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Calculation of the α-particle ground state within the hyperspherical harmonic basis
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The problem of calculating the four-nucleon bound state properties for the case of realistic two- and three-
body nuclear potentials is studied using the hyperspherical harmonic (HH) approach. A careful analysis of the
convergence of different classes of HH functions has been performed. A restricted basis is chosen to allow
for accurate estimates of the binding energy and other properties of the 4He ground state. Results for various
modern two-nucleon and two- plus three-nucleon interactions are presented. The origin of the isospin T = 1 and
T = 2 admixtures in the 4He ground state is discussed in detail. The 4He asymptotic normalization constants for
separation in 2 + 2 and 1 + 3 clusters are also computed.
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I. INTRODUCTION

Rapid progress has been made during the last few years
in the quantitative study of the A = 4 nuclear systems. Ever-
increasing computer power, development of novel numerical
methods, and significant refinements of well-established tech-
niques have allowed the solution of the four-nucleon bound
state problem with a control of the numerical error at the level
of 10–20 keV [the experimental α-particle binding energy
(BE) being 28.30 MeV], at least for Hamiltonians including
only nucleon-nucleon (NN) interaction models [1]. In the latter
work, the BE and other properties of the α particle were studied
with the AV8′ [2] NN interaction, and the different techniques
produced results in very close agreement with each other (at
the level of less than 1%).

In Refs. [3,4], realistic potential models have been used to
describe the α-particle bound state. Those potential models
consist of the sum of a modern NN interaction plus a three-
nucleon (3N) interaction. A modern NN interaction has the
property of describing the NN database with a χ2 per datum
close to 1. Examples are the Argonne V18 (AV18) potential [5],
the Nijmegen potentials [6], the CD-Bonn potential [7,8], and
the recently proposed potential, nonlocal in r space, developed
by Doleschall and Colleagues [9,10]. This last potential has
the remarkable property of reproducing simultaneously the
NN bound and scattering data and the 3N binding energies
(although, it predicts a too-low rms radius for the α particle [11]
and cannot reproduce the spectrum of 6Li [12]). As is well
known, the other models (AV18, Nijmegen, and CD-Bonn)
underbind the 3N system. Usually a 3N interaction is included
in the Hamiltonian when these potentials are considered. The
strength of the 3N interaction is properly tuned to reproduce
the 3H binding energy and this strength depends on the chosen
NN potential. Examples of 3N interactions are the Urbana
IX (UIX) [2], Tucson-Melbourne (TM) [13], and Brazil [14]
potentials. From Ref. [3] we observe that all the NN+3N
potential models that reproduce the deuteron and the 3N
binding energies slightly overbind the α particle. We further
observe that the results obtained for the AV18+UIX potential
model using different techniques (see Refs. [3,4]), though
close to each other, are not in complete agreement. Clearly

a clarification of these points would be welcome. Moreover,
in recent years there has been a rapid progress in developing
new models of the NN interaction based on the application
of the chiral perturbation theory (CPT) [15–18]. In particular,
the NN potential of Ref. [18] reproduces the two-nucleon data
with a χ2 per datum close to 1, as the other NN potentials
mentioned above. Moreover, there has been also some progress
in developing 3N interaction models in a consistent and
systematic way in the framework of the CPT [19]. From
these studies one can hope to have a better understanding of
the form of the NN and 3N interactions (the four-nucleon force
is expected to be very small). All these potential models have
to be studied in detail in the A = 3 and A = 4 systems. It
is therefore very important to have powerful techniques for
solving four-nucleon problems.

The methods devised to tackle the problem of the solution
of the nonrelativistic Schrödinger equation

H�(1, 2, 3, 4) = E�(1, 2, 3, 4), (1)

