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N = 16 subshell closure from stability to the neutron drip line
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The Hartree-Fock-Bogoliubov method implemented with the Gogny-D1S force and used in a systematic study
of the even-even N = 16 isotones from stability to the neutron drip line strongly suggests that a subshell
gap, approximately 4 MeV wide, is opening at N = 16. The first 2+ levels as well as B(E2; 0+

gs → 2+)
reduced E2 transition probabilities have also been predicted in configuration mixing and standard random phase
approximation calculations using D1S. These results compare favorably with experimental information available
for the Z = 10–18 nuclei and with expectations for 24O properties. They also fully support our mean-field
predictions, namely that N = 16 is a spherical magic number at the oxygen neutron drip line.
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I. INTRODUCTION

One of the most striking pieces of evidence for quantum
mechanics in physics is the existence of magic numbers. From
atomic physics to nuclear physics, they are associated with a
shell structure and a spherical configuration for which all the
available individual levels are filled. In atomic physics, the
noble gases are well-known examples of enhanced stability
in their chemical properties. In nuclear physics, the same
situation indeed occurs but for magic numbers different from
those found in atomic physics. The sequence of magic numbers
for stable nuclei was explained theoretically for the first
time fifty years ago [1,2] and is now well understood. The
properties of magic nuclei like 40Ca or 208Pb were extensively
studied and are the first observables to validate the shell model
picture. However, the magnitude of shell gaps may evolve
from stability toward drip lines. It may decrease, as already
observed at neutron number N = 20 for which spherical
magicity vanishes at the neutron drip line [3]. This magnitude
may increase as well and give rise to a new magic number
at the drip line, one that is not observed for stable nuclei.
Recent experimental investigations far away from the valley
of stability highlight modifications in the shell model structure.
Several observables show that N = 16 neutron-rich isotones
present a higher stability compared to their neighbors on the
N-Z chart, namely,

(i) the N = 16 isotones 22C, 23N, and 24O are the last bound
nuclei of their respective isotopic chains [4,5],

(ii) the large energy gap around the Fermi surface for the N =
16 28Mg and 26Ne nuclei causes a break in the neutron
separation energy Sn systematics, and

(iii) the first 2+ level of 24O has been suggested in a recent
γ -spectroscopy experiment [6] to lie at higher excitation
energy than the one-neutron separation threshold Sn =
3.7 MeV [7]. Such an excitation energy is much higher
than the experimental E(2+)’s observed for the other
oxygen isotopes.

For these reasons, N = 16 is proposed to be a magic
number for the most neutron-rich isotones [8]. This means
an enhancement of the spherical gap between the s1/2 and the

d3/2 subshells of the neutron sd shell compared to its value for
stable nuclei [9–11].

In this paper, we study N = 16 as a possible new spherical
magic number for neutron-rich nuclei. Our approach mainly
relies on the Hartree-Fock-Bogoliubov (HFB) method. We
show that the shell evolution may be interpreted and quantita-
tively reproduced with the Gogny-D1S effective interaction
[12,13]. Self-consistent mean-field methods [14,15] have
already been used to study light nuclei. In a previous work [16],
the evolution from the stability region to the neutron-rich
isotopes of the N = 20 and N = 28 shells has been discussed.
Here, we study the N = 16 isotones from 22C, at the neutron
drip line, to 34Ar through a systematic description of even-even
nuclei. Axial and triaxial deformations are investigated.

In the following, we briefly recall the HFB formalism
and notation. The results from pure mean-field calculations
restricted to axial symmetry are presented as a first step.
Pairing energies are discussed. Extending the HFB calcu-
lations to triaxial shapes, collective 2+ levels, and reduced
transition probabilities B(E2)’s are derived from the generator
coordinate method (GCM) implemented within the Gaussian
overlap approximation (GOA). This configuration mixing
approach complements the mean-field description and also
points to N = 16 as a spherical neutron magic number far
away from the stability line. Finally, standard random phase
approximation (RPA) calculations using the same effective
force are performed for 24O.

