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Probing the nuclear energy functional at band termination
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A systematic study of terminating states in the A ∼ 50 mass region using the self-consistent Skyrme-Hartree-
Fock model is presented. The objective of this study is to demonstrate that the terminating states, due to their
intrinsic simplicity, offer unique and so far unexplored opportunities to study different aspects of the effective NN
interaction or nuclear local energy density functional. In particular, we show that the agreement of the calculations
to the data depends on the spin fields and the spin-orbit term which, in turn, allows us to constrain the appropriate
Landau parameters and the strength of the spin-orbit potential. The present study reveals that the structure and
energy of terminating states can be used as a tool to differentiate among the many Skyrme force parametrizations.
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I. INTRODUCTION

Modern mean-field calculations describing nuclear struc-
ture physics are increasingly based on effective forces like
Skyrme or Gogny or on an effective Lagrangian such as
the relativistic mean field (RMF). A shortcoming of this
approach, however, is the existence of a large number of
different realizations of the force parameters, in particular for
Skyrme and RMF. In other words, although effective forces or
Lagrangians successfully account for the variety of low energy
nuclear structure excitations, there is no consensus with respect
to the different parameter sets of the forces. The problem
relates to the fact that effective force parameters are adjusted
to certain experimental observables that are not uniquely
defined. Hence, depending on the choice of force parameters,
predictions of effective forces differ greately, particularly when
one departs from the line of stability. The challenge today is
to find those relevant observables that can be used to unify the
different parameter sets and at the same time provide reliable
predictions for unstable nuclei.

In this paper we propose a novel method to utilize high-spin
data to constrain specific force parameters. Our investigation
focuses on Skyrme forces but our approach can be applied
to RMF, Gogny, and other forces. The method is based on a
direct comparison of the excitation energies of terminating
states (which are maximum-spin states within a given sp
configuration) for two carefully selected configurations. By
limiting ourselves to the study of band terminating states
only, we access the regime of essentially unperturbed sp
motion, where correlations going beyond the mean field are
expected to be strongly suppressed. Indeed, the success of
simple Nilsson-Strutinsky calculations of terminating bands
by Ragnarsson and coworkers (for a review see [1]) nicely
confirms the structural purity and sp nature of the terminating
states. The present study reveals that the excitation energy of
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the selected terminating states probes in particular two aspects
of effective forces: (i) the strength of the spin fields and (ii)
the spin-orbit (�s) potential.

The spin fields originate from the time-odd components
of the Skyrme-Hartree-Fock (SHF) method, of which there
is limited knowledge. Direct studies of these terms are not
only scarce but also in many cases inconclusive; see [2]
and references quoted therein. In contrast, we show that the
excitation energy of the terminating states allows the direct
study of these terms. Indeed, our results clearly indicate that
the terminating states can be used to unify the coupling strength
parameters of the spin fields.

Within the mean-field approach, the �s splitting is usually
studied via the comparison of theoretical and experimental
single-particle (sp) energies of the �s doublet. The requirement
is that both �s partners should be simultaneously occupied
[3,4]. The method assumes that under such conditions the core
polarization effects, which are known to modify strongly sp
energies [5,6], are similar for �s partners and therefore
do not affect the �s splittings, at least not in a major
way.

This approach requires by definition precise empirical
knowledge of the sp energies of deep-hole states, which are
difficult to measure. In addition, particle vibration coupling
may contribute to the splitting and perturb the pure sp picture.
Unfortunately, the available data on �s splittings and their
isotopic or isotonic dependence are both scarce and uncertain.
For example, in the A ∼ 40 mass region, which is of primary
interest in this work, the most recent evaluations [7] give
�εd3/2−d5/2 ≈ 6 MeV in 40Ca and ≈5 MeV in 48Ca, while older
works give �εd3/2−d5/2 ≈ 6.8 MeV [8], ≈7.3 MeV [9], and
≈7.7 MeV [10] in 40Ca and ≈5.3 MeV [10] in 48Ca. More
detailed information on sp levels can be found in Ref. [11].

The new method proposed here to determine the cou-
pling strength of the time-odd spin fields and �s term has
clear advantages over the standard method mentioned at the
beginning: (i) it uses terminating states that are probably
the best examples of unperturbed single-particle motion;
(ii) the terminating states are uniquely defined, implying that
configuration mixing going beyond mean field is expected to
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be marginal; (iii) shape polarization is included automatically
within the calculations scheme and no further ad hoc assump-
tions are necessary; (iv) only observables are calculated and
the effective-mass-dependent sp SHF energies are not used at
any time, and (v) a wide set of rather precise experimental data
is already available throughout the periodic table.

