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Central depression in nuclear density and its consequences
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A. V. Afanasjev1,2 and S. Frauendorf1,3

1Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
2Laboratory of Radiation Physics, Institute of Solid State Physics, University of Latvia, LV 2169 Salaspils, Miera str. 31, Latvia, and

3IKH, Research Center Rossendorf, Dresden, Germany
(Received 5 October 2004; published 18 February 2005)

The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell
structure is studied within the relativistic mean-field theory. A large depression leads to the shell gaps at the proton
Z = 120 and neutron N = 172 numbers, whereas a flatter density distribution favors N = 184 and leads to the
appearance of a Z = 126 shell gap and to the decrease of the size of the Z = 120 shell gap. The correlations
between the magic shell gaps and the magnitude of the central depression are discussed for relativistic and
nonrelativistic mean field theories.
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I. INTRODUCTION

The question of the possible existence of shell-stabilized
superheavy nuclei and the precise location of the magic
spherical superheavy nuclei has been in the focus of the
nuclear physics community for more than three decades [1].
Unfortunately, the various theoretical models do not agree
with respect to the magic shell gaps in superheavy nuclei.
The proton numbers Z = 114, 120, and 126 and the neutron
numbers N = 172 and 184 are predicted by different models
and parametrizations [2]. All these models reproduce the
known magic numbers in lighter systems. The predicted magic
numbers are of decisive importance for the experimental search
of superheavy nuclei. In such a situation it is necessary to
understand what makes the predictions of the models so
different in the region of superheavy nuclei. One of the reasons
is the appearance of a central depression in the nuclear density
[3,4], which is studied in this article.

The first predictions of superheavy nuclei were based on
the shell correction method, which assumes a single-particle
potential with a flat bottom. Nowadays, these calculations pre-
dict Z = 114 and N = 184. The microscopic self-consistent
models start either from an effective nucleon-nucleon in-
teraction (models based on the Skyrme and Gogny forces)
or the exchange of mesons by nucleons [relativistic mean
field (RMF) theory]. Although based on more fundamental
principles, these models do not agree among each other
in predicting the magic shell gaps of superheavy nuclei.
In part, this is related to the fact that the reliability of
different parametrizations of these models is verified only
by comparing theoretical and experimental binding energies
and their derivatives [separation energies, the δ2n,2p(Z,N)
quantities] and deformation properties [5]. These observables
are not very sensitive to the energies of the single-particle
states. For example, it was shown in Ref. [5] that the NLSH
and NL-RA1 parametrizations of the RMF theory provide a
reasonable description of these quantities in the deformed
actinide region despite the fact that the single-particle energies
are poorly reproduced. Accurate single-particle energies are
crucial for predicting the shell gaps in superheavy nuclei.

However, the accuracy of the description of the single-particle
states in the deformed region of the heaviest actinides has been
tested only for a few parametrizations of the RMF theory [5]
and of the Skyrme SLy4 functional [6]. The shell correction
approach is based on phenomenological potentials that best
reproduce the single-particle levels of the actinides. However,
the assumption of a flat-bottom radial profile is a severe source
of error when extrapolating to the spherical superheavy nuclei.

Self-consistent microscopic calculations find a central
depression in the nuclear density distribution [3,4], which
generates a wine-bottle shaped nucleonic potential. Its magic
numbers differ from the ones of the phenomenological flat-
bottom potentials. The present manuscript studies the influence
of this depression on the shell structure of spherical superheavy
nuclei. As a theoretical tool we use the RMF theory for
spherical nuclei without pairing [7] and the relativistic Hartree-
Bogoliubov (RHB) theory [8,9].