II. MEAN-FIELD DESCRIPTION

In the constrained HFB theory, the deformed states |�q〉
of a nucleus are described as quasiparticule (qp) vacua. The
|�q〉 states are deduced from the minimization of the energy
functional

δ〈�q |Ĥ − λNN̂ − λZẐ −
∑

i

λiQ̂i |�q〉 = 0, (1)

where |�q〉 is the HFB wave function of deformation q, and
Ĥ is the many-body nuclear Hamiltonian. In this study, the
finite range Gogny-D1S interaction is used, and both mean
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and pairing fields are calculated in a consistent way. The
λ’s in Eq. (1) are the Lagrange multipliers associated with
the constraints on nucleon numbers N and Z and average
deformations Qi :

〈�q |N̂ |�q〉 = N,

〈�q |Ẑ|�q〉 = Z,

〈�q |Q̂i |�q〉 = Qi .

(2)

The Q̂i’s are taken as the quadrupole operators Q̂20 and
Q̂22, related to the axial and triaxial Bohr deformations β and
γ by

β =
√

π

5

√(
Q2

20 + 3Q2
22

)
AR2

, γ = arctan

√
3Q22

Q20
, (3)

where A and R =
√

3
5 (1.2A1/3) (fm) are the mass number and

radius of the nucleus under consideration, respectively.
We first investigate within constrained axial calculations

the N = 16 isotones to test their magicity. At this stage,
we consider that neutron (proton) magicity occurs when two
criteria are fulfilled: (i) The nucleus is spherical; that is, the
potential energy is minimum at zero deformation, and (ii) a
large energy gap separates the levels above and below the
Fermi surface. The second condition is satisfied when the
neutron (proton) pairing energy cancels at zero deformation
in this pure mean-field description. In the HFB formalism, the
neutron (proton) pairing energy is given by En(p) = 1

2 Tr�κ ,
where � and κ are the pairing field and the pairing tensor,
respectively [17]. Such a correlation energy is not the net gain
between the HFB and Hartree-Fock (HF) treatments. However,
when the pairing field vanishes, HF and HFB descriptions
give rise to the same total potential energy and no correlation
energy is found at the mean-field level. Consequently, the study
of pairing energies En(p) provides direct information about
pairing correlations.

In the present work, the mean-field equations are solved
using basis sets of deformed harmonic oscillators including
N0 = 9 major shells. Such a large basis ensures stability of
level energies at all deformations up to β � 1. As an example,
Fig. 1 illustrates the convergence of the neutron pairing energy
En and the potential energy V = 〈�q |Ĥ |�q〉 for 26Ne with the
basis size increasing from N0 = 7 to N0 = 13. Calculations
with N0 = 7 clearly do not reach the convergence, whereas
those with N0 = 9, 11, and 13 give the same results within
400 keV for V and 200 keV for En. Then, a reasonable
convergence is achieved for N0 = 9. This result holds true
for all the other isotones under study.

All the axial potential energy surfaces (PESs) of the N = 16
isotones, shown in Fig. 2, display a minimum at β = 0. Thus,
the first criterion (i) for magicity is fulfilled for all isotones
at the pure mean-field level. Nevertheless, this minimum is
shallow for nuclei from 26Ne to 34Ar and their neutron pairing
energies, shown in Fig. 3, do not vanish at zero deformation.
According to criterion (ii), these nuclei are not magic. The
neutron pairing energy vanishes at β = 0 only for 24O and
22C. Then, criteria (i) and (ii) are simultaneously verified
only for these two nuclei, which are predicted to be magic.
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FIG. 1. Neutron pairing energies En (upper panel) and potential
energy surfaces V (lower panel) of 26Ne for different basis sizes as
functions of the axial deformation parameter β. The numbers of major
shells considered are N0 = 7, 9, 11 , and 13.

