclear level density
requires consideration of the many-body nature of the nucleus.
However, the independent-particle model provides a useful
reference to start with. It also permits a rapid survey of
level-density dependencies over many regions of the chart of
nuclides and gives insight into how different nuclear-structure

effects modify the level density. Many-body effects such
as the effective-nucleon masses and collective enhancement
due to rotational and vibrational collective modes can be
incorporated in a phenomenological way into the independent-
particle model [3,4]. In this paper, the excitation-energy, n-p
asymmetry, and deformation dependencies of the level density
are investigated within the framework of the independent-
particle model. Specifically, the role of the continuum of
positive-energy single-particle states is studied. For systems
around the β line of stability these states are only populated
significantly at large excitation energies. However, for systems
closer to the drip lines, where either the neutron or proton
separation energy is small, these states can be populated
significantly even at low excitation energies. It has been
suggested that the contributions from these continuum states
may lead to a n-p asymmetry dependence of level density [5].
The manner in which these states influence the deformation
and excitation-energy dependencies of the level density will
also be investigated.

Before further discussion of the level density, it is useful
to first consider the largest excitation energies for which it is
meaningful to apply the statistical model. The CN is a system
of nucleons which is equilibrated in its single-particle degrees
of freedom and thus has a long lifetime compared to the time
scale of single-particle motion. As such, compound-nucleus
decay is a rare process; i.e., the typical energy fluctuation
of a nucleon, which is of the order of the temperature
T, does not lead to the emission of that particle. Thus,
the regime of applicability is T < Emin

cost, where Emin
cost is the

minimum of En
cost and E

p
cost, the energetic costs of emitting

a neutron or a proton, respectively. For neutrons, the cost
is just the neutron separation energy En

cost = En
sep, while for

protons the cost also includes the Coulomb barrier E
p

Cost =
E

p
sep + Vcoul.
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The decay width for protons or neutrons is roughly [6]

� = t2

πε0
exp(−Ecost/t), (1)

where ε0 = h̄2/2mR2, 1/t = dρ/dE∗ is the nuclear temper-
ature (t ≈ T ), m is the nucleon mass, and R is the nuclear
radius. As t approaches Emin

cost, the decay width for either proton
or neutron evaporation becomes quite large. For the statistical
model to be applicable, the total decay width must be small
compared to the spreading width, which determines the time
scale for the CN to equilibrate.

The order of this paper is as follows. A brief review of
the level density in the independent-particle model is given in
Sec. II. Subsequently, two methods to include the positive-
energy states are considered in Sec. III. In Sec. IV, the details
of the coupled-channels calculation of the single-particle level
densities are given. Section V discusses nuclear level density
with pairing. The determination of the deformation energy
is discussed in Sec. VI, and calculated level densities are
presented in Sec. VII. Finally, Secs. VIII and IX discuss the
results and conclusions of this work.

II. LEVEL DENSITY IN THE INDEPENDENT-
PARTICLE MODEL

The independent-particle model starts with sets of single-
particle levels for both neutrons and protons. The determina-
tion of the nuclear level density is essentially a combinatorial
problem, i.e., determining how many ways these single-
particle levels can be occupied to give the desired total
excitation energy. However, the enumeration of all the single-
particle configurations can be avoided. Instead, the Laplace
transform Z(α, β) of the level density is more easily calculated
when the Lagrange multipliers α and β are introduced to
constrain the total number of particles and the total energy.
The inverse transform can be obtained from the saddle-point
approximation to give a formula for the level density that is
continuous in excitation energy E∗. For simplicity at this point,
consider only one type of nucleon with single-particle levels
εi , the level density is then [7]

ρ(E∗) = exp S

2π
√

D
, (2)

where S = βE − αA + ln Z(α, β). The values of the La-
grange multipliers are determined by the saddle-point con-
dition ∂S/∂β = ∂S/∂α = 0. Now the average occupancy of
a single-particle level is given by fi = 1/[1 + exp(βεi −
α)]. Thus the saddle-point condition can be expressed in
terms of the conservation of nucleon number A and total
energy E = Egs + E∗ (ground-state + excitation energy)
by

A = ∂ ln Z

∂α
=

∑
i

fi, (3)

E = Egs + E∗ = −∂ ln Z

∂β
=

∑
i

εi fi . (4)

At the saddle point, the quantities Z,D, and S are now

ln Z =
∑

i

ln[1 + exp(α − βεi)], (5)

D =
∣∣∣∣∣∣
∂2 ln Z
∂α2

∂2 ln Z
∂α∂β

∂2 ln Z
∂β∂α

∂2 ln Z
∂β2

∣∣∣∣∣∣ , (6)

and

S =
∑

i

si . (7)

Here

si = −fi ln fi − (1 − fi) ln(1 − fi). (8)

Although this formula can be derived without recourse to
statistical mechanics, Bethe [8] realized there is a close analogy
to the problem of a Fermi gas in contact with a heat bath of
temperature T = 1/β and with chemical potential µ = α/β.
In this analogy, Z is the grand partition function, S is the
entropy, and thus 1/ T = dS/dE∗.

If the single-particle level density g(ε) = ∑
i δ(ε − εi) is

constant (at least in the vicinity of ε = µ), then Eq. (2) can
be reduced to the well-known Bethe or Fermi-gas expression
[7–9]:

ρ(E∗) = exp S√
48E∗ , (9)

S = 2
√

aE∗ = 2aT , (10)

where a = π2

6 g(µ) is the level-density parameter. For a
two-component Fermi gas, the level-density parameter will
have contributions from each component a = π2

6 [gn(µn) +
gp(µp)]. Experimentally, level-density parameters exhibit
strong shell corrections at low excitation energies. However,
apart from this, the average value of the level-density param-
eter is often assumed to depend only linearly on A with no
dependence on the n-p asymmetry.

To gauge the temperatures for which this formula should
be applied, the functions f (Fermi function) and s, which are
needed to determine the total energy and entropy [Eqs. (4) and
(7)], are plotted in Fig. 1 versus βε − α = (ε − µ)/T . The
Fermi function f, giving the average level occupancy, changes
in value from 90% to 10% over an interval �ε = 4.4T centered
around µ. The function s is Gaussian-like with a full width
half maximum (FWHM) of 4.2T; however, the tails of the
function fall off much slower than those of a Gaussian function.
The Fermi-gas formula thus assumes the single-particle level
density g is constant at least over an interval ±2T around
µ. However, because s falls off so slowly, the contribution
to the entropy from levels at smaller and larger energies are
not insignificant. Therefore at large temperatures, how useful
is the Fermi-gas formula when g is not constant? At low
temperatures, by expanding Eqs. (3), (4), and (7) as functions
of T, the entropy with its lowest-order correction becomes
S = √

a′E∗, where

a′ = a

[
1 + 7g(µ0)g′′(µ0) − 5g′(µ0)2

5g(µ0)3
E∗

]
, (11)
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FIG. 1. (Color online) The evolution with (ε − µ)/T of the
functions f and s [Eq. (8)] used to determine the total energy and
entropy. The vertical dashed line indicates the location of ε = 0,
when T = Esep/2.

µ0 is the chemical potential at T = 0, and g′ and g′′ are the first
and second derivatives of g. Thus the level-density parameter
can be replaced by an effective level-density parameter a′
which is excitation-energy dependent. Higher-order correc-
tions will be needed at larger temperatures.

What about the role of positive energy states? Consider a
system where T = Esep/2. In Fig. 1 for this case, ε = 0 would
correspond to the vertical dashed line and clearly, because s
decreases so slowly with ε, the positive-energy states (those
beyond the dashed line) are important for the entropy.

III. CONTINUUM SINGLE-PARTICLE LEVEL DENSITY

To understand the role of positive-energy states in calcu-
lating the level density, we need a prescription for deciding
which of these positive-energy levels belong to the CN.
If there is no bounding volume enclosing the nucleus, the
single-particle level density of these states is infinite. However,
not all of these states are considered to be associated with the
CN. The appropriate selection of the positive-energy states
must be determined from the usage of the level densities.
Level densities are employed in the statistical model of
compound-nucleus decay and for determining the equation
of state governing pre-supernova stellar collapse [10,11]. We
will focus mostly on the former usage. Consider the problem
of nucleon evaporation. This is often dealt with by placing the
CN in a box whose volume is large compared to the nuclear
volume. Call this state i. The box volume V can eventually be
expanded and allowed to approach infinity. If the CN decays
by the emission of a nucleon with kinetic energy ε to state f,
then as we have a bounding box, the nucleon cannot escape
and will eventually be reabsorbed by the daughter nucleus
leading us back to state i. Therefore by the general principle
of detailed balance, the transition probability Pif from state i
to f is related to that of the inverse process by

ρiPif = ρf Pf i, (12)

where ρi and ρf are the density of states for i and f,
respectively. For state i, the density of states is just the level
density of the compound nucleus ρi = ρCN(E∗). While for
state f, both the level density of the daughter nucleus ρd and
the phase space gev of the evaporated particle contribute, i.e.,

ρf = ρd (E∗ − Esep − ε)gev(ε) dε. (13)

Now

gev(ε) = (2s + 1)
4πp2

h3
V

dp

dε

= (2s + 1)
(2m)3/2V

√
ε

4π2h̄3 , (14)

where p,m, and s are the evaporated nucleon’s momentum,
mass, and spin, respectively. Generally gev is determined
for an empty box in the semiclassical limit which should
be appropriate as the box volume is large. Because Pf i =
vσinv(ε)/V , then

Pif = �(ε) dε

h̄

= (2s + 1)m

(πh̄)2
εσinv(ε)

ρd (E∗ − Esep − ε)

ρCN (E∗)
dε (15)

where v is the nucleon velocity and σinv is the inverse or
absorption cross section.