The paper is organized as follows. Section II shows the
relation between the �s potential and the energy difference of
the selected terminating states. An overview of the available
empirical data is presented. Section III briefly recalls the local
energy density functional (LEDF) formulation of the SHF
method. Section IV reveals the problems inherent to the spin
fields from the Skyrme-force-induced local energy density
functional (S-LEDF) in N ∼ Z nuclei both in the ground
state and at band termination. It is shown that a unification
of spin fields cures these problems and leads to a unified
description of terminating states. The remaining discrepancy
between experiment and theory can further be reduced by
tuning (weakening) the strength of the spin-orbit interaction
as shown in Sec. V. Our results also show that some of the
Skyrme forces are outside the range of acceptable deviations
to the data and should be dismissed in nuclear structure
calculations. All SHF calculations presented in this paper were
done using the SHF code HFODD of Dobaczewski, Dudek, and
Olbratowski [12,13].

II. EXPERIMENTAL DATA

In this study we select the d−1
3/2f

n+1
7/2 and f n

7/2 configurations
in A ∼ 50, 20 � Z < N � 24 nuclei, where n denotes the
number of valence particles outside the 40Ca core. The
difference �E between the excitation energies of states
terminating within the d−1

3/2f
n+1
7/2 and f n

7/2 configurations is
dominated by the size of the magic gap 20. The magnitude
of the magic gap 20 is in turn directly related to the strength of
the �s-potential. Indeed, for the spherical Nilsson Hamiltonian
[14], i.e., the three-dimensional harmonic-oscillator (HO)
potential augmented by a one-body spin-orbit −2κh̄ωo�s and
orbit-orbit −κµh̄ωo�

2 term, one has

ĤNilsson − 3
2h̄ωo = h̄ωo{N − κ[2�s + µ(� 2 − 〈� 2〉N )]}.

(1)
Hence, within the Nilsson model, which is considered to
be a fundamental approximation for the nuclear mean-field
potential, one obtains from Eq. (1) the magnitude of the magic
gap 20, or more precisely the f7/2 − d3/2 splitting:

�e20 = h̄ωo(1 − 6κ − 2κµ). (2)

This equation indicates that the magnitude of the magic gap
20 depends on three major factors: the bulk properties of the
potential characterized by h̄ωo, the flat-bottom and surface
properties entering through the orbit-orbit term ∼µ, and the
strength of the spin-orbit term κ . In principle, all three terms
influence the magic gap 20. However, there exists a clear
hierarchy with respect to these effects. In light nuclei, the
nuclear potential resembles the pure HO, thus µ ∼ 0; i.e.,
the flat-bottom and the surface-related effects are much less
influential than the spin-orbit term. On the other hand, h̄ωo

determines the global energy scale in low energy nuclear

physics. This energy scale, as well as other bulk properties of
potential interest in the context of the present discussion such
as mean-square radius, is rather well constrained by the data
not only within the Nilsson-Strutinsky model, but also within
the self-consistent approaches. Hence, even small variations
of the h̄ωo related terms for light nuclei will ultimately destroy
any agreement for heavy nuclei and impair in general the
good agreement between theory and experiment. Although
Eq. (2) pertains to the f7/2 − d3/2 splitting, the conclusion
drawn above can safely be extended to heavier nuclei since
there µ → 1/2 as a consequence of the approximate pseudo-
SU(3) symmetry [15–17].

All available experimental data on the terminating states for
f n

7/2 and d−1
3/2f

n+1
7/2 configurations in A ∼ 50, 20 � Z < N � 24

nuclei where both states are known are listed in Table I. In
the present data set we have excluded N = Z nuclei since
in those nuclei the terminating state d−1

3/2f
n+1
7/2 is not uniquely

defined. The differences in excitation energies �Eexp listed
in the last column of Table I are fairly constant. The mean
value �Eexp = 5.489 MeV while the standard deviation σ =
0.251 MeV, i.e., at the level of ∼5% only. This suggests that
the bulk part of �Eexp is indeed related to the energy of 1p-1h

excitation across the gap 20 and that polarization effects are
either weak or, most likely, canceled out.