Furthermore, proton pairing energy vanishes at β = 0 for 24O,
which is then found to be doubly magic.

A gradual evolution is observed in Fig. 3 for the neutron
pairing energy: Neutron pairing energy goes to zero around
β � 0.4 for 34Ar, 32S, and 30Si. 32S presents a shoulder at
β = 0. Moving toward the drip line, this shoulder gets more
pronounced and becomes a local minimum for 30Si, 28Mg,
and 26Ne. The neutron pairing energy vanishes at β = 0
for 24O and 22C. The evolution of these two pairing energy
minima is directly linked to the existence of prolate and
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FIG. 2. Potential energy surfaces of the N = 16 isotones from
argon to carbon, as functions of the axial deformation parameter β.
The minimum potential energy for argon is set to zero. The minima
of the curves are arbitrarily separated by 5 MeV. Stable nuclei are 32S
and 30Si.
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FIG. 3. Neutron (left) and proton (right) pairing energy curves
for N = 16 isotones from argon to carbon, as functions of the axial
deformation parameter β.

spherical gaps between the Kπ = 1/2+ orbitals (where K
is the projection of the angular momentum on the intrinsic
symmetry axis) from the s1/2 and d3/2 neutron subshells. This
subshell structure is shown in the lower panel of Fig. 4 for 32S
and 26Ne. Whereas 32S has a 6-MeV-wide prolate gap and a
3.3-MeV-wide spherical gap, 26Ne presents an inverse trend:
These gaps are 3.5 and 4.2 MeV wide, respectively.

The upper panel of Fig. 4 shows the opening of the spherical
gap δ between the s1/2 and d3/2 neutron subshells for nuclei
from Z = 18 to Z = 6. For 24O, this gap is δ � 4 MeV
wide. To check the stability of this prediction, δ has also
been calculated using the older D1 [12] parametrization of
the Gogny force. The results do not depend significantly
on the force parametrization (see Table I). The difference
between the two calculations does not exceed 600 keV for
δ. Both D1 and D1S parametrizations lead to the prediction of
N = 16 as a magic number at the neutron drip line.

To summarize, N = 16 is predicted to be a spherical magic
number at the neutron drip line for 24O and 22C in a pure
mean-field approach. It preexists as a strong shell effect in
nuclei of the stability region.

III. BEYOND THE MEAN FIELD

To complement the description of these nuclei, an approach
beyond the mean field is considered. A dynamical description
of the ground state and low-lying 2+ collective state is derived
from GCM considering rotational and vibrational degrees of
freedom in the triaxial plane. Collective states are taken as
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FIG. 4. (Upper panel) Neutron single-particle energies for even-
even N = 16 isotones at β = 0. (Lower panel) Neutron individual
levels around the Fermi surface of 32S (left) and 26Ne (right) as
functions of the axial deformation parameter β. Triangles represent
the chemical potential.

linear combinations of constrained HFB basis states |�q〉,
namely,

|	k〉 =
∫

dq fk(q) |�q〉 . (4)

Here, q is a five-dimensional generator coordinate, with two
dimensions (β, γ ) for vibrations and three Euler angles for
rotation, and fk(q) are weight functions, solutions of the
Hill-Wheeler equation [18]. The GOA transforms the integro-
differential Hill-Wheeler equation into a computationally
tractable Schrödinger-like equation [19]:

Ĥcoll gk(q) = Ek gk(q), (5)

where gk(q) is the Gauss transform of fk(q) and eigenstate of
the collective Hamiltonian Ĥcoll [20,21].

It is a widespread practice to perform calculations of
mass and inertia parameters using the Inglis and Beylaev
approximation [22,23]. This is a reasonable assumption at low

TABLE I. Spherical energy gap δ between the s1/2 and d3/2

subshells at β = 0 predicted using the D1S and D1 interactions in
HFB calculations.