In this derivation of the Weisskopf evaporation formula,
the single-particle level density contributes to both ρCN and
the phase space of the evaporated nucleon gev. Thus for a
given nuclear mean-field potential surrounded by a bounding
box, the total single-particle level density will be subdivided;
gtot(ε) = gCN(ε) + ggas(ε), where gCN is the single-particle
level density used to calculate the compound-nucleus level
density and the remaining level density ggas is associated with
a gas of evaporated particles. Thus ggas ∼ gev, where gev is the
single-particle level density for the empty bounding box, i.e.,
without the nuclear mean-field potential [Eq. (14)]. As the box
volume is chosen to be much larger than the nuclear volume,
then we also find gtot ∼ gev, though of course gtot �= ggas. With
such a subdivision of gtot, the nucleon number in the box can
be subdivided, i.e.,

Atot =
∫

f (ε) gtot(ε) dε

=
∫

f (ε) gCN(ε) dε +
∫

f (ε) ggas(ε) dε

= ACN + Agas. (16)

Similarly Etot = ECN + Egas and Stot = SCN + Sgas. For a
given temperature, the chemical potential µ is constrained
so that ACN is the constant value appropriate for the CN.
Thus Agas and Atot will be temperature dependent and hence
1/T = dSCN/dECN while dStot/dEtot �= 1/T �= dSgas/dEgas.

As far as detailed balance is concerned, any arbitrary
subdivision of gtot into gCN and ggas can be considered. Because
we are at equilibrium, whatever the subdivision, detailed
balance still holds. However the one-way rates will depend
on the subdivision, and the inverse cross section σinv must
be chosen to describe the absorption of nucleons from the
“gas” phase space into the “compound-nucleus” phase space.
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In order that the subdivision is appropriate for compound-
nucleus decay, the quantity gCN should contain all the negative-
energy bound states located in the well of the nuclear-plus-
Coulomb potential. For positive energies, gCN should be
independent of the bounding volume.

The detailed-balance considerations given above come
from an equilibrium model. Some calculations of the r process
do in fact assume that the compound nucleus is in equilibrium
with a gas; i.e., the (n, γ ) rate balances the (γ, n) rate [12].
However, in general, equilibrium may not be obtained in the
r process and in the laboratory we are dealing with cases
where the gas is completely absent. In these cases we still
wish to use the equilibrium rate for particle emission for
nonequilibrium cases where there is no balancing return flux
into the CN. For this to be meaningful, the phase space ascribed
to the compound nucleus must remain in quasiequilibrium
over a time scale commensurate with the CN lifetime, and
the population of this phase space should remain close to the
equilibrium value f (ε)gCN(ε). Thus the metastability of the
compound nucleus gives a further requirement that the flow
between the phase space of the compound nucleus and the
gas be impeded if this quasiequilibrium is to be maintained.
Typically such impediments are due to a barrier (centrifugal
or Coulomb) hindering the escape of the nucleon from
the CN.

In surveying previous studies, one finds two methods have
been utilized to calculate gCN. These will be discussed in the
following sections.

A. Subtraction method

If we set ggas ≡ gev for the gas, i.e., the gas phase space is
equivalent to that of the bounding volume without the nuclear
potential, then gCN can be obtained from subtraction, i.e.,
gCN = gtot − gev. We will call this the subtraction method for
determining gCN and it has been used in many level-density
studies starting with Mosel [13] in 1973. The subtraction
method originates from Beth and Uhlenbeck [14] who used
the difference in phase space between an interacting and an
ideal gas to determine the second virial coefficient which gives
a correction to the ideal-gas equation of state. This method
gives the component of phase space that is independent of the
box volume. For those astrophysical applications considering
nuclei in equilibrium with a gas of nucleons, this method has
also been used to determine the equation of state [10,11].

It is rather easy to show that [14–17]

gsub
CN(ε) =

∑

,j

g
,j (ε), (17)

g
,j (ε) = (2j + 1)
∑

i

δ
(
ε − ε


,j

i

)
+ 1

π
(2j + 1)

dδ
,j

dε
, (18)

where δ
,j (ε) is the phase shift associated with the scattering
state of energy ε, orbital angular momentum 
, and total
angular momentum j. The bound-state energies are ε


,j

i . From

Levinson’s theorem [15],∫ ∞

−∞
g
,j (ε) dε = 0. (19)

It is clear that for ε > 0, g
,j must have a net negative
contribution to balance out the positive contributions from
the bound states. However, for large 
 waves, this negative
contribution occurs at very large ε values which are not
populated in the CN [16]. Thus the negative contributions
are only important for the smallest 
 waves.

Near a resonance,

dδ
,j

dε
≈ �R/2

(ε − εR)2 + (�R/2)2
, (20)

where εR is the resonance energy and �R is its width. In the
limit as �R → 0, dδ
,j /dε → πδ (ε − εR) and the resonance
becomes equivalent to a bound state. Therefore at positive
energies, gsub

CN consists of series of resonance peaks which, for
small 
 waves, sit on a negative background.

For protons, the single-particle level density is calculated
from the nuclear phase shift, not the total phase shift. Hence,
the subtracted level density is not actually gev, the contribution
from the bounding volume without any mean-field potential,
as used for neutrons. In this case, the subtracted level density
is that from the bounding volume containing a point-source
Coulomb potential. For deformed systems, the ε > 0 contri-
bution can be generalized as [18–20]

gsub
CN(ε) = 1

2πi
Tr

(
S−1(ε)

d

dε
S(ε)

)
, (21)

where S(ε) is the S matrix for scattering at energy ε.
Examples of gsub

CN(ε) calculated for 160Yb are shown in
Fig. 2. The negative background is clearly observable in
Fig. 2(a) for neutrons in a spherically symmetric potential.
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FIG. 2. (Color online) The dependence of the compound-nucleus
single-particle level density gsub

CN on the nucleon energy ε. The
displayed results have been convoluted by a Gaussian resolution of
FHWM = 150 keV. Results are shown for (a) neutrons in a spherically
symmetric potential (Q = 0), (b) neutrons in a deformed potential
(Q = 4), and (c) protons in a spherically symmetric potential.
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Here gsub
CN(ε) is negative between the resonance peaks for

ε < 6 MeV. In deforming the potential, degenerate reso-
nances are split and this often leads to a filling up of
the negative background so that gsub

CN seldom drops below
zero. For the deformed example in Fig. 2(b), gsub

CN is only
negative at ε ∼ 0. For protons [Fig. (2c)], only very narrow
resonances are observed well below the Coulomb barrier
(ε ∼ 9 MeV).

As gsub
CN can be negative for some energies, then the number

of nucleons ascribed to the CN in these single-particle levels
would also be negative in the subtraction method. In the
absence of a gas, the total number of nucleons in these
energy levels is again negative, which is not physically
meaningful. The cause of this strange result is that for
these energies, the subtraction method attributes more phase-
space cells to the gas phase than exist when the compound
nucleus is present. Therefore gsub

CN has to be negative to
compensate. Also there is no metastability constraint on gsub

CN;
it contains both narrow (long-lived) and wide (short-lived)
resonances.

B. Gamov method

It has been suggested that only resonances of lifetimes
longer than, or comparable to, the compound-nucleus life-
time should be included [21,22] because the occupancy of
the shorter-lived levels will not be maintained before the
CN decays. Consider the analytical continuation of the S matrix
into the complex-energy plane. Poles of the S matrix at ε =
εR − i�R/2 correspond to exponentially decaying solutions to
the Schrödinger equation (if �R > 0) [17,23]. These are also
known as Gamov [24] or Siegert states. For those poles close
to the real axis on the unphysical sheet, these states have a
close association with resonances.

Weidenmüller [21] suggested that the compound-nucleus
single-particle level density for ε > 0 should be the density
of sharp resonances or Gamov states. One should therefore
introduce a cutoff or maximum width �0 of the Gamov states
that contribute to gCN. Now, if the single-particle potential is
modified, for example, by deformation, the location of the
poles will move in the complex-energy plane. Some will
become narrower and some wider and a number of these
will cross the cutoff region causing discontinuities in the
level density as it evolves with deformation. To avoid such
discontinuities, a smooth exponential cutoff of the Gamov
states was implemented:

g�
CN(ε) =

∑
i

δ
(
ε − εR

i

)
exp

(−�R
i

�0

)
. (22)

The summation includes all poles associated with bound states
(�R = 0) and Gamov states (�R > 0). With this definition,
g�

CN is always positive and thus avoids the ambiguities
associated with negative values as in gsub

CN. Also the inclusion
of only the narrow resonances satisfies the metastability
requirement.

An alternative definition of g�
CN would be to use Lorentzian

line shapes rather than the δ functions, i.e.

g�
CN(ε) =

∑
i

1

π

�R
i /2(

ε − εR
i

)2 + (
�R

i /2
)2 exp

(−�R
i

�0

)
.

(23)

In the limit that �0 is small, then both Eqs. (22) and (23)
become identical. However, even for the largest value of the
cutoff parameter �0 = 1 MeV used in this work, there are
practically no differences in the calculated level densities
obtained with these two definitions. Thus only calculations
with Eq. (22) will be presented.