III. SKYRME-HARTREE-FOCK LOCAL ENERGY
DENSITY FUNCTIONAL

The starting point of the SHF approach is an energy
density functional which, in the isoscalar-isovector t = 0, 1
representation, takes the form

ESkyrme =
∑
t=0,1

∫
d3r

[
H(TE)

t (r) + H(TO)
t (r)

]
. (3)

The local energy density functional H (LEDF) is uniquely

expressed as a bilinear form of time-even (TE) ρ, τ,
↔
J and

time-odd (TO) s, T, j local densities and currents, and by
their derivatives

H(TE)
t (r) = C

ρ
t ρ2

t + C
�ρ
t ρt�ρt + Cτ

t ρt τt

+CJ
t

↔
J

2
t + C∇J

t ρt∇ · J t , (4)

H(TO)
t (r) = Cs

t s2
t + C�s

t st�st + CT
t st · T t + C

j
t j2

t

+C
∇j
t st · (∇ × j t ). (5)

The division of the LEDF into TE and TO parts is very
convenient since the latter contributes only when time reversal
symmetry is broken.

In the above formulas
↔
J

2
t ≡

∑
µν J 2

µν,t while the vector
spin-orbit density J t is not an independent quantity but
constitutes an antisymmetric part of the tensor density;
i.e., J t ≡ ∑

µν εµνJµν,t . Definitions of all local densities and

currents ρ, τ,
↔
J , s, T , j can be found in numerous references

and will not be repeated here. We follow the notation used
in Refs. [12,23,24] where references to earlier works can be
found as well.
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TABLE I. Spins and excitation energies of terminating states in 20 � Z <

N � 24 nuclei. The first two columns are representative of the f n
7/2 configuration

where n denotes the number of valence particles outside the 40Ca core. The
next two columns are representative of the d−1

3/2f
n+1

7/2 configuration involving
the 1p-1h proton excitation across the magic gap 20. The relative excitation
energies between the two configurations are given in the last column.

Ref. f n
7/2 d−1

3/2f
n+1

7/2 �Eexp

E[Imax] Imax E[Imax] Imax

42
20Ca22 [18] 3.189 6+ 8.297 11− 5.108
44
20Ca24 [19] 10.568 8+ 5.088 13− 5.480
44
21Sc23 [20] 9.141 11+ 3.567 15− 5.574
45
21Sc24 [21] 5.417 23/2− 11.022 31/2+ 5.605
45
22Ti23 [19] 7.143 27/2− 13.028 33/2+ 5.885
46
22Ti24 [19] 10.034 14+ 15.549 17− 5.515
47
23V24 [22] 10.004 31/2− 15.259 35/2+ 5.255

By taking an expectation value of the Skyrme force over
the Slater determinant, one obtains the LEDF (3)–(5) with 20
coupling constants C that are expressed uniquely through the
10 parameters xi, ti , i = 0, 1, 2, 3, and W,α of the standard
Skyrme force. The appropriate formulas can be found, e.g., in
Refs. [23,24]. Because of the local gauge invariance (which
includes the Galilean invariance) of the Skyrme force [23,25],
only 14 coupling constants C are independent quantities. The
local gauge invariance links three pairs of time-even and time-
odd constants in the following way:

C
j
t = −Cτ

t , CJ
t = −CT

t , C
∇j
t = C∇J

t . (6)

Because the SHF approach uses interaction-induced cou-
pling constants C, it constitutes a restricted version of the
local energy density theory of the Hohenberg-Kohn-Sham
[26–28] type. However, only very few SHF approaches rigidly
enforce the Skyrme-force-related values of C, which comprise
SkP [29], SkXc [30], and SLy5 [31]. Other forces studied
here, including SLy4 [31], SIII [32], SkO [33], and SkM� [34]
disregard the tensor terms by setting CJ

t = CT
t ≡ 0. This

is done not only for practical reasons (these terms are the
most difficult technically) but also because of the lack of
clear experimental information that would allow us to make
reasonable estimates of their strengths. Moreover, in the case
of SkO we were forced to set C�s

t ≡ 0 to ensure convergence.
All versions of the LEDF that use the Skyrme-force-induced
C values, including those taking CJ

t = CT
t ≡ 0, will be called

the Skyrme-LEDF (S-LEDF).