δ (MeV)

34Ar 32S 30Si 28Mg 26Ne 24O 22C

D1S 2.58 3.32 4.00 4.11 4.25 4.30 4.75
D1 2.33 2.89 3.24 3.53 3.87 4.17 4.74

024304-3



A. OBERTELLI et al. PHYSICAL REVIEW C 71, 024304 (2005)

26
Ne

.0 0.5

0+

28Mg

0.5.0

0
+

FIG. 5. Collective wave functions of the 26Ne and 28Mg ground
states in the (β, γ ) triaxial plane.

spin and excitation energy only for medium- and heavy-mass
nuclei. As has been shown recently, improvements over the
Belyaev formula for moments of inertia were necessary to
provide a good description of 40,42,44S low-energy spectra [24].
In the present work focusing on still lighter mass nuclei,
two sets of moments of inertia, JA

x,y,z and JB
x,y,z, have been

calculated over the (β, γ ) plane as follows. In the first set,
JA

x,y,z is defined as

JA
x,y,z = 〈�q,ωx,y,z

|Îx,y,z|�q,ωx,y,z
〉

ωx,y,z

, (6)

where Îx,y,z are the angular momentum projections in the
intrinsic system of coordinates x, y, and z, and ωx,y,z are the
associated rotational frequencies for a nucleus with rotational
energy E(I ). First, JA

z is calculated from minimization of
the energy functional 〈�q,ωz

|Ĥ − λNN̂ − λZẐ − ωzÎz|�q,ωz
〉

in the rotating frame [25], with the additional constraint
〈�q,ωz

|Îz|�q,ωz
〉 = h̄2√I (I + 1). Here we use I = 2. The

moments JA
x and JA

y are then calculated after permutation
of the principal axes. Finally, the second set JB

x,y,z results from
using the Thouless-Valatin approximation [26], namely,

JB
x,y,z = lim

ωx,y,z→0

〈�q,ωx,y,z
|Îx,y,z|�q,ωx,y,z

〉
ωx,y,z

. (7)

Equations (6) and (7) form two prescriptions for calcu-
lating moments of inertia. Each prescription has been tested
separately while solving Ĥcoll, and their figure of merit is
discussed in the following. Using configuration mixing method
outlined here, we find that 24O and 22C are spherical in their
ground states whereas all the other nuclei from 34Ar to 26Ne
are deformed. An illustration is provided for 26Ne and 28Mg
in Fig. 5, where are shown their ground-state wave functions
over the (β, γ ) coordinates. The topology of these surfaces
suggests γ -unstable deformed shapes with mean quadrupole
deformations 〈β〉 = 0.31 and 0.39, and 〈γ 〉 = 24◦ and 22◦
for 26Ne and 28Mg, respectively. This illustration provides
a posteriori justification for our method in which the five
collective quadrupole coordinates are explicitly treated.

The first 2+ level energy and the B(E2; 0+
gs → 2+) reduced

transition probability values calculated with JA and JB

moments of inertia as collective model inputs are shown in
Fig. 6 as open circles and stars, respectively, for the N = 16
isotones from Z = 10 to Z = 18. Standard RPA calculations
[27] have also been performed for the doubly magic 24O
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FIG. 6. (Color online) Energies of the first 2+ excited state for
even-even N = 16 isotones from Z = 18 to Z = 8. (Lower panel)
Reduced transition probabilities B(E2; 0+

gs → 2+). Experimental
data (triangles) are available down to Z = 10. Both calculations with
J A (open circles) and J B (stars) are represented from Z = 18 to
Z = 10. Squares are standard RPA predictions for 24O. Open circles
and squares are connected by dashed lines to guide the eye.

nucleus using the Gogny-D1S force. In Fig. 6, RPA results
(squares) are shown for completeness. Table II includes most
of these predictions as well as experimental data [28] and mean
deformations. As can be seen in the upper part of Fig. 6, the
two sets of predictions for E(2+) (i.e., stars and open circles)
significantly differ from each other, the differences being at
a maximum for Z = 10 and Z = 12. However, as expected,
the improvement in our determination of moments of inertia
brings the E(2+) predictions marked by open circles in close
agreement with each measured values (triangles) and with the
pattern they display as Z increases from Z = 10 to Z = 18.
The lowering observed for the 2+ level in 28Mg is here in-
terpreted as stemming from a stronger mean deformation (see
Table II).