C. Summation

In summary, the subtraction method gives the component
of phase space that is independent of the box volume. Of
this component of phase space, the Gamov method takes out
only that subcomponent which is long lived. The shorter-
lived subcomponent is assigned to the gas where its relative
contribution is vanishingly small as the box volume increases
to infinity. In addition, this approach removes the negative
background present in the subtraction method. The Gamov
approach attempts to deal with time-scale issues that must
necessarily be involved in any discussion of metastability. In
the following sections, both definitions of gCN will be used
to see how they affect the excitation-energy, deformation, and
asymmetry dependencies of the level density.

IV. COUPLED-CHANNELS CALCULATION OF
SINGLE-PARTICLE LEVELS

A. Theory

To calculate the single-particle level densities, the
Schrödinger equation must be solved to determine the bound,
Gamov, and scattering states. Protons and neutrons are
assumed to move in an axially symmetric mean-field potential,
which is the sum of the nuclear, Coulomb, and spin-orbit
components, i.e.,

V (r) = VN (r) + VC(r) + Vso(r). (24)

The nuclear potential is expressed in terms of the Fermi
function f (x) = [1 + exp(x)]−1 as

VN (r) = −V
(0)
N f

(
r − R(Q, θ )

d(θ )

)
, (25)

where R (Q, θ ) defines a spheroidal surface with the same
volume as a sphere of radius R(0). The deformation is expressed
in terms of the relative quadrupole moment Q related to the
radii r‖ and r⊥ perpendicular and parallel to the symmetry axis
by [25]

Q = 8π

15

(
r2
‖ − r2

⊥
)

[R(0)]2
. (26)

The quadrupole moment is positive for prolate shapes, negative
for oblate, and zero at sphericity. As a calibration point,
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Q = 3.2 corresponds to a “superdeformed” prolate shape with
the length of the major and minor axes differing by a factor
of 2.

The diffuseness of the nuclear potential is assumed to be
constant perpendicular to this surface, i.e.,

d(θ ) = d (0)

√
1 +

(
dR

dθ

1

R

)2

. (27)

The deformed spin-orbit interaction can be expressed in terms
of the momentum p and spin s operators as [26]

Vso(r) = 4V (0)
so

( [
∇f

(
r − Rso(Q, θ )

dso(θ )

)]
× p

)
· s, (28)

where dso is defined in terms of Rso in an equivalent manner
as in Eq. (27). The Coulomb potential is approximated as
that from a sharp-surfaced spheroid of equivalent spherical
radius RC using the analytical expressions of Refs. [27,28].
The parameters V

(0)
N , V (0)

so , R(0), R(0)
so , RC , and d (0) are taken

from the “universal” parametrization of Ref. [29].
The solutions to the Schrödinger equation H� = ε� are

obtained by expressing the wave function as sums of spherical
waves specified by |
 1

2jm〉. Here 
 is the orbital angular
momentum, j is the total angular momentum, and m is
its projection on the symmetry axis. The latter quantity is
conserved in the axially symmetric potential. Thus

�m(r) =
∑

,j

u
jm(r)

r

∣∣∣∣
1

2
jm

〉
, (29)

where u
jm (r) are the radial wave functions. After projecting
on the state |
′ 1

2j ′m〉, the Schrödinger equation can be written
in terms of the coupled-channels equation[

d2

dr2
+ k2 − 
(
 + 1)

r2

]
u
jm(r)

+
∑

′, j ′

(
Wm


j
′j ′ (r) + Dm

j
′j ′ (r)

d

dr

)
u
′j ′m(r) = 0. (30)

Here k = √
2µε/h̄ is the wave number and µ is the reduced

mass. The matrices W and D are determined from the matrix
elements of the interaction taken between states specified
by 
, j and 
′, j ′. The matrix W has contributions from all
three potentials (nuclear, Coulomb, and spin orbit), while D is
determined only from the spin-orbit potential.

The boundary conditions at the origin are u
jm(0) = 0. If
one considers N channels and chooses N initial sets of the
derivatives du
jm/dr(0) appropriately, then after integrating
out from the origin, one can obtain N independent solutions
to the coupled-channels equation. Let these be represented by
the N columns of the N × N matrix U m(r). In matrix form,
the Schrödinger equation is then[

d2

dr2
+ Dm(r)

d

dr
+ Am(r)

]
U m(r) = 0, (31)

where

Am

j
′j ′ =

[
k2 − 
(
 + 1)

r2

]
δ

′δjj ′ + Wm


j
′j ′ . (32)

The equation is integrated out to a radius rmatch where V→0
for neutrons; for protons, only a point-source Coulomb term
is present. At rmatch, the solutions are matched to specific
solutions of the Schrödinger equation p
(r). For bound states,
the matching solution must vanish as r → ∞ and thus
p
(r) = √

2 |k| r/π K
+ 1
2
(|k| r) or p
(r) = W−η,
+ 1

2
(2 |k| r)

for neutrons and protons, respectively. Here K
+ 1
2

are the
modified Bessel functions of the second kind, W−η,
+ 1

2
are the

Whittaker functions, and η = (Z − 1)e2/(h̄2 |k|). For Gamov
states, the matching functions are outgoing waves: p
(r) =
kr [j
(kr) + iy
(kr)] or p
(r) = F
(η, kr) − iG
(η, kr) for
neutrons and protons, respectively. Here j
 and y
 are the
regular and irregular spherical Bessel functions and F
 and
G
 are regular and irregular Coulomb wave functions. If the
calculated solution is to represent a bound or Gamov state, then
one must be able to match the logarithmic derivatives of u
jm

and pl at r = rmatch for all channels. Any linear combination
of the column vectors of U m can be used to achieve this match
and it is only possible when [30]∣∣∣∣dU m

dr
(U m)−1 − d P

dr
(P)−1

∣∣∣∣
r=rmatch

= 0, (33)

where the matrix P is defined as

P
j
′j ′ (r) = δ

′δjj ′p
(r). (34)

The matrix Y = dU m/dr (U m)−1 is called the log-derivative
matrix and satisfies the following Ricatti equation

dY
dr

+ A + Y 2 + DY = 0. (35)

Rather than solving the matrix Schrödinger equation
[Eq. (31)], this equation can be solved directly using the
techniques of Refs. [31–33]. In fact, it is advantageous to solve
the Ricatti equation instead of the Schrödinger equation, as
the latter suffers from numerical instabilities when integrating
over classically forbidden regions.

To obtain scattering solutions, one must match the wave
functions to a combination of ingoing and outgoing waves at
r = rmatch. The scattering matrix can also be obtained directly
from the log derivative [31]. Defining the matrix elements as

J
j
′j ′ (r) = δ

′δjj ′krj
(kr) for neutrons,

= δ

′δjj ′F
(kr) for protons, (36)

N
j
′j ′ (r) = δ

′δjj ′kry
(kr) for neutrons,

= −δ

′δjj ′G
(kr) for protons, (37)

the K matrix is determined by

K = −
[

Y (rmatch)N(rmatch) − d

dr
N(rmatch)

]−1

×
[

Y (rmatch) J(rmatch) − d

dr
J(rmatch)

]
. (38)

The S matrix is derived in terms of the identity matrix I as

S = (I + i K )−1(I − i K ). (39)

The calculation of gsub
CN from Eq. (21) can be problematic

near very narrow resonances. However, the level density
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convoluted with a small dispersion is more easily determined.
If F (ε) is the convolution function, the convoluted level density
is

g̃c(ε) =
∫ ∞

0
gc(ε′)F (ε − ε′) dε′. (40)

Following Sandulescu et al. [34], one can replace the integral
along the real axis by a contour integral in the complex-energy
plane which avoids narrow resonances. The contour C is
chosen to follow the real axis except near resonances with
� < 50 keV where it follows a semicircular path of radius
0.2 MeV around each resonance. From Cauchy’s theorem, the
final level density is

g̃c(ε) =
∑

n

F (ε − εn) +
∫

C

gc(ε′)F (ε − ε′) dε′, (41)

where here εn = εR
n − i�R

n /2 is the complex energy of the nth
avoided resonance. The convolution function F was taken as
Gaussian with FWHM = 150 keV. This small resolution has no
significant effect on the deduced level densities in this work.

B. Results

An example of the evolution of bound single-particle levels
and the real part of narrow Gamov states (� < 0.5 MeV)
with deformation is shown in Fig. 3 for mπ = 1

2
−

neutrons in
190Yb. The results were obtained by including all channels with

 � 20 in the coupled-channels calculations. The bound states
and resonances levels both move around with deformation, but
levels of the same mπ values avoid crossing each other. Bound
levels that pass through ε = 0 immediately become narrow
resonances and vice versa. As the resonance energy increases,
the width of a resonance generally increases as shown in
Fig. 3.