IV. THE SPIN FIELDS

The values of the coupling constants of the spin fields, Cs
t s2

and C�s
t s · �s, emerging from the Skyrme force appear to be

more or less accidental. This is illustrated in Fig. 1, which
shows the isoscalar Landau parameters g0 and g1 calculated
for the Skyrme forces under study. The Landau parameters are
related to the LEDF strengths in the following way [24]:

g0 = N0
(
2Cs

0 + 2CT
0 βρ

2/3
0

)
, g1 = −2N0C

T
0 βρ

2/3
0 , (7)

g ′
0 = N0

(
2Cs

1 + 2CT
1 βρ

2/3
0

)
, g ′

1 = −2N0C
T
1 βρ

2/3
0 , (8)
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FIG. 1. Isoscalar Landau parameters g0 (solid circles) and g1

(open circles) for various Skyrme forces. Vertical lines mark the
values g0 = 0.4 and g1 = −0.19 recommended by Bender et al. [24]
from their study of the Gamow-Teller resonances.

where β = (3π2/2)2/3, and N−1
0 = π2h̄2/2m�kF is an

effective-mass-dependent normalization factor. The Skyrme-
force-induced g0 and g1 parameters (Fig. 1) are indeed scat-
tered rather randomly, reflecting the fact that Skyrme forces are
fitted ultimately to the TE channel while the TO components of
the S-LEDF are only cross-checked mostly through high-spin
(cranking) applications. In Ref. [24] the preferred values
g0 = 0.4, g′

0 = 1.2, and g1 = −0.19, g′
1 = 0.62 have been

established from an analysis of the Gamow-Teller resonances,
see also Ref. [35] and references quoted therein. These values
were obtained under the additional assumption that there is no
density dependence for Cs

t and that C�s
t ≡ 0. The LEDF with

spin fields defined in this way will be called the Landau-LEDF
(L-LEDF).

A. The spin fields of the ground state

Before proceeding to the study of the terminating states,
let us discuss the spin fields of the ground states (calculated
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FIG. 2. The �s⊥ component of the spin density (in arbitrary units)
in the Oxy plane, calculated at three selected values of z = 0.27 fm
(upper part), z = 1.35 fm (middle part), and z = 2.46 fm (lower part)
of the ground state of 50Mn. Left panels show the contribution of the
odd neutron and right panels show the polarization effect exerted by
the odd neutron on the neutron core. For this case �s ν

⊥ ≈ �s π
⊥ ; see text

for further detail.

in HF approximation) of N ≈ Z nuclei. It is known that
the binding energies calculated using the complete S-LEDF
functional exhibit a rather peculiar behavior in odd-odd Tz = 0
and some odd-A |Tz| = 1/2 nuclei [36]. It manifests itself via
an additional binding energy of ∼1 MeV as compared to the
SHF calculations using only the TE part of the S-LEDF. This
effect disappears for |Tz| > 1 nuclei.

The enhancement in binding energy of N ≈ Z nuclei is due
to a strong polarization effect exerted by the spin field of the
odd particle(s) on the spin field of the core, as illustrated in
Figs. 2 and 3 for a representative example of the manganese
isotopes. Figure 2 shows the Oxy component of the spin density
�s⊥ in 50Mn for three selected sections through this axially
deformed nucleus, which include the near-equatorial plane
at z = 0.27 fm as well as z = 1.35 and 2.46 fm planes. To
visualize the polarization effect we decompose the spin density
into contributions of the valence particles (note that �sπ ≈ �sν

in this N = Z nucleus) and the core. The topology of the
surfaces shown on the left-hand side reflects the structure of

the dominant asymptotic [312]5/2 Nilsson component in the
wave function of the valence particle. Indeed, the one particle
contribution to the spin field in a simplex-conserving axial HO
basis state

�Nnz|�|;s=±i = 1√
2

(�Nnz�;1/2 ± i�Nnz−�;−1/2),

where �Nnz� = ψNnz|�|ei�ϕ, (9)

is
sx = − 1

2

∣∣ψNnz|�|(ρ, z)
∣∣2

sin 2�ϕ,

sy = − 1
2 |ψNnz|�|(ρ, z)|2 cos 2�ϕ, sz = 0,

(10)

see Ref. [12] for further details. Hence, |sx |/|sy | = |ctg2�ϕ|
and the plot of �s⊥ shows the characteristic vortex lines
for |sx |/|sy | = 1, i.e., for ϕ = [45◦ + nπ ]/2�, where n =
0, 1, 2, . . . . Two such lines that appear in Fig. 2 are consistent
with � = 2. Moreover, the small values of sxy ∼ 0 over the
entire equatorial plane at z = 0.27 fm are due to ψ[312] ∼
H1(z ≈ 0) ≈ 0. Our calculations also show that although
sz �= 0, the condition |sz| � |s⊥| is well fulfilled for most
cases.