II. DISCUSSION

Figure 1 compares the single-particle spectrum of a wine-
bottle potential (g-s) with the one of a flat-bottom potential
(exc-s). The details of the potentials are discussed later. The
differences are easy to understand. The high-j orbitals are
localized mostly near the surface, whereas the low-j orbitals
have a more central localization (see, for example, Fig. 6.2
in Ref. [10]). As compared to a flat-bottom potential, the
high-j orbitals are more and the low-j orbitals are less bound
in an attractive wine-bottle potential. In the following it is
useful to distinguish between the groups of low-j and high-j
single-particle states. Filling up a low-j group with nucleons
increases the density near the center, whereas filling a high-j
group increases the density near the surface. As demonstrated,
the occupation of these groups determines the radial profile of
the neutron and proton densities and potentials.

We start with 208Pb. The RMF theory provides a good
description of the experimental charge density distribution
of this nucleus [11,12]. With increasing neutron and proton
numbers the corresponding densities are modified in the way
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FIG. 1. Single-particle spectra of the ground state (indicated as
g-s) and the excited (indicated as exc-s) configurations in the 292120172

system obtained in the RMF calculations with the NL3 force. Solid
and dashed lines are used for positive and negative parity, respectively.
Solid and open circles indicate the occupied and empty orbitals,
respectively. In the ground state, all subshells below Z = 120 and
N = 184 are fully occupied. For the g-s configuration, the spin-orbit
partners 3p1/2, 3p3/2 and 3d3/2, 3d5/2 show up at very close energy.
In the excited configuration, only 12 particles are excited from the
subshell ν1j15/2: 4 particles still reside in this subshell. The spherical
shell gaps of interest are indicated.

shown in Fig. 2. Between Z = 82 and Z = 106 the protons
fill the high-j group π1i13/2, π1h9/2, between Z = 106 and
Z = 120 they fill the medium-j group π2f7/2, π2f5/2, and
between Z = 120 and Z = 126 they fill the low-j group

π3p1/2, π3p3/2. The variation of the proton density is seen
most clearly in the N = 172 isotones. The filling of the high-j
group π1i13/2, π1h9/2 increases the density at the surface
(compare Z = 82 and Z = 106 in Fig. 2). The filling of
medium-j group π2f7/2, π2f5/2 increases the density between
central and surface areas (see Z = 120). Finally, the filling of
the low-j group π3p1/2, π3p3/2 increases the density in the
central region of nucleus (see Z = 126).

The analogous polarization effects caused by the groups
of low-j and high-j subshells in the neutron subsystem are
illustrated in Fig. 2. The variation of the neutron density gen-
erated by filling these groups is seen most clearly in the Z =
106 isotopes. Filling the high-j group ν1i11/2, ν1j15/2, ν2g9/2

increases the density near the surface. Filling the low-j group
ν3d5/2, ν3d3/2, ν4s1/2 increases the central density, and filling
the high-j group ν1j13/2, ν2h11/2, ν1k17/2 adds matter to the
surface region. Analyzing the published results, we found that
the grouping into high/medium/low-j subshells shown in Fig. 2
appears in all models/parametrizations (cf. Fig. 1 in the present
manuscript and Figs. 4, 9, 13, and 15 in Ref. [3]).

As seen in Fig. 2, the combined occupation of the high-j
neutron subshells 2g9/2, 1j15/2, 1i11/2 [and medium-j 2g7/2],
and proton 1h9/2 and 1i13/2 [and medium-j 2f7/2] subshells
leads to a central depression in the nuclear density between
Z = 106 and Z = 120 and N = 164 and N = 172, which is
especially pronounced in the Z = 120, N = 172 system. As
seen from the density variations in Fig. 2, the proton subsystem
plays a larger role in the creation of the central depression. This
result differs from the results of the Skyrme calculations with
the SkI3 parametrization [3], the authors of which claim that
the central depression is mainly due to the occupation of the
neutron subshells. The appearance of the central depression
is a consequence of the different density distributions of the
single-particle states: high-j orbits are located near the surface
and low-j orbits near the center. This generic feature is dictated
by the nodal structure of the wave functions in a leptodermic
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FIG. 2. The evolution of proton and neu-
tron densities with the changes of proton and
neutron numbers. Arrows indicate the group of
single-particle subshells which become occu-
pied with the change of the nucleon number.
The figure is based on the results of spherical
RMF calculations without pairing, employing
the NL3 parametrization. The shaded back-
ground is used for nuclei located beyond the
proton-drip line. If the indicated configuration
is not lowest in energy, its excitation energy
(in MeV) is given by E∗.
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FIG. 3. Density distributions (upper row), nucleonic (V + S,
middle row) and V − S (bottom row) potentials in the ground (g-s)
and excited (exc-s) configurations of 292120172. S and V are the
attractive scalar and repulsive vector potentials, respectively. The left
column shows the proton system and the right the neutron system.
The proton and neutron density distributions of 208Pb are shown in
upper panels for comparison.