The turning of bound states into narrow resonances is quite
general behavior except if there is no barrier (centrifugal or
Coulomb) [17]. For j = 1

2
+

(
 = 0) neutrons, there is no
barrier, and bound states passing through ε = 0 turn into
virtual states [17]. A virtual state is associated with a pole
of the S matrix on the real ε axis at energy εv = −ev (ev > 0
and small). Both bound and virtual states have real negative
energies and purely imaginary wave numbers k. However, for
bound states, the imaginary part of k is positive, while it is
negative for virtual states. In fact when there is no barrier, both
bound and virtual states with small energies have important
influences on the scattering at small positive values of ε. This
has implications for the single-particle level density calculated
with the subtraction method. Consider a spherically symmetric
potential. The 
 = 0 contribution to the single-particle level
density from a virtual state for small ε values is [17]

gsub
0 (ε) =

{
1

2π

√
ev

ε
1

ε+ev
if ε > 0,

0 if ε < 0.
(42)

-10
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)
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εR
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)
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(b) proton

m=1/2
- 190

Yb

FIG. 3. (Color online) Evolution of the real energy εR for bound
(εR < 0, �R = 0) and narrow Gamov (εR > 0, �R < 1 MeV) states
as a function of deformation. The width of the curves reflects the
value of �R . Results are shown only for (a) neutron and (b) proton
mπ = 1/2− states in 190Yb.

On the other hand, for a bound state at εb = −eb (eb > 0 and
small), the contribution is [17]

gsub
0 (ε) =

{
− 1

2π

√
eb

ε
1

ε+eb
if ε > 0,

δ(ε + eb) if ε < 0.
(43)

As ε → +0, gsub
0 → +∞ for the virtual state and −∞ for the

bound state. In the limit that ev → 0 and eb → 0, then in both
cases gsub

0 (ε) → δ(ε)/2, and this represents half a level. Thus
in the deformation region over which a bound level becomes
a virtual state, gsub

CN evolves smoothly.

Only the m = 1
2

+
states contain any j = 1

2
+

(
 = 0) com-
ponent in their wave function. For these states, the behavior
as a bound state passes through ε = 0 is more complex.
Sometimes they become narrow resonances, sometimes they
become virtual states, and other times they progress in a
complicated manner to a wider resonance. As an example,
Fig. 4 shows the m = 1

2
+

contribution to the single-particle
level density gsub

1/2+ (ε) at small positive energies obtained for
two neighboring values of Q. For Q = 1.625, gsub

1/2+ → −∞
as ε → +0 as in Eq. (43). On the other hand, at Q =
1.75, gsub

1/2+ → +∞ as in Eq. (42). In this case the behavior

of gsub
1/2+ is consistent with a bound state at Q = 1.625 passing

through ε = 0 and becoming a virtual state at Q = 1.75.
For the Gamov method, g�

1/2+ (ε) does not evolve smoothly
when a bound state becomes a virtual state; bound states are
always counted as a full level while virtual states are not
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FIG. 4. (Color online) Variation with nucleon energy ε of the
single-particle level density determined by the subtraction method for
mπ = 1/2+ neutrons in 190Yb. Results are shown for two neighboring
deformations Q = 1.75 and 1.625.

counted at all in Eq. (22). However, virtual states can cause
long time delays in scattering like narrow resonances do [23],
and some thought should be given to expanding the definition
of g�

CN to include some contribution from virtual states and so
make the evolution with Q smoother. In the present work this
is not a significant issue because in the range of deformation
investigated (−2.5 < Q < 4), there are typically only two
small discontinuities.

To visualize the gross differences between the subtraction
and Gamov methods, it is useful to smooth the single-particle
level density gCN. Figure 5 displays smoothed neutron and
proton single-particle level densities g̃CN for 160Yb. The
Strutinsky smoothing discussed in Sec. VI was utilized.
For neutrons, g̃CN peaks near ε = 0. The peak is lower in
magnitude for the subtraction method due to the presence of
the negative background. As resonances at larger εR tend to
have larger widths, the Gamov method, which excludes these
wide resonances, makes g̃CN drop quickly to zero for ε 
 0.
The effect is more pronounced the smaller the cutoff width �0.
Protons exhibit similar behavior except they peak closer to the
Coulomb barrier, whose magnitude is indicated by the arrow
in Fig. 5(b).

There are two important results to highlight. First for
protons, g(ε) is almost independent of the method of cal-
culation for small positive energies well below the Coulomb
barrier. These positive-energy states have the most influence
on the level density and thus the continuum corrections
for protons will generally be less important that those for
neutrons. Secondly for neutrons, the inclusion of the negative
background and the wide resonances in the subtraction method
have opposite effects and partially cancel each other. In the end,
the level densities calculated with both methods are found to
be similar (see Sec. VII A).

The subtraction method does not give a strong deformation
dependence of g̃CN near sphericity. As an example, the
smoothed single-particle level density for neutrons in 160Yb
is plotted in Fig. 6(a) for Q = −0.5, 0, and 0.5. The curves
for all three deformations lie almost on top of each other. In
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N

 (
M
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)
-50 -40 -30 -20 -10 0 10 20 30

ε (MeV)

0
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8

g C
N

 (
M

eV
-1

)

sub

1.0
0.10.01

sub

1.0

0.1

0.01

(a) neutrons

(b) protons

160
Yb

~
~

FIG. 5. (Color online) Smoothed single-particle level densities
calculated for (a) neutrons and (b) protons in 160Yb. The curves
labeled “sub” were obtained from the subtraction method. The other
curves were obtained from the Gamov method with the indicated
values of �0 in MeV. The Coulomb barrier for protons is indicated by
the arrow in (b).

contrast, the Gamov method exhibits a strong dependence.
The results, displayed in Fig. 6(b) for �0 = 1 MeV, show that
g̃CN decreases in magnitude for ε > 0 as a deformation is
imposed on the compound nucleus (either prolate or oblate).
To investigate this behavior, let us concentrate on the splitting
of Gamov states that are degenerate at sphericity. For example
in Fig. 7, the evolution with deformation of the energy and
width for a group of Gamov states associated with j = 19/2−
neutrons in 160Yb is displayed. In Fig. 7(b), the real energies
εR of the Gamov states fan out with increasing deformation
(both oblate and prolate). On average, the mean value of
εR changes very little with deformation. These mean values
are indicated by the data points. In contrast, the widths �R

of Gamov states show a different behavior in Fig. 7(b).
Although a few of the states for oblate deformations show a
reduced width compared to sphericity, the widths of most states
increase with deformation. The average widths, indicated by
the data points, have a minimum at sphericity. This behavior
is typical of the splitting of all degenerate Gamov states, and
therefore the average increase in these widths with deformation
reduces their contribution to g�

CN [Eq. (22)]. This explains
the observed deformation dependence displayed in Fig. 6(b).
The strong dependence of g�

CN on deformation is reflected in
the deformation dependence of the level density (see Sec. VI).
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FIG. 6. (Color online) Smoothed single-particle level densities
calculated for neutrons in 160Yb at three defomations: Q = −0.5, 0,

and 0.5. (a) Results obtained with the subtraction method; (b) results
obtained with the Gamov method for �0 =1 MeV.

V. NUCLEAR LEVEL DENSITY WITH PAIRING

The simple discussion of the level density in Sec. II for
a single-particle type and no interactions is extended in this
section to include both neutrons and protons and the pairing
interaction. The grand potential of a two-component Fermi gas
is the sum of the proton and neutron contributions, i.e.,

�(αn, αp, β) = �n(αn, β) + �p(αp, β). (44)

The pairing interaction is considered in the BCS model
[35–37]. In that model, the grand potential is related to
the grand partition function [�n(αn, β) = − ln Zn/β] and for
neutrons it is given by

�n(αn, β) = �2
n

Gn

+
∫

gn(ε)

2
[ε − µn − E] dε

− 2

β

∫
gn(ε)

2
ln[1 + exp(−βE)] dε, (45)

where β = 1/T , T is the temperature, and µn = αn/β is the
chemical potential. The quasiparticle energies are

E =
√

(ε − µn)2 + �2
n. (46)

The gap parameter �n is determined from the gap equation

2

Gn

=
∫

gn(ε)

2

tanh
(

E
2T

)
E

dε, (47)

where Gn is the pairing strength. The level density at an energy
Etot can be obtained from the inverse Laplace transform of the

-0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

ΓR
 (

M
eV

)
-0.5 0 0.5

Q

10

15

εR
 (

M
eV

)

m=1/2

m=19/2

m=1/2

m=19/2

160
Yb

(a)

(b)

FIG. 7. (Color online) Curves show the variation with deforma-
tion Q of the (a) width �R and (b) energy εR of the Gamov states
associated with the j = 19/2− neutrons in 160Yb. The solid data
points indicate the average energy and width for these states.

grand partition function

ρ(Etot, N,Z) = 1

(2πi)3

∫ +i∞

−i∞

∫ +i∞

−i∞

∫ +i∞

−i∞
×Z exp(−αnN − αpZ + βE) dαn dαp dβ,

(48)

which can be evaluated approximately by the saddle-point
method to give

ρ(Etot, N,Z) = exp(S)

(2π )3/2
√

D
. (49)

Here the energy (Etot = Etot
n + Etot

p ), entropy (S = Sn + Sp),
and particle number are determined from the following
equations:

Etot
n =

∫
ε
gn(ε)

2

[
1 − ε − µn

E
tanh

(
E

2T

)]
dε − �2

n

Gn

,

(50)

Sn =
∫

gn(ε) ln

[
1 + exp

(
−E

T

)]
dε

+
∫

gn(ε)
E
T

1 + exp
(

E
T

)dε, (51)

N =
∫

gn(ε)

2

[
1 − ε − µn

E
tanh

(
E

2T

)]
dε. (52)
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The quantities Etot
p , Sp, and �p for protons are obtained from

similar expressions and the determinant D is now

D =

∣∣∣∣∣∣∣∣
∂2 ln Z
∂α2

n

∂2 ln Z
∂αn∂αp

∂2 ln Z
∂αn∂β

∂2 ln Z
∂αn∂αp

∂2 ln Z
∂α2

p

∂2 ln Z
∂αp∂β

∂2 ln Z
∂αn∂β

∂2 ln Z
∂αp∂β

∂2 ln Z
∂β2

∣∣∣∣∣∣∣∣ . (53)

Expressions for the evaluation of this determinant in terms of
the single-particle level densities can be found in Ref. [36]. At
some critical temperature T crit, the gap parameter vanishes and
the excitation energy and entropy are those of a noninteracting
Fermi gas, i.e., Eqs. (3), (4), and (7).