The correlation between the spin field �s π[512]
⊥ (r) due to the

occupation of the [512]5/2 orbital by the valence proton and
that of the core �score

⊥ (r) (polarization effect) is illustrated in
Fig. 3. The figure shows the product |�s π[512]

⊥ (r)| · |�score
⊥ (r)|

that reflects the magnitude of the spin fields versus the
classical angle θ between these vectors corresponding to their
relative orientation. The figure clearly illustrates that the core
polarization is strongest in o-o N = Z nuclei and is almost of
ferromagnetic type. In odd-A N − Z = ±1 nuclei, the effect
is reduced but still remains. Hence, the role of the spin fields
in these nuclei is maximal. In |N − Z| > 1 nuclei, the induced
(core) spin field becomes quenched and is not any more
coherent with the valence-particle(s) spin field, particularly
in o-o nuclei, as depicted in Fig. 3(c).

At least two very important conclusions can be drawn
from this analysis. (i) The coherence of the spin fields in
N ∼ Z nuclei may cause a strong polarization of the nucleus.
(ii) The magnitude of the spin-field-induced effects is predicted
to depend strongly on isospin. These two observations give us
a unique opportunity to resolve the strength of the spin fields,
in particular, by using high spin states where spin fields are
expected to be enhanced.

B. The spin fields at the band termination

Figure 4(a) shows the calculated energy differences for the
terminating states �Eth = Eth[d−1

3/2f
n+1
7/2 ] − Eth[f n

7/2] relative
to the experimental data �Eexp given in Table I, i.e., the
values of �E ≡ �Eexp − �Eth. The first striking observation
stemming from this calculation is that all considered Skyrme
forces systematically underestimate the empirical data by at
least 10%. In the case of the SkM∗ and SkP parametrizations,
the difference even exceeds 20–30%. The disagreement is
unexpectedly large given the structural simplicity of the
terminating states.

Let us further observe that the values of �E calculated
using SLy4 and SLy5 forces, which are in general rather similar
to �E obtained using SIII or SkO forces, increase rapidly
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FIG. 3. Product of |�s π [512]
⊥ (r)||�s core

⊥ (r)| reflecting the magnitude of the spin fields (in arbitrary units) versus the classical angle θ between
these vectors, corresponding to their relative orientation. (a) N = Z o-o nucleus 50Mn, (b) N − Z = 1 odd-A nucleus 51Mn, (c) N − Z = 2
o-o nucleus 52Mn. All the points that are calculated at a fixed value of the z coordinate and different values of the (x,y) coordinates are labeled
by the same symbol, as indicated in the legend.

in N − Z = 1 nuclei 47V and 45Ti. This result is related to
the magnitude of the spin fields and the ferromagnetic-type
polarization of the core which, as discussed in the preceding
section and in Ref. [36], are exceptionally large for Lyon
forces; see also Fig. 1. Since no enhancement of this type is
observed in the data, this result clearly shows that a unified
description of the spin fields within the LEDF theory is
required.

Hence, we state that the experimental data suggest a
generalization of the S-LEDF. However, our strategy is to
introduce a minimal-type modification that ultimately pertains
only to the TO part of the S-LEDF. More precisely, for SLy4,
SIII, SkO, and SkM∗ we change the spin fields, i.e., the first
two terms of the TO part of the LEDF (5) not affecting the
local gauge invariance (6). For SkP, SkXc, and SLy5, on the
other hand, we also slightly modify the TO part of the tensor
term. In this way we actually brake the local gauge invariance.
However, our calculations show that this has a very small effect
on the final results when compared to calculations using the

Skyrme-force-induced CT
t values. Thus, one can state that

the local gauge invariance (6) is in fact preserved in our
calculations.

Our favorite unification scheme for the treatment of the spin
fields (called L-LEDF) follows the one developed by Bender
et al. [24]. Let us recall that in the L-LEDF calculations we
assume density-independent coefficients Cs

t defined through
the Landau parameters g0 = 0.4, g′

0 = 1.2, g1 = −0.19, and
g′

1 = 0.62 and set C�s
t = 0. Such a simple treatment of the spin

fields leads to a surprisingly consistent picture for the various
Skyrme forces, irrespective of the difference in effective mass.
Indeed, the results obtained for all forces, except those of SkM∗

and SkP, essentially overlie each other as shown in Fig. 4(b).
We suspect that the effective mass or, equivalently, the current
independence of our results is directly related to the gauge
invariance of the LEDF. This point requires, however, further
investigation. Let us further observe that �E calculated with
SkM∗ and SkP show almost a constant offset as compared to
the other forces.