potential. Hence, the high-j proton and neutron orbitals will
modify the radial profile in a comparable way. However, the
high-j proton orbitals should be more efficient, because the
Coulomb interaction pushes them to larger radii. This is in
contrast to the conclusions of Ref. [4] where it was stated that
the reduction in the central density is the consequence of the
large repulsive Coulomb energy.

Let us discuss the interplay among the geometry of
the single-particle orbitals, the appearance of the central
depression in the density, and the shell structure in more detail.
One possibility to generate a flatter density distribution in the
central part of nucleus is by exciting particles from high-j
subshells to low-j subshells. Figure 1 shows an example of
such an excitation in the 292120172 system. Here 12 neutrons
are excited from the 1j15/2 subshell into 3d5/2, 3d3/2, and
4s1/2 subshells. In this excited (called exc-s) configuration
the neutron density distribution in the central part of nucleus is
much flatter than in the ground state (called g-s) configuration,
and its profile is very similar to the one in 208Pb [Fig. 3(b)]. The
changes in neutron density are fed back to the proton density,
because the isovector interaction tries to keep them alike. As
a consequence, the proton density distribution becomes also
flatter [Fig. 3(a)] but the density fluctuations due to shell effects
remain visible. Both the nucleonic potential V + S [Figs. 3(c)

and 3(d)] and the potential (V − S) [Figs. 3(e) and 3(f)], which
in first approximation is related to the spin-orbit potential via
Vls(r) = m

m∗(r) (V (r) − S(r)) [14], reflect the density change:
they becomes flatter in the central part of nucleus. This effect
is especially pronounced in the proton nucleonic potential:
the “wine-bottle” radial shape is replaced by a “flat-bottom”
one. Another consequence of this excitation is an increase
of the surface diffuseness both in the densities and in the
potentials.

The various RMF forces are characterized by different
compression moduli K∞ (NL-Z [173 MeV], NL3 [272 MeV],
and NLSH [355 MeV]). As expected, the magnitude of the
central depression in the densities and potentials increases
with the decrease of the compression modulus. However, the
changes in the energies of single-particle states, densities, and
potentials induced by our probing particle-hole excitation do
not depend sensitively on the compressibility.

As a result of the flattening of the nucleonic potential the
energies of the single-particle states are changed as described
above (see Fig. 1). The shifts are larger in the proton subsystem
because the proton potential is more flattened than the neutron
one. The Z = 126 proton gap emerges and the size of the Z =
120 gap decreases. To a lesser extent, the N = 172 neutron gap
decreases and the N = 184 gap increases. The flattening of the
(V − S) potential increases the splitting of the spin-orbit pairs
[π3p1/2, π3p3/2], [ν3d3/2, ν3d5/2], and [π2f5/2, π2f7/2]. The
large spin-orbit splitting of the last pair of orbitals generates
the Z = 114 shell gap predicted by a number of flat-bottom
potentials. The present results clearly show that a flatter density
distribution leads to a larger splitting between these orbitals.