VI. DEFORMATION ENERGY

The level density will be calculated as a function of
excitation energy. The excitation energy is given in terms of the
thermal contribution Eth = Etot(T ,Q) − Etot(0,Q) and the
deformation energy Edef(Q). In the Strutinsky procedure [38],
the deformation energy is given by two terms

Edef(Q) = δE(Q) + Vdef(Q), (54)

where the liquid-drop deformation energy Vdef(Q) describes
the average deformation energy with shell oscillations aver-
aged out. The corrections δE(Q) to the liquid-drop energy are
determined from the single-particle levels and have contribu-
tions from both neutrons and protons, i.e., δE = δEn + δEp.
Following Ref. [37], we define the shell corrections as

δEk(Q) = Etot
k (0,Q) − Ẽtot

k (0,Q), (55)

where k = n or p, and Ẽtot
k is the total energy determined with

pairing [Eq. (50)], but with the smoothed single-particle level
densities

g̃(ε) =
∫

g(ε′)F (ε − ε′) dε′. (56)

The smoothing function used is

F (ε) = 1√
πγ

exp

[
−

(
ε

γ

)2
]

Cp

(
ε

γ

)
, (57)

where the smoothing range γ must be taken to be of the order
of the intershell separation in order to wash out the oscillations.
The curvature correction of order p = 2M is

Cp(x) =
M∑

n=0

(−1)n

22nn!
H2n(x) = L

1/2
M (x2). (58)

This curvature correction is included to provide self-
consistancy for g̃(ε); i.e., a smoothed function should not
be affected by the smoothing procedure. Thus if g̃(ε) is a
polynomial of order 2M + 1 or lower, it will be unchanged
after the smoothing. The functions Hn and L

1/2
2p are Hermite

polynomials and associated Laguerre polynomials, respec-
tively.

In the original Strutinsky smoothing procedure, the smooth-
ing parameters γ and p are chosen to satisfy the plateau

condition [38,39]

dẼtot
k

dγ
= 0,

dẼtot
k

dp
= 0, (59)

over some range in both γ and p. Thus in this range, the shell
correction should depend on neither the smoothing range nor
the order of the curvature correction. The plateau condition can
be satisfied for single-particle levels associated with infinite
potentials such as a harmonic oscillator or an infinite square
well. However, for a finite-depth potential, such as those
considered in this work, the plateau condition is often not
met; i.e., one cannot find a region of γ and p over which the
shell correction is constant [40–42].

An alternative procedure from Refs. [41,42] was tried but
found to be problematic in some cases. Instead the method that
is used in this work relies on the observation that the relative
correction for different deformations is independent of γ and p
once γ has a value above ∼1.2 h̄ω. The actual γ value at which
the relative correction plateaus depends on the order p used.
However, once the plateau is reached, the relative corrections
are independent of p. As an example, the correction factors
for neutrons obtained with p =12 for various γ values are
plotted in Fig. 8(a). The absolute values of these corrections
vary continuously with γ and do not plateau. However, they
do have a minimum in the interval 2.0 < γ < 2.5 in this
example. Apart from the dashed curve obtained with γ = h̄ω,
all other δn(Q) curves have almost the same shape indicating
the relative shell correction is constant. To highlight this, the
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FIG. 8. (Color online) Variation of the neutron shell correction
to the deformation energy determined for 170Yb. (a) The abso-
lute correction obtained with the indicated smoothing ranges γ .
(b) The data from (a) with the mean correction over all calculated
deformations 〈δ (Q)〉 subtracted out.
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average value of the correction over all deformations 〈δn(Q)〉
is subtracted out for each smoothing range. The remaining
correction δn(Q) − 〈δn(Q)〉 is plotted in Fig. 8(b). All the
curves for γ > h̄ω now collapse to essentially a single curve.

If we cover a large enough range of deformations, the
average shell correction 〈δk(Q)〉 is expected to be zero, thus
we have taken the values plotted in Fig. 8(b) to be absolute
corrections. Thus the appropriate smoothing range is the
value which causes 〈δk(Q)〉 = 0. We expect the range of
deformations explored in this work (−2.5 < Q < 4.0) to be
adequate as we always see at least a couple of “oscillations” in
δk and thus expect our average to reflect the true average over
all deformations.

Finally, the excitation energy is measured with respect to
the ground-state energy, i.e., the total excitation energy is

E∗ = Eth + Edef(Q) − δW. (60)

Here the shell correction δW represents the difference between
the liquid-drop and the minimum or ground-state deformation
energies, i.e., δW = min[Edef(Q)]. Note that any error in the
absolute value of δk(Q) affects both Edef(Q) and δW equally,
and therefore the excitation energy is not sensitive to the
absolute shell correction.

The liquid-drop deformation energy is taken from Refs.
[43,44]. The gap strength Gn,p for neutrons and protons is
determined from setting �̃n,p(Q = 0, T = 0) = 12/

√
A MeV

[7] . Here �̃n,p is the gap parameter obtained from Eq. (47) with
the smoothed single-particle level densities g̃n,p. Examples of
the deformation energy are shown in Fig. 9 for systems with
deformed (170Yb) and spherical (150Yb) ground states. Also
shown are the excitation energies corresponding to the critical
temperature T crit

n,p for neutrons and protons where the pairing
gap vanishes.

VII. CALCULATIONS

A. Excitation-energy and n-p asymmetry dependencies

The level density as function of excitation energy was
calculated for even-even nuclei from Eq. (49). For A = 40
and 60, all such nuclei with Emin

cost >1.9 MeV were included in
the study. These include 40Ti and 60Ge which are just beyond
the proton drip line. Calculations were also performed for five
even-even Yb nuclei from 150Yb to 190Yb covering the range
of n-p asymmetry centered on the β-stable nucleus 170Yb. In
addition, two other A =170 nuclei, 170Nd and 170Hg, with
extreme values of n-p asymmetry were included. Again, 150Yb
and 170Hg are just beyond the proton drip line. Finally, the
heavier β-stable system 238U was also studied. All nuclides
studied are listed in Table I along with their values of δW and
Emin

cost.
At each deformation Q, the level density and excitation

energy are calculated for an array of temperatures, each
separated by 0.05 MeV. The level density for a given excitation
energy is then obtained from interpolating between the results.
Subsequently, the deformation of the nucleus at each excitation
energy is determined as the value that maximizes the level
density. As an example, the deformation as a function of

0

20

40

60

E
ne

rg
y 

(M
eV

)

-2 -1 0 1 2 3 4
Q

0

20

40

60

E
ne

rg
y 

(M
eV

)

170
Yb

150
Yb

E
def V

ld

T
crit

T
crit

p

n

FIG. 9. (Color online) Variation of four calculated energies with
deformation for 170Yb and 150Yb. The curve Edef is the deformation
energy with shell corrections. For comparison, the liquid-drop
deformation energy Vld is also shown. The higher two curves give the
energies corresponding to the critical temperatures T crit for protons
and neutrons. The thick dashed lines indicate the deformation which
maximized the level density (subtraction method) for each excitation
energy.

excitation energy is plotted in Fig. 9 as the thick dashed curves.
For the deformed ground-state system 170Yb, the deformation
decreases with excitation energy and vanishes at E∗ =70 MeV.
The spherical ground-state system 150Yb remains spherical at
all excitation energies.

The variation of the resulting level density with excitation
energy obtained with the subtraction method is plotted in
Figs. 10(a), 10(b), and 10(c) for A ∼ 170, A = 60, and
A = 40, respectively. In Fig. 10(a), where A is not constant,
the quantity log(ρA5/4)A1/2 rather than log (ρ) has been
plotted to account for the A dependence based on the
Fermi-gas formula with a ∝ A. Curves for all nuclei are
only extended to the excitation energy where T = Emin

cost.
It is clear from this figure that the level density has no
substantial dependence on n-p asymmetry; all curves with
similar A values practically overlap. Similar conclusions
were also obtained with the Gamov method. For example,
the level densities for A ∼ 170 and A = 40 are shown
in Figs. 11 and 12, respectively, for �0 = 1.0 and �0 =
0.01 MeV. Again, the curves for similar A values fall almost
on top of each other.

For T > T crit
n and T > T crit

p in even-even nuclei, the exci-
tation energy is often backshifted by the condensation energy
when comparing level densities [45], i.e., U = E∗ − δP where
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TABLE I. Nuclei studied in this work and the value of the shell
correction δW , minimum cost Emin

cost, and pairing factor δP .