∆∆ ∆∆E
[M

eV
]

0

0.5

1.0

1.5

2.0

2.5

42Ca 44Ca44Sc 45Sc45Ti 46Ti47V 42Ca 44Ca44Sc 45Sc45Ti 46Ti47V

SkM*
SkP

SkXc
SkO

SLy4
SLy5
SIII

FIG. 4. Calculated energy differences for the terminating states �Eth = Eth[d−1
3/2f

n+1
7/2 ] − Eth[f n

7/2] relative to the experimental data �E ≡
�Eexp − �Eth, where �Eexp are listed in Table I. (a) SHF calculations; (b) calculations using L-LEDF.
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FIG. 5. (a) The average difference �E (�E ≡ �Eexp − �Eth)
and (b) the standard deviation σ between the data and the calculations
versus Landau parameter g0.

Since we focus on N ∼ Z nuclei, our calculations cannot
be used to determine the isovector Landau parameters g′

0 and
g′

1. However, the sensitivity of our predictions with respect
to the isoscalar Landau parameter g0 is striking, as seen in
Fig. 5. Figure 5(a) shows the average deviation from the data
�E versus g0. Note that �E is minimal for g0 ∼ 0.4–0.8,
which is very close to the suggested value g0 = 0.4 of
Ref. [24]. Let us further observe that �E does not change
sharply within the interval �g0 = ±0.4 around the preferred
value, but our analysis seems to rule out both negative and large
positive (>1.2) values of g0. Moreover, the remaining ∼10%
discrepancy between the calculations and the data cannot be
accounted for by further readjusting the Landau parameters,
at least not within the analyzed unification scheme.

Figure 5(b) shows the dependence of the standard deviation
σ�E , which reflects the spread in �E, on g0. Apparently the
minimum is obtained for g0 ∼ 0.8–1.2, i.e., well above the
preferred value of g0 = 0.4. Let us observe, however, that
almost all curves in Fig. 4 clearly show an increasing trend
as a function of the reduced isospin TA ≡ (N − Z)/A. Hence,
part of the spread may merely reflect the isovector properties
of the LEDF, most likely, the isovector part of the �s-term. The
relatively weak dependence of �E on TA obtained for the SkO
force seems to support this conclusion. Additional analysis
strengthening this scenario is given in the next section.

V. THE SPIN-ORBIT TERM

Within the SHF theory, the �s potential takes the form

VLS(q, r) = −iW q(r)∇ × σ , (11)

where q = n, p and

W q(r) = 1
2W∇ρ0(r) + 1

2W ′∇ρq(r)

− 1
8 [(t1x1 + t2x2) J(r) + (t2 − t1) Jq(r)]. (12)
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FIG. 6. (a) The strength W0 and (b) the effective-mass-scaled
strength W�

0 of the isoscalar part of the spin-orbit SHF potential
versus the effective mass. Filled dots denote parametrizations that do
not include tensor densities; stars denote those that do. See text for
more detail.

The vector spin density J(r) dependent terms contribute rather
weakly to the �s potential. Hence, the magnitude of the �s

potential is determined essentially by the first two terms in
Eq. (12). For the spherical limit, the �s potential can be
approximated by

VLS(q, r) ≈
{
W

1

r
ρ ′

0(r) + W ′ 1
r
ρ ′

q(r)

}
�s

=
{

W0

r
ρ ′

0(r) ± W1

r
ρ ′

1(r)

}
�s, (13)

where ρ ′
0 = (ρn + ρp) ′ and ρ ′

1 = (ρn − ρp) ′ are the radial
derivatives of the local isoscalar and isovector densities, while
W0 ≡ W + 1

2W ′ and W1 ≡ 1
2W ′ denote the isoscalar and

isovector strengths, respectively. They are in turn related to
the coupling constants of the S-LEDF of Eq. (4) through
C∇J

t = − 1
2Wt .