We have studied further excitations that induce a flatter
density distribution. In all cases we found the above-mentioned
dependence of the size of the Z = 120, 126 and N = 172, 184
shell gaps on the magnitude of the central depression. Our
results are consistent with the HFB studies with the Gogny
D1S force, which employed an external potential to induce the
central depression [4]: large N = 184 and Z = 126 shell gaps
were found for the values of the external potential that generate
a flat density distribution and large Z = 120 and N = 172 shell
gaps for the values that generate a central depression (see Fig. 2
in Ref. [4]). However, Ref. [4] does not discuss how the central
depression and corresponding shells gaps depend on particular
choice of the external potential. On the contrary, our study of
a considerable number of particle-hole excitations, which in
the language of Ref. [4] would correspond to different choices
of external potential, clearly indicate that above-mentioned
features are general.

Because of the isovector force, which tries to keep the
neutron and proton density profiles alike, there is a mutual
enhancement of the Z = 120 and N = 172 gaps, both being
favored by the wine-bottle potential, and of the Z = 126 and
N = 184 gaps, both favored by the flat bottom potential. For
the same reason the gaps are smaller for the combination Z =
126 and N = 172, and the Z = 120 gap does not develop
for N = 184. This behavior is not expected to depend much
on the density functional chosen. Indeed, a number of Skyrme
calculations (SkI3, SkI4, SkI1, SLy6), which show a large Z =
120 gap in the 292120172 system, do not show the double shell
closure at Z = 120, N = 184 [15]. These generic features are
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FIG. 4. Neutron and proton densities of the 292120172 nucleus
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also seen in the calculations with Gogny the D1S force (Fig. 2
in Ref. [13]), with the SkI1 (Fig. 2 in Ref. [15]), and SkI3,
SkI4, SkP (Figs. 6, 7, and 8 in Ref. [3]) Skyrme forces, and
with the RMF NL3 and NL-Z2 forces (Fig. 2 in Ref. [16]).

Let us consider the 292120172 system, which is a doubly
magic superheavy nucleus in RMF theory. Both the relativistic
and the nonrelativistic (Gogny D1S, Skyrme parametrizations
with low isoscalar effective mass m∗/m such as SkI3, SLy6
[3]) models show a pronounced central depression (see
Fig. 4). These density functionals are characterized by similar
values of m∗/m (Gogny D1S [m∗/m = 0.67], Skyrme SkI3
[m∗/m = 0.57], and SLy6 [m∗/m = 0.69] [3]. These values
should be compared with the RMF Lorentz effective mass
of the nucleon at the Fermi surface m∗(kF )/m ≈ 0.66 [3],
because the effective mass is momentum-dependent in the
RMF theory [17]. The central depression is much smaller in
the Skyrme calculations with SkP (Fig. 4) and SkM∗ forces
(Ref. [3]) which have high values of the isoscalar effective
mass m∗/m = 1 and 0.789, respectively. The development of a
more pronounced central depression for the density functionals
with low effective mass may be understood as follows. In the
surface region, the ratio m∗/m changes from low value (<1)
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along [most elongated profile] and perpendicular [least elongated
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theory [8] with approximate particle number projection by means of
the Lipkin-Nogami method and with the NL3 set and the strength
of the Gogny D1S force from Ref. [5]. Equilibrium deformations of
deformed states are indicated.

in the interior to one in the exterior. Classically, nucleons
with given kinetic energy are more likely to be found in
regions with high effective mass than in the regions with low
one because they travel with lower speed. This is reflected
by the Thomas-Fermi expression for the nucleonic density
ρ ∝ [2m∗(εF − V )]3/2. The increase of the effective mass
in the surface region favors the transfer of mass from the
center there, which makes the above-discussed polarization
mechanism of the high-j orbitals more effective for functionals
with low effective mass. Based on this argument we suggest
that a flatter radial profile is a generic feature of the density
functionals with an effective mass close to 1. It would be
interesting to investigate if the Skyrme functionals of this type
systematically give flatter density distributions than the ones
with a low effective mass.