Nucleus δW Emin
cost δP

(MeV) (MeV) (MeV)

40Si 1.1 1.9 2.7
40S 0.6 5.4 2.7
40Ar 0.1 9.4 2.7
40Ca −0.7 7.4 2.7
40Ti 0.6 3.1 2.6
60Ti −0.8 3.1 2.6
60Cr 0.2 5.7 2.6
60Fe 0.4 8.4 2.5
60Ni −0.6 10.1 2.5
60Zn −0.6 6.9 2.5
60Ge −1.6 3.8 2.6
170Nd 0.6 2.5 2.4
190Yb −1.6 3.8 2.4
180Yb 0.5 5.6 2.3
170Yb −0.8 7.6 2.3
160Yb 0.7 9.9 2.2
150Yb −2.4 8.9 2.2
170Hg −2.9 10.0 2.2
238U −0.7 5.5 2.3

the smoothed condensation energy is

δP = 1
2�̃n

2
g̃n(µ̃n) + 1

2�̃p
2
g̃p(µ̃p). (61)

For odd-even and odd-odd nuclei, δP should include the
pairing correction in the semiempirical mass formula. In the
comparison of level densities in Figs. 10–12, the role of pairing
is not important because the condensation energy is relatively
constant for each mass region (see Table I). At high excitation
energies where shell effects are expected to be washed out,
the excitation energy is also shifted by the shell correction
δW [46]. Thus at high energies, a shifted Fermi-gas expression
is often assumed. In this case, the entropy is

S = 2
√

ã(E∗ − δP + δW ), (62)

where ã is the asymptotic level-density parameter.
To see whether this formalism is consistent with the calcu-

lations of this work, the asymptotic level-density parameter
as a function of excitation energy was deduced from the
calculated entropy (Sec. V) using Eq. (62). Examples of the
resulting level-density parameters are displayed in Fig. 13 for
the subtraction method and in Figs. 14 and 15 for the Gamov
method. Above (E∗ − δP + δW ) /A > 0.3 MeV where shell
and pairing effects are expected to the quenched, the deduced
level-density parameter is rather constant. Note, Figs. 13–15
have offset origins on the y axis to accentuate the difference
between the different nuclei. Quite surprisingly, the inclusion
of realistic single-particle level densities including continuum
corrections does not cause strong deviations from the basic
Fermi-gas expression which was derived for constant g(ε). A
similar conclusion was found in Hartee-Fock calculations of
208Pb performed by Bonche, Levit, and Vautherin [47].

The dependence of ã on excitation energy is not com-
pletely flat; all calculations show some small negative slope
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FIG. 10. (Color online) Variation of the nuclear level density with
excitation energy for (a) the seven A ∼ 170 nuclei, (b) the six A =
60 nuclei, and (c) the five A = 40 nuclei. All are calculated up to
the excitation energy where T = Emin

cost. If these maximum excitation
energies are within the displayed range, they are indicated by the
solid circular symbols and are labeled with the name of the nucleus.

as is expected in a lowest-order expansion in temperature
[Eq. (11)]. From Figs. 14(b) and 15(b), it is clear that this
is most significant in the Gamov method with the smallest
value of the cutoff width �0 = 0.01 MeV. The plots of the
asymptotic level-density parameter also highlight the small
differences among the nuclei with similar A values, which
were difficult to see in Figs. 10–12. The differences between
the curves would become more significant if they were
extended beyond the point T > Emin

cost where the use of the
statistical model is problematic. For A = 40, the asymptotic
level-density parameter can be somewhat smaller for the
systems with extreme n-p asymmetries. For example, look
at the results for 40Si in Fig. 13(c) with the subtraction
method and for 40Ti in Fig. 15(b) with �0 =0.01 MeV. For
both of these cases, the asymptotic region is only approached
when Emin

cost ≈ T . To investigate the small n-p asymmetry
dependence more systematically, the value of ã [determined
at (E∗ − δP + δW ) /A = 0.5 MeV from the entropy using
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FIG. 11. (Color online) Same as for Fig. 10(a), but now the level
density for A ∼ 170 is calculated with the Gamov method using the
cutoff decay widths of �0 = 1 and 0.01 MeV. Only curves that are
distinguishable from the others are labeled.

Eq. (62)] is plotted in Fig. 16 as a function of N − Nβ (A), i.e.,
the distance from the β valley of stability. Results are shown
for the subtraction method (filled circles), and the Gamov
method with three values of the maximum width: �0 = 1 MeV
(hollow squares), �0 = 0.1 MeV (filled diamonds), and �0 =
0.01 MeV (hollow triangles). Generally, the deduced values
of ã are approximately independent of which treatment of
the continuum was used. A similar conclusion was obtained in
Ref. [48]. Also, the deduced values of ã are almost constant for
each mass region. However, in the Gamov method, the nuclei
with the extreme values of N − Nβ (A) show the greatest
sensitivity to �0. In this case the values of ã obtained with
�0 = 0.01 MeV are often slightly smaller.

The mass dependence of the level-density parameter at
(E∗ − δP + δW ) /A =0.5 MeV is displayed in Fig. 17(a) as
the data points. The extracted points were fit by the commonly
used formula

ã = αv A + Bs αs A2/3, (63)

which includes volume and surface contributions where αv

and αs are the coefficients for these two quantities. The
dimensionless parameter Bs gives the surface area of the
nucleus relative to its spherical value. As all the systems
studied are spherical at (E∗ − δP + δW ) /A = 0.5 MeV, Bs

was set to unity. The dashed curve in Fig. 17(a) shows the
fit obtained with Eq. (63). The fitted coefficients are αv =
0.078 MeV−1 and αs = 0.146 MeV−1. For comparison, curves
for the level-density parameters from Tõke and Światecki
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FIG. 12. (Color online) Same as for Fig. 10(c), but now the level
density for A = 40 is calculated with the Gamov method using the
cutoff decay widths of �0 = 1 and 0.01 MeV. Only curves that are
distinguishable from the others are labeled.

(αv = 0.068, αs = 0.274 MeV−1) [49] and Ignatyuk et al.
(αv = 0.073, αs = 0.095 MeV−1) [50] are also displayed. The
fitted surface coefficient is intermediate in value between these
two other prescriptions, but closer to that of Ignatyuk et al.

In Fig. 17(b), the extracted level-density parameters are
compared to a pure linear dependence on A, i.e., αs = 0, as is
sometimes assumed. Plotted in this figure are curves for k =
1/αv = 7, 8, 9, and 10 MeV. Our level-density parameters are
closer to k = 10 MeV, especially for the heavier system where
surface contributions are less important. Extensive tabulations
of experimental level densities at excitation energies just
above the neutron separation energy have been determined
from neutron resonance counting [51] on stable target nuclei.
When these level densities are fitted with an appropriate
Fermi-gas expression, the level-density parameters obtained
are k ∼ 7–8 MeV [except near closed shells where we
expect ã to have a strong excitation-energy dependence (see
later)]. These are larger than our calculated values, and hence
our calculated level densities are smaller than experimental
values at these low excitation energies. This is not unexpected
as we have not included many-body effects. Specifically,
Ignatyuk et al. [3] propose multiplying level densities from
the independent-particle model, such as in this work, by a
collective enhancement factor to reproduce these experimental
level densities. Dilg et al. [52] have also fitted neutron
resonance data, as well as data on known low-energy levels,
using ã and δP as fit parameters. Although the fitted ã values
correspond to k ∼ 9–10 MeV in the rare-earth region and thus
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FIG. 13. (Color online) Level-density parameters ã deduced from
the calculated entropy and Eq. (62) as a function of the shifted
excitation energy per nucleon. Results were obtained using the
subtraction method to treat the continuum. The data points, indicated
on each curve, are the points at which Emin

cost = T .

are closer the our calculated ã values, the fitted δP values are
smaller by 1–2 MeV. This again indicates that the experimental
level densities at these small excitation energies are larger than
obtained in this work.

Many experimental studies have adopted the excitation-
energy dependence of the level density suggested by Ignatyuk
et al. [3,50], which includes the washing out of shell effects
with increasing temperature. The entropy is expressed in terms
of an excitation-energy-dependent level-density parameter,
i.e.,

S = 2
√

a(U )U, (64)

where

a(U ) = ã

[
1 + h(U )

δW

U

]
. (65)

The function h(U ), determining the behavior at low excitation
energies, is given by h(U ) = 1 − exp (−γU ). The parameter
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FIG. 14. (Color online) Same as for Fig. 13(a), but here the results
for A ∼ 170 were obtained from the Gamov method with (a) �0 = 1
MeV and (b) �0 = 0.01 MeV. Only curves that are distinguishable
from the others are labeled.

γ gives the energy scale over which shell effects are washed
out. At high excitation energies where h → 1, the Ignatyuk
formalism leads to the expected dependence of Eq. (62). To
determine how well this excitation-energy dependence can
describe the calculations in this work, asymptotic level-density
parameters were determined at each excitation energy from the
calculated entropy using Eqs. (64) and (65). The parameter
γ was adjusted to minimize the spread of these deduced ã

values at low excitation energies. For the A ∼ 170 nuclei, γ

was determined by this procedure as 0.035 MeV−1 and the ã

values are plotted in Fig. 18(b). These are to be compared to
the ã values obtained for γ = ∞ in Fig. 18(a). The condition
γ = ∞ corresponds to h = 0 and the resulting values are the
same as those deduced from Eq. (62) and plotted in Fig. 13(a).
The spread in the ã values at low excitation energies observed
in Fig. 18(a) is almost removed in Fig. 18(b), and thus this
indicates that the Ignatyuk formalism adequately describes the
fading out of shell effects for this mass region. The deduced
value of γ is of similar magnitude to the value 0.05 MeV−1

obtained by Ignatyuk et al. [50] by fitting neutron resonance
data. Schmidt et al. [53] have extracted a mass-dependent value
of γ and for A = 170, they find γ = 0.045 MeV−1. Again, this
value is of similar magnitude to the value of this work.