Experimental information available on the structure of
24O is rather scarce. In recent in-beam γ -ray spectroscopy
measurements [6], the 2+ → 0+

gs γ decay was not observed,

TABLE II. First 2+ level and B(E2; 0+
gs → 2+) properties of

even-even N = 16 isotones. J A inertia parameters are adopted in the
configuration mixing calculations for Z = 10–18 nuclei (see text).
Standard RPA predictions using D1S are given for 24O. Experimental
data are from [28].

〈β〉 E(2+) B(E2; 0+
gs → 2+)

gs 2+ (MeV) (e2 fm4)

Theoret. Theoret. Expt. Theoret. Expt.

34Ar 0.27 0.31 1.98 2.09 306 240(40)
32S 0.31 0.32 1.78 2.23 254 300(13)
30Si 0.32 0.37 2.11 2.23 220 215(10)
28Mg 0.39 0.43 1.50 1.47 202 350(5)
26Ne 0.31 0.37 2.19 2.02 86 228(41)
24O — — 3.81 — 15 —
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suggesting that the first 2+ excited state lies above the
neutron decay threshold Sn = 3.7 MeV. An excitation energy
E(2+) � 3.7 MeV would be roughly twice those for the
Z = 10–18 members of the N = 16 isotonic chain and would
be consistent with the present RPA prediction of E(2+) =
3.81 MeV. These results together with those described earlier
for the Z = 10–18 members of the N = 16 isotonic chain
point to the existence of a subshell closure at the oxygen
neutron drip line.

IV. CONCLUSION

In this paper, a systematic structure study of the even-even
N = 16 isotones has been performed from stability to the
neutron drip line. This has been achieved at both mean-
field and configuration mixing levels using the Gogny-D1S
effective interaction. Standard RPA calculations have also been
performed for 24O to complement our survey. These methods
allow us to investigate single-particle and pairing properties
at spherical shape and along axial and triaxial quadrupole
deformations, as well as collective properties.

The mean-field calculations show that a spherical subshell
gap is opening at N = 16 (see Fig. 4). Its size (δ � 4 MeV)
does not significantly depend on whether the D1 or D1S
parametrization of the Gogny force is used. Furthermore the

neutron pairing energy at spherical shape vanishes only for 24O
and 22C. Since the potential energy surfaces of these nuclei
also show a minimum at zero deformation, we conclude that
N = 16 is a magic number at the neutron drip line, that is, for
24O and 22C.

Results from configuration mixing calculations bring con-
firmation that both nuclei are spherical in their ground states.
In contrast, similar calculations suggest that all the Z = 10–18
isotones show strong mean deformations. A new prescription
tailored to calculate moments of inertia in light nuclei leads
to improved E(2+) and B(E2; 0+

gs → 2+) predictions that are
in good overall agreement with experimental data available
for the Z = 10–18 nuclei. Our predictions suggest that
(i) collectivity of the 0+

gs → 2+ transitions gradually decreases
as Z gets away from Z = 18 and reaches a minimum at Z = 8,
where it is 20 times weaker than at Z = 18, and (ii) E(2+)
energies rise sharply from 1.98 MeV (34Ar) to 3.81 MeV (24O).
These collective properties are strongly suggestive of N = 16
as a magic number at the neutron drip line.

Experimental determination of the 2+ excitation energy
for 24O is needed to challenge the reliability of our model
predictions based on the Gogny-D1S force. It is now a key
issue to precisely understand the reasons why this force is
providing a subshell gap at the N = 16 neutron drip line.
Work along this line is in progress.
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