where H is the four-body nuclear Hamiltonian, are very differ-
ent. In the Faddeev–Yakubovsky (FY) approach [3,11,20–24],
Eq. (1) is transformed to a set of coupled equations for the FY
amplitudes, which are then solved directly (in momentum or
coordinate space) after a partial wave expansion. In the green
function Monte Carlo (GFMC) method [4,25] one computes
exp(−τH )�(1, 2, 3, 4), where �(1, 2, 3, 4) is a trial wave
function (WF), using a stochastic procedure to obtain, in
the limit of large τ , the exact ground state WF �. These
two techniques have also been applied to the case where the
nuclear Hamiltonians includes a 3N interaction. The stochas-
tic variational method (SVM) [26,27] and the coupled re-
arrangement channel Gaussian-basis method (CRCG) [28,29]
provide a variational solution of Eq. (1) by expanding the
(radial part of the) WF in Gaussians. The two techniques
differ in the way they determine the nonlinear coefficients
of the expansion: in the SVM random choices are used to
select the optimum set, whereas in the CRCG technique the
nonlinear coefficients are chosen in geometrical progression
in such a way that only a few of them have to be varied.
Very recently two other new techniques have been proposed.
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In the no-core shell model (NCSM) method [12,30–32] the
calculations are performed using a (translational-invariant)
harmonic-oscillator (HO) finite basis P and introducing an
effective P-dependent Hamiltonian HP to replace H in Eq.
(1). The operator HP is constructed so that the solution of
the equation HP �(P ) = EP �(P ) provides eigenvalues that
quickly converge to the exact ones as P is enlarged. The
effective interaction hyperspherical harmonic (EIHH) method
[33,34] is based on a similar idea, but the finite basis P is
constructed in terms of the hyperspherical harmonic (HH)
functions.

In the present work we address the problem of calculat-
ing the α-particle properties, using a nuclear Hamiltonian
containing modern two- and three-nucleon interactions, by
expanding the WF in terms of the HH functions. Our intention
is to obtain converged binding energies at the level of 20–
30 keV. The motivation is twofold. First we would like
to reduce the theoretical error in the determination of the
α-particle bound state properties. Second, the HH techniques
can also be extended to treating four nucleons scattering
states, as has been possible for the A = 3 system [35] using
a similar technique. This program is currently underway
and a preliminary report has been already published [36].
The richness of phenomena in the four-nucleon scattering
and reactions will be an ideal laboratory for studying and
testing newer models of the nuclear interaction. At present,
the theoretical calculations based on the current NN and 3N
interactions show large discrepancies with some four-nucleon
scattering data [23,37–39].

In an earlier work [40], the authors determined the solution
of Eq. (1) variationally by expanding the WF in a basis of
correlated hyperspherical harmonic (CHH) WFs. The space
part of such a basis consisted of products of correlation factors
F and HH functions. The correlation factors F were chosen
so as to take into account the strong correlations induced by
the NN potential, especially at short interparticle distances.
The introduction of such factors substantially improved the
convergence of the expansion. This made it possible to
obtain reasonable estimates for the ground-state energy of
the α particle and some selected observables in n-3H and
p-3He elastic scattering using a rather limited basis set
[38,40,41]. However, because of the complexity of F, the
spatial integrations were performed by using quasirandom
number techniques. The precision of the required matrix
elements was therefore limited, and the inclusion of a greater
number of states was problematic.

When the four-nucleon WF is expanded in terms of the
uncorrelated HH basis (i.e., setting F = 1) most of the
integrations can be performed analytically, and the remaining
low-dimensional integrals can be evaluated by means of effi-
cient quadrature methods. However, because of the particular
structure of the NN potential, which is state dependent and
strongly repulsive at short distances, a very large number of
basis elements are required. For that reason, the application of
the HH technique to studying the A = 4 nuclear system has
encountered serious convergence problems. Few four-body
HH calculations have been attempted so far for realistic
interactions [42–44]. Even for central or super-soft-core
potentials the problem of the slow convergence of the HH

expansion has not been completely overcome [42,44,45]. The
reason for these difficulties is related to the slow convergence
of the basis with respect to the grand angular quantum number
K and to the large number of HH states with a given K. For
example, for an accurate description of the α-particle ground
state, antisymmetric spin-isospin-HH states up to K = 60 have
to be included. However, the number of such states already for
K = 20 is greater than 1000 and it increases very rapidly with
K. It is therefore clear that a brute force application of the
method is not possible even with sophisticated computational
facilities.

The approach analyzed in the past was to select a suitable
subset of states [46–48]. In those articles it resulted quite
clearly that the quantum number K is not the unique parameter
important for studying the convergence of the basis. Let us
recall that a four-body HH function is specified by three
orbital angular momentum quantum numbers, �1, �2, �3, and
two additional quantum numbers, n2 and n3 (which are
nonnegative integers), related to the radial excitation of the
system. The grand angular quantum number is defined to be
K = �1 + �2 + �3 + 2(n2 + n3). Note that L = �1 + �2 + �3

and K are even (odd) numbers for positive (negative) parity
states. In Ref. [46], the basis was restricted to including HH
states with a few choices of �1, �2, �3 values and large values of
n2 and n3. The calculations performed [42,43] were, however,
limited by the computer power available at that time. In this
article, it is shown that HH states having L ≡ �1 + �2 + �3 � 6
are sufficient to obtain a four-digit convergence. However, the
number of HH states with L� 6 is still huge and additional
criteria for selecting a reduced basis have to be specified.