All experimentally known nuclei with Z � 100 are expected
to be deformed [1,18]. The deformation leads to a more
even distribution of the single-particle states emerging from
the high-j and low-j spherical subshells (see, for example,
the Nilsson diagrams in Figs. 3 and 4 in Ref. [19]) than
for spherical shape. Thus, the density profile of a deformed
nucleus is flatter than of a spherical one (see Fig. 5), stronger
resembling the density profile of phenomenological potentials.
The RHB calculations also show that the density profiles
of deformed nuclei change less drastically with particle
number than that of spherical nuclei (see Figs. 2 and 5). In
addition, the single-particle energies of the deformed nuclei
in heavy actinide region have been carefully fitted in the
phenomenological potentials. The combination of these factors
explains the success of the shell correction method [20,21].
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However, this method neglects the self-consistent rearrange-
ment of single-particle levels caused by the appearance of
a central depression in spherical superheavy nuclei. Thus, the
predictions of the magic numbers for superheavy nuclei within
the shell correction method should be considered with caution.

We have deliberately excluded from our study the forces
NLSH and NL-RA1 [RMF] and SkI4 [Skyrme], which give
a Z = 114 shell gap in self-consistent calculations. This is
because they provide a poor description of either the energies
of single-particle states in deformed actinide A ∼ 250 nuclei
[5,22] or of the spin-orbit splitting [3]. The energy splitting
between deformed states emerging from the 2f7/2 and 2f5/2

subshells is well described by the RMF NL1 and NL3 [5]
and Skyrme SLy4 [6] forces, which give a small Z = 114
shell gap. In our opinion, these results make the predicted
shell gaps at Z = 120, 126 and N = 172, 184 most likely. As
discussed above, their appearance and combination depends
on the magnitude of the central depression. The RMF theory
gives a pronounced double shell closure at Z = 120, N = 172.
The nonrelativistic theories (Gogny [13], Skyrme [15,16]) give
a large shell gap at N = 184 and less pronounced gaps at Z =
120 and 126, the size of which strongly depends on neutron
number. For example, the Skyrme forces with high effective
mass (SkM∗, SkP) tend to predict a double shell closure at
Z = 126, N = 184, whereas those with low effective mass
(SkI1, SkI3, SkI4, SLy6) show a large gap at Z = 120 for N =
172, which becomes smaller or disappears when approaching
N = 184.

In RMF theory, the N = 172 gap lies between the subshells
ν3d5/2 and ν2g7/2, which form a pseudospin doublet [16].
The analysis of their deformed counterparts in the A ∼ 250
region shows that the experimental energy distance between
the pseudospin partners ν1/2[620] and ν3/2[622] is well
reproduced, which supports the predicted existence of a gap at
N = 172 (see Fig. 28 in Ref. [5]). However, taking into account
the typical uncertainty of the description of the single-particle

states in best-tested RMF parametrizations, one cannot exclude
a large gap at N = 184 [5]. For this to take place, the energy of
ν4s1/2 state has to be overestimated by approximately 1 MeV.

III. CONCLUSIONS

In summary, the influence of the filling of the spherical
subshells on the radial density profile and shell structure
of superheavy nuclei has been studied. The occupation of
high-j subshells decreases the density in the central part of
the nucleus, the occupation of low-j subshells increases it.
The polarization due to high-j orbitals generates a central
depression of the density for nuclei with Z ≈ 120 and/or
N ≈ 172. It is particularly pronounced for the combination
Z = 120, N = 172, because both the proton and the neutron
subsystems induce a central depression. Contrary to Refs.
[3,4], our results for the first time clearly show the importance
of the polarization effects in both subsystems for the creation
of central depression. This large central depression produces
large shell gaps at Z = 120 and N = 172. The occupation of
low-j orbitals by means of either multi-particle-hole excita-
tions or of the increase of Z,N beyond Z = 120, N = 172
removes the central depression and reduces these shell gaps.
The shell gaps at Z = 126 and N = 184 are favored by a
flat density distribution in the central part of nucleus. The
magnitude of central density depression correlates also with
the effective mass of nucleons: low effective mass favors
a large central depression. The similarities and differences
between nonrelativistic and relativistic mean-field models in
predicting the magic shell gaps in spherical superheavy nuclei
were discussed.
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