A direct comparison of the isoscalar strengths W0 of the
�s-potential is given in Fig. 6(a). Apparently, SLy4, SLy5,
SkM∗, and SIII forces have a strong, while SkO, SkP, and
SkXc have a weak �s potential assuming, of course, that
there are no drastic differences in the isoscalar density profile.
That assumption should be rather well fulfilled in light nuclei,
which are considered here. It is interesting to note that the
conclusions stemming from a direct comparison of W0 are
in complete contradiction to the results presented in Fig. 4.
Indeed, according to our calculations, SLy4, SLy5, SkO, SIII,
and eventually SkXc are expected to have similar �s strengths
while those for SkM∗ and SkP should be considerably stronger.

The question therefore arises of how to compare the
strengths of the �s potential for different parametrizations. The
problem appears to be related to nonlocal effects which are,
within the SHF, absorbed into the kinetic energy term through
the effective mass m∗. The impact of nonlocalities on the �s

potential can be studied using the so-called asymptotically
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equivalent wave function [4,32]

φ̃i(r) =
√

m

m�(r)
φi(r). (14)

This representation allows us to rewrite the SHF equations in
an alternative form with a bare mass m in the kinetic energy
term, a state-dependent central potential Uq(eµ; r), and an
effective-mass-scaled �s potential (13):

VLS(q, r) ≈ m�(r)

m

{
W0

r
ρ ′

0(r) ± W1

r
ρ ′

1(r)

}
�s. (15)

The effective-mass-scaled isoscalar strengths W ∗
0 ≡ m�

m
W0 are

depicted in Fig. 6(b). Note that the classification of the �s-
strength according to W ∗

0 agrees very nicely with our results
shown in Fig. 4. Indeed, the values of W ∗

0 are similar for SLy4,
SLy5, SIII, and SkO and considerably larger for SkP and SkM∗.
This indicates that at least part of the observed discrepancy �E

results from a too strong �s term. By reducing the strength by
∼5%,�E decreases by ∼350 keV bringing it to an acceptable
level of ∼200 keV for most of the forces. In particular, for the
case of the SkO force, �E drops from 504 to 164 keV, while
for SLy4 a 5% reduction of the �s strength decreases �E

from 560 to 189 keV. Our analysis indicates that a reasonable
strength lies in the range of W ∗

0 ≈ 123–133.
Concerning the isovector �s potential, the Skyrme forces

discussed in the literature can be divided into three major
classes. The standard Skyrme force parametrizations assume
that W = W ′ (W1/W0 = 1/3), implying that W q ∼ W (2ρ ′

q +
ρ ′

−q). The SLy4, SLy5, SkM∗, and SIII are standard forces
among those studied here.

Nonstandard Skyrme interactions with W �= W ′ were first
studied by Reinhard and Flocard [37] in connection with
isotope shifts in Pb nuclei. Consistency with experimental data
led them to the parametrizations with W ′ ∼ −W or (W1/W0 =
−1), i.e., to an entirely different isovector dependence of the
�s-term W q ∼ Wρ ′

−q . The study of the �s term in neutron-rich
nuclei by Reinhardt et al. [33] seems further to corroborate
this result. The so-called SkO parametrization established in
Ref. [33] (and studied here) has an even larger negative value
of W1 with W1/W0 ≈ −1.3.

The third type of �s term considered in the literature in
connection with the SHF approach was introduced by Brown
[30], who uses W ′ = 0 (parametrization SkXc). In this case,
there is no isovector �s term (W1/W0 ≡ 0) and W q ∼ W (ρ ′

n +
ρ ′

p).
As already discussed at the end of Sec. IV B our calculations

give certain preference to the SkO-induced L-LEDF, since it
minimizes the spread in �E, σ�E . In particular, our results
seem to favor a �s potential with large negative isovector
strength W1. To corroborate this observation we performed
a set of calculations based on the SkO-induced L-LEDF; at
the same time, we explored different isovector dependences of
the �s term, including the four possibilities discussed above,
namely W1/W0 = −1.3,−1, 0, and 1/3. In the calculations,
the isoscalar strength W0 was kept constant and its value was
reduced by 5% as compared to the original SkO strength.

The calculated values of �E for these four variations of the
SkO-induced L-LEDF are shown in Fig. 7. A change in the

42Ca 44Ca44Sc 45Sc45Ti 46Ti47V
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σσ σσ
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W1/W0 ~ -1.3

-1

FIG. 7. The values of �E calculated using the SkO-induced
L-LEDF with four different parametrizations of the isovector �s-term,
including the original W1/W0 ≈ −1.3 strength and the modified
strengths W1/W0 = −1, 0, and 1/3. In the calculations, W0 was fixed
at 5% below its original value. The insert shows the dependence of
the spread in �E, σ�E , on W1/W0 calculated for the SkO-induced
and the SLy4-induced L-LEDF.