For the lighter mass regions (A = 40 and 60), a similar
reduction in the spread of the deduced ã values was not
achieved. Thus for these light systems, the description of the
level density in the region where shell effects are still important
is more complex than this Ignatyuk treatment.
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FIG. 15. (Color online) Same as for Fig. 13(c), but here the results
for A = 40 were obtained from the Gamov method with (a) �0 =
1 MeV and (b) �0 = 0.01 MeV.

B. Deformation dependence

The level density of strongly deformed nuclei is of interest.
In the statistical model, the fission decay rate is determined
from the level density of the deformed saddle-point config-
uration. The deformation dependence of the level density is
also needed to determine the equilibrium shape distribution of
compound nuclei [36]. This distribution can be important in
determining the emission rates of α and heavier fragments [54].
The deformation dependence for 170Yb at various excitation
energies is displayed in Fig. 19. To highlight the deformation
dependence, the level densities are normalized to the max-
imum value for that excitation energy. The results obtained
with the subtraction method are plotted as the solid curves,
while the dashed curves show results from the calculation with
the Gamov method (�0 = 1 MeV). At the lowest excitation
energies, the level density is largest for deformations close
to the ground-state value (Q = 0.875 for 170Yb). For this
nucleus at these excitation energies, the continuum is not
sampled significantly and the results for the two methods are
almost identical. At an intermediate energy (∼100 MeV), shell
effects have melted and the level density peaks for spherical
shapes but the distribution is quite broad. Again, the results
are similar for the two methods. However, at higher excitation
energies where the continuum becomes more important, the
results obtained with the two methods are quite different.
For the subtraction method (solid curves), the dependence
on deformation near sphericity decreases. The curves become
broader with increasing excitation energy as expected when
the temperature increases. Contrary to this, the dashed curves
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FIG. 16. (Color online) Calculated level-density parameters at
(E∗ − δP + δW ) /A = 0.5 MeV are plotted versus N − Nβ (A), the
neutron number separation from the β valley of stability. The data
points were obtained with the subtraction and Gamov methods. For
the latter, the three indicated values of the cutoff width �0 were used.
For A = 40 and 60, the fitted variation of the level-density parameter
(cases B and C) from Ref. [5] are shown by the dot-dashed and dashed
curves, respectively.

obtained with the Gamov method become narrower. The
underlying reason for this behavior can be traced to the
variation in the resonance widths with deformation displayed
in Fig. 7 and discussed in Sec. IV B. As a spherical system
is deformed, then on average, the widths of the resonances
increase leading to a decrease in the single-particle level
density in the Gamov method. Thus, this behavior leads to
a favoring of spherical shapes.

The strong peaking of the level density at sphericity for the
Gamov method is quite general. Results are shown in Fig. 20
for 160Yb and 60Ni at E∗/A = 1.875 MeV. In both cases, the
continuum contributions are significant. Curves are shown for
the subtraction method (solid) and for �0 = 1 MeV (dashed)
and �0 = 0.01 MeV (dot-dashed). For both nuclei, the level-
density distributions obtained with the Gamov method are
narrower than those from the subtraction method. However,
the peaking at sphericity is even stronger for smaller values of
the cutoff width �0. Also, the effect is stronger for the heavier
system. These dependencies are quite general.

The degree to which the spherical shape is favored in the
Gamov method also depends on the n-p asymmetry. Figure 21

024310-15



R. J. CHARITY AND L. G. SOBOTKA PHYSICAL REVIEW C 71, 024310 (2005)

0

5

10

15

20

25

0 50 100 150 200 250
A

0

5

10

15

20

Ignatyuk

~

Toke

a 
(M

eV
-1

)
(a)

(b) k= 8 9 107

FIG. 17. (Color online) Asymptotic level-density parameter ã as
a function of nucleon number A. The data points are the values
determined from the calculations of this work. (a) The dashed curve
shows a fit to these data with volume and surface components
(see text). Curves are also shown for the prescription of Tõke and
Światecki [49] and Ignatyuk et al. [50]. (b) The curves show linear
dependences of the level-density parameter on A, i.e., ã = A/k. The
value of k for each of the curves is indicated in units of MeV.

displays the deformation dependence of the level density for
three Yb isotopes all at E∗/A = 1.18 MeV. The dashed curves,
calculated with the Gamov method, indicate that the effect is
stronger for the very neutron-rich 190Yb isotope. Because of the
small neutron separation energy for this system, the importance
of the positive-energy neutron levels is much greater than
for the β-stable 170Yb system. The proton-rich 150Yb system
shows even smaller effects than the β-stable nucleus. The
most important positive-energy proton levels are below the
Coulomb barrier and thus they are all narrow compared to
the cutoff width �0. As a general rule, modifications induced
by deformation are of lesser importance for protons than for
neutrons. Of course for very light nuclei, the Coulomb barrier
is smaller and its ability to suppress these deformation effects
is reduced.

The deformation dependence from the Gamov method has
important consequences for fission. The fission decay width is
determined from the ratio of the level densities at the saddle-
point and equilibrium configurations. The favoring of spherical
nuclei at high excitation energies will lead to a suppression of
the fission width and thus an increase in the probability of the
competing evaporative decay modes. The total fission cross
section will therefore be reduced, and for events that do fission,
it will occur later in the decay cascade. Such effects have
been observed experimentally. Measurements of pre- and post-
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FIG. 18. (Color online) Asymptotic level-density parameters
determined for the A ∼ 170 systems with Eq. (65). (a) The parameter
γ was set to infinity; these results are the same as those shown in
Fig. 13(a). (b) The value γ = 0.035 was obtained from minimizing
the spread in the curves at low excitation energy.

scission multiplicities of evaporated particles in coincidence
with fission fragments have shown that these fragments are
created with little excitation energy even when the initial CN
excitation energy is large [55]. The standard interpretation of
these results is in terms of dynamical effects [55], but it is
clear that if one adopts the Gamov method, then it can explain
part, or possibly most, of the experimental observations. The
magnitude of the predicted effect will depend on the value
of �0.

Fission is most important for the heavier systems and
thus it is of interest to examine the deformation dependence
determined for 238U. This is shown in Fig. 22 for three
excitation energies. For the lowest value (E∗ = 16 MeV),
the level density is again largest for deformations around the
ground-state value. There is again no difference between the
subtraction (solid curve) and Gamov (dashed curve) methods.
(The curves are indistinguishable.) At E∗ = 140 MeV, shell
effects have melted and, in both methods, the level density is
largest for spherical systems. Only a small difference between
the two methods is observed. Again at the highest excitation
energy (E∗ = 560 MeV), the two methods give very difference
results. The Gamov method is strongly peaked at sphericity. In
contrast now, the results with the subtraction method show this
nucleus is unstable with respect to prolate deformations, i.e.,
the level density increases with increasing Q. This is basically
a fission instability; however, to fully treat fission one should
include more shape degrees of freedom. If the level-density
parameter is deformation dependent as in Eq. (63), then
the fission barrier is temperature dependent [56]. The result
obtained with the subtraction method therefore represents the
situation where the temperature-dependent fission barrier has
vanished. In terms of level density, there is no saddle point,
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FIG. 19. (Color online) Deformation dependence of the level
density calculated for 170Yb at the indicated excitation energies. The
level densities are normalized to the maximum ρmax for that excitation
energy. For clarity the results for each successive excitation energy
are shifted up along the y axis. The thin lines in each case correspond
to the shifted x axis. Results obtained with the subtraction method are
shown as the thick solid curves, while the dashed curves represent
results obtained with the Gamov method for �0 = 1 MeV.

i.e., a configuration of low level density which represents a
bottleneck through which the system must pass in order to
fission. Therefore, fission stability can be quite different for
the two methods of treating the continuum.

As the deformation dependence of the level-density pa-
rameter plays an important role in fission, the applicability
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FIG. 20. (Color online) Deformation dependence of the normal-
ized level density as in Fig. 19. Results are shown for 160Yb (E∗ =
300 MeV) and 60Ni (E∗ = 112 MeV) with the subtraction method
(solid curves) and with the Gamov method for �0 = 1 MeV (dashed
curves) and 0.01 MeV (dot-dashed curves).
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FIG. 21. (Color online) Deformation dependence of the normal-
ized level density for three Yb isotopes at the indicated excitation
energies. Solid and dashed curves were obtained with the subtraction
and Gamov (�0 = 1 MeV) methods, respectively.

of Eq. (63) was investigated for the subtraction method.
(It is clearly not applicable for the Gamov method.) For
a given excitation energy and deformation, the asymptotic
level-density parameter was determined from the calculated
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FIG. 22. (Color online) Deformation dependence of the normal-
ized level density for 238U as in Fig. 19.
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deduced for deformed 150Yb nuclei (oblate and prolate shapes) as
a function of the relative surface area Bs . Results are shown for
the indicated thermal excitation energies. For clarity, results at some
excitation energies have been shifted up along the y axis by the
indicated amounts.