W1/W0 ratio from the (near) original values −1.3, −1 to 0, 1/3
clearly destroy the agreement to the data. Indeed, the spread
σ�E increases from 113 and 136 keV (W1/W0 = −1.3,−1) to
184 and 180 keV (W1/W0 = 1/3, 0), respectively; see insert
in Fig. 7. Note, however, that since we deal with N ∼ Z, a fine
tuning of the isovector terms cannot be achieved.

Similar calculations with the SLy4-induced L-LEDF, cor-
roborate our conclusions. The change of the W1/W0 ratio
from the (near) original values 1/3, 0 to –1,–1.3 improves
the agreement to the data, as shown in the insert in Fig. 7.
Note also, that the calculated spread σ�E is quantitatively very
similar for both the SkO-induced and SLy4-induced L-LEDF
provided the isovector part of the �s term is similar.

VI. SUMMARY

We have performed a systematic study of terminating states
in the A ∼ 50 mass region using the self-consistent Skyrme-
Hartree-Fock model and testing several parametrizations of
the Skyrme force. The objective was to demonstrate that
the terminating states, because of their intrinsic simplicity,
offer a unique and so far unexplored opportunity to study
different aspects of the effective NN interaction or nuclear
local energy density functional within the self-consistent
approaches.

We have shown that the Skyrme-force parametrizations
used in our work, including SLy4, SLy5, SkO, SIII, SkXc,
SkP, and SkM∗, have a rather mediocre performance (for SkP
and SkM∗ it is even unacceptable) for a seemingly simple
observable like the energy difference between the aligned f n

7/2
and d−1

3/2f
n+1
7/2 states.

We further demonstrated that a simple unification of the
spin fields according to the scheme proposed in Ref. [24]
leads to a unified description of the data for SLy4, SLy5, SkO,
SIII, and SkXc, i.e., for very different parametrizations. This
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FIG. 8. The average deviation �E for N �= Z (open dots) and
for N = Z (filled dots) nuclei. The latter case includes data for 44Ti
[19] where E[f n

7/2]12+ = 8.038 MeV, E[d−1
3/2f

n+1
7/2 ]15− = 13.369 MeV,

and �Eexp = 5.331 MeV, and for 46V [38] where E[f n
7/2]15+ =

8.484 MeV, E[d−1
3/2f

n+1
7/2 ]17− = 13.629 MeV, and �Eexp =

5.145 MeV. All calculations were done using the L-LEDF.

result seems to indicate the importance of the local gauge (and
Galilean) invariance of the local energy density functional.
The remaining discrepancy of ∼500 keV (see Fig. 8), which is
still ∼10%, cannot be reduced by further readjusting the spin
fields.

The remaining disagreement between theory and exper-
iment for different parametrizations correlates nicely with

the values of the effective-mass-scaled isoscalar strength
of the �s term for these parametrizations. Hence, a part
of this discrepancy can, most likely, be ascribed to a too
strong isoscalar �s term. A reduction of the isoscalar �s

strength by 5% reduces the discrepancy well below the 5%
level. Moreover, our calculations suggest that the spread in
�E can be further reduced by adopting the nonstandard
parametrizations of the �s term with a strong negative isovector
strength W1/W0 � −1.

Finally, let us point out that there is a large difference in
�E calculated in N �= Z and N = Z nuclei; see Fig. 8. For
N �= Z our L-LEDF approach systematically underestimates
the data, while the opposite is true for N = Z nuclei. The
offset between the two curves is ∼1 MeV. This result leaves us
with an extremely important question: Does this offset indicate
the breakdown of the standard mean field in N ∼ Z nuclei
and the need for substantial configuration mixing even for the
terminating states [39] and what is the possible source of such
mixing?
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Nucl. Phys. A386, 79 (1982).

[35] F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992).

[36] W. Satuła, in Nuclear Structure 98, edited by C. Baktash, AIP
Conf. Proc. No. 481 (AIP, Woodbury, NY, 1999), p. 114; nucl-
th/9809089.

[37] P.-G. Reinhard and H. Flocard, Nucl. Phys. A584, 467
(1995).

[38] S. Lenzi et al., Phys. Rev. C 60, 021303 (1999).
[39] J. Terasaki, R. Wyss, and P.-H. Heenen, Phys. Lett. B437,

1 (1998).

024305-9