entropy as

S = 2
√

ã[E∗ − δP + δW − Vdef(Q)], (66)

assuming shell and pairing effects are washed out. This differs
from Eq. (62) in that now the liquid-drop deformation energy
has also been subtracted from the excitation energy. Results
obtained for 150Yb are displayed in Fig. 23 as the data points
for various values of Eth = E∗ − δP + δW − Vdef (Q), the
asymptotic thermal excitation energy. The extracted values
are plotted against Bs , the relative surface area (Bs = 1 is
sphericity). Except for the lowest value of Eth where shell
oscillations are still present, they increase almost linearly with
Bs . The solid curves display linear fits to the extracted values
and, from the fitted slopes, the surface coefficient αs [Eq. (63)]
can be determined. Ignoring Eth = 70 MeV, the slopes, and
thus the αs coefficients, are almost independent of excitation
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FIG. 24. (Color online) Surface coefficient of the level-density
parameter obtained for A ∼ 170 systems as a function of excitation
energy. The dotted line indicates the value obtained from the fit in
Fig. 17. Other values of the surface coefficient from the prescriptions
of Tõke and Światecki [49] and Ignatyuk et al. [50] are also indicated.

energy. The αs coefficients obtained from all calculated A ∼
170 nuclei are plotted in Fig. 24. Apart from the lowest
excitation energies where shell effects are still important,
all the αs coefficients are similar, being almost independent
of excitation energy and n-p asymmetry. The values of αs

determined by this procedure are quite similar to the value
obtained from fitting the A dependence of ã in Sec. VII A.
This value is indicated by the dotted line in Fig. 24. Clearly
Eq. (63) provides a reasonably consistent description of the A
and deformation dependencies of the level-density parameter
for the subtraction method. The small difference between
the extracted values of αs from the two procedures may be
due to the fact that curvature and higher-order corrections
to the level-density parameter [49] have been ignored. Thus,
these corrections must be small (at least for the deformations
considered) in order to get such good agreement from the two
procedures.

One final note, αs depends very much on details of how the
mean-field potential changes with deformation. In Sec. IV A,
the diffuseness parameter d of the nuclear potential was made
angle dependent [Eq. (27)] so the diffuseness perpendicular
to the nuclear surface is constant. The parameter d is actually
the diffuseness along the radial direction. If instead d is set
to be constant, as done in many studies, then the extracted
αs values are found to be negative! In this case, the mean
diffuseness perpendicular to the nuclear surface decreases
with deformation. Because the level-density parameter is quite
sensitive to diffuseness, this leads to the calculated reduction
of the level-density parameter with deformation. Thus for large
deformations, it is important to make d angle dependent.

VIII. DISCUSSION

In the preceding section, it was shown that the two
methods for calculating the contribution from the positive-
energy single-particle levels give similar results, apart from
the deformation dependence. The difference between the two
methods are the inclusion of both the negative background
and the wide resonances in the subtraction method. These two
contributions have opposite effects on the level density, and
thus it seems they partially cancel each other. Also for heavy
systems with large Coulomb barriers, the low, positive-energy
proton states are all narrow resonances and thus give almost
identical results for the two methods. Thus the proton-rich side
of the chart of nuclides is less sensitive than the neutron-rich
side to the continuum, at least for the heavier systems.

If the Gamov method is considered preferable, then
consideration must be given to the value of �0. Possibly
�0 is related to the CN lifetime, i.e., only Gamov levels of
lifetime greater than the CN should be considered and thus �0

should be roughly the total compound-nucleus decay width.
Weidenmüller considered lifetimes of 10−18 s (decay widths
∼1 keV), which are appropriate for very small excitation
energies [21]. However, as the CN lifetime decreases with
excitation energy, then �0 should increase. The decay width is
of the order of 1 MeV at E∗/A = 1 MeV. An increasing value
of �0 with excitation energy would lead to a reduction in
the predicted strong peaking of the level density at sphericity.
Another possibility is that �0 should be related to the average
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spreading width of levels near the Fermi surface. This would
lead to a much smaller excitation-energy dependence of �0.

It is important to remember that the results of this work
relate to how the treatment of positive-energy single-particle
levels affects the level density in the independent-particle
model. Apart from pairing, the calculations did not include
any other many-body effects. Also they did not allow for
self-consistency between the assumed nuclear potential and
predicted density distributions of the nucleons. These effects
may to lead to deviations from the predicted behavior. In
fact, experimentally it is known that the level density for hot
Yb nuclei cannot be described by a backshifted Fermi-gas
expression, but an important excitation-energy dependence
of the level-density parameter is needed [2]. The latter is
consistent with the variation of the frequency-dependent
effective nucleon mass with temperature [57].

Some of the effects ignored in this work may influence the
n-p asymmetry dependence. For example, if the diffuseness
parameter of the nuclear potential increases for nuclei close
to the drip lines, then this will enhance the level-density
parameter for these systems. Also, differences between the
neutron and proton effective masses and their dependence on
asymmetry may also be important. Finally, the dependences
of the collective-enhancement factors on proton and neutron-
richness should be considered.

Al-Quraishi et al. [5] suggested that a restriction of
the positive-energy states to narrow resonances, as in the
Gamov method, would lead to an important n-p asymmetry
dependence of the level-density parameter. They fit the density
of known levels for 20 � A � 70 with the form

aC = a1A exp{a2[Z − Zβ(A)]2}, (67)

where Zβ (A) is the proton number of the β-stable nucleus
of nucleon number A, and a1 and a2 are the fit parameters.
This is called case C in Ref. [5]. The dashed curves in
Figs. 16(b) and 16(c) show aC for A = 60 and 40, respec-
tively. If this strong n-p asymmetry dependence is real, the
calculations of this work suggest it cannot be explained by the
treatment of the continuum as assumed in the justification
of Eq. (67). Al-Quraishi et al. also considered another fit
(case B) based on isospin considerations:

aB = a3A exp[a4(N − Z)2], (68)

where now a3 and a4 are the fit parameters. The dot-dashed
curves in Figs. 16(b) and 16(c) show the resulting values of aB .
In this case, the n-p asymmetry dependence is not as strong as
in case C, but still stronger than our calculations for A = 60.
The large difference between cases B and C suggests the fits
do not constrain the level-density parameter for very neutron-
and proton-rich nuclei. In Ref. [2], no significant asymmetry
dependence of the level-density parameter was observed for
152Yb and 160Yb CN with excitation energy greater than
100 MeV. This is consistent with the dependence calculated
with both methods of this work [see Fig. 16(a)].

It is also important to note again that the small n-p
asymmetry dependence observed in these calculations is only
true for T < Emin

cost. Extending the calculations above T = Emin
cost

leads to a much larger dependence, although this region is not
relevant to the statistical model. Reference [22] noted that

for calculations where the number of single-particle levels is
finite, such as in the Gamov method, there is a maximum
excitation energy of the CN. The level density as a function
of excitation energy must peak and then approach zero at
this maximum excitation energy. The peak value of the level
density corresponds to T = ∞ and higher excitation energies
have negative temperatures. The details of this behavior
would be very dependent on the n-p asymmetry. Although
a negative temperature may be appropriate for the CN, it is
certainly not meaningful for the gas. Thus our model of CN in
equilibrium with the surrounding gas breaks down. However,
it is not clear that this is of any relevance to the statistical
model.

IX. CONCLUSIONS

The effects of continuum positive-energy neutron and
proton levels on the nuclear level density has been investigated.
The use of the independent-particle model allowed for a broad
survey of how these continuum corrections modify the level
density over the entire chart of nuclides. Two methods for cal-
culating the contributions of these positive-energy levels were
investigated. In the subtraction method, the single-particle
level density is determined from the scattering phase shifts.
The resulting single-particle level density has contributions
from narrow and wide resonances and a negative background.
In the Gamov method, the single-particle level density is
calculated from the Gamov states and only the contributions
from the narrow resonances are considered. From the bound
states and these two prescriptions for the positive-energy states,
the entropy and level density are calculated as a function of
temperature and excitation energy. These calculations ignored
all many-body effects apart from the pairing interaction. At
large excitation energies where shell effects melt, the level
density followed a backshifted Fermi-gas expression. Also,
the deduced level-density parameters were quite similar for the
two methods. They depended on A with very little dependence
on the n-p asymmetry of the nucleus. The biggest asymmetry
dependence was for the very exotic systems near the drip lines
where a small reduction in the level-density parameter was
sometimes found. For the heavier systems, the prescription
of Ignatyuk et al. [50] accounted for the variation in level
density at low excitation energies where shell effects are still
important.

The largest differences arising from the use of the two
methods was the predicted deformation dependence of the
level density. At high excitation energies, the Gamov method
predicted that the level density peaked strongly for spherical
systems whereas in the subtraction method the deformation
dependence was rather flat near sphericity. This suppression
in the relative level densities of deformed to spherical systems
in the Gamov method would lead to a reduction in the predicted
fission width and may help explain the large pre-scission light-
particle multiplicities observed in fission reactions [55].
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[49] J. Tõke and W. Światecki, Nucl. Phys. A372, 141 (1981).
[50] A. V. Ignatyuk, G. N. Smirenkin, and A. S. Tishin, Sov. J. Nucl.

Phys. 21, 255 (1975).
[51] E. Erba, U. Facchini, and E. Saetta-Menichella, Nuovo Cimento

22, 1237 (1961).
[52] W. Dilg, W. Schantl, H. Vonach, and M. Uhl, Nucl. Phys. A217,

269 (1973).
[53] K.-H. Schmidt, D. Delagrange, J. P. Dufour, N. Câjan, and
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