It is possible to organize the HH states in terms of the
number of particles correlated. For example, there is a class
of basis elements that depends only on the coordinate of
two particles, the so-called potential basis (PB) [48]. Such
a basis therefore takes the two-body correlations into account.
However, even in the case of simple model interactions, the
BE’s B obtained by restricting the expansion basis to the
PB were found to be rather far from the exact values. For
example, for the Malfliet-Tjon V (MT-V) central potential [49],
B calculated with the PB is approximately 1 MeV smaller
than the exact value. For a realistic potential the situation is
noticeably worse. However, it is clear that the procedure of
classifying the HH states in terms of the number of correlated
particles can be useful for distinguishing the importance of the
various expansion terms.

In the present article the application of the HH expansion
basis is developed by taking advantage of both strategies
discussed above. Namely, HH states of low values of �1,
�2, �3 are included first. Among them, those correlating only a
particle pair are included first, and then those correlating three
particles are added, and so on. In practice, the HH states are first
divided into classes depending on the value of L and n2, n3.
Let us denote with Mi(Ki) the number of states belonging to a
class i with K � Ki . Such a number of states rapidly increases
with Ki , in general Mi(Ki) ≈ Mi × (Ki)r for large Ki , where
Mi are a set of numbers and r = 1 or 2. The first and most
important classes should contain only a small subset of HH
states (“small” classes), namely their Mi should be small, let
us say Mi ≈ 1. It is then relatively easy to include HH states
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of large K belonging to these classes. The classes containing
successively larger numbers of states (Mi � 1) should be
chosen possibly so as to contribute lesser and lesser to the
expansion in such a way that the corresponding expansion
can be truncated to small values of K. A careful analysis of
the convergence properties of the various HH components has
allowed for an optimal choice of the classes so that accurate
calculations of the α-particle properties could be achieved.

An important aspect of a successful application of the HH
method is related to the computation of the coefficients for the
transformation of a HH function corresponding to a generic
permutation of the four particles in terms of those constructed
for a given permutation. Various approaches have been devised
to deal with this problem [43,50–55]. The usefulness of
these coefficients is twofold. First, it is easy to identify the
linearly dependent states and to avoid their inclusion in the
expansion basis. The removal of these “spurious” states,
which disappear after a proper antisymmetrization of the
basis, is very useful as the number of linear independent
states is noticeably smaller than the full degeneracy of the
basis. Second, the matrix elements of a local two-body
(three-body) potential energy operator are easily reduced to
one-dimensional (three-dimensional) integrations, which can
also be performed beforehand and stored on computer disks.
The matrix elements of nonlocal operators can also be reduced
to low-dimensional integrals. The kinetic energy operator is
easily obtained analytically.

The study presented in this article is the extension of the
application of the HH expansion to the three-nucleon system
performed in Ref. [56]. The natural continuation would be
related to the application of the HH technique to heavier
systems. In particular, we can point out that for A > 4 the
calculation of the multidimensional integrals related to the
matrix elements of a local NN (3N) interaction can also be
reduced to a one-dimensional (three-dimensional) integration.
The only difficulty in extending the method to heavier systems
is the choice of a suitable and optimized subset of HH
functions. We hope that the criteria used here to select an
optimal subset of the basis could also be applied for systems
with A > 4. Alternatively, one could try to integrate the present
study with the effective interaction formalism [33,34].

This article is organized as follows. In the next section,
a brief description of the properties of the HH functions is
reported. In Sec. III, the choice of the basis is presented. The
results obtained for the BE and other properties of the α particle
are presented in Sec. IV. Finally, the last section is devoted to
the conclusions and the perspectives of the present approach.

II. THE HH EXPANSION

For four equal mass particles, a suitable choice of the Jacobi
vectors is as follows:

ξ 1p =
√

3

2

(
rm − r i + rj + rk

3

)
,

ξ 2p =
√

4

3

(
rk − r i + rj

2

)
, (2)

ξ 3p = rj − r i ,

where p specifies a given permutation corresponding to the
order i, j , k, and m of the particles. By definition, the
permutation p = 1 is chosen to correspond to the order 1, 2, 3,
and 4.

For a given choice of the Jacobi vectors, the hyperspherical
coordinates are given by the hyperradius ρ, defined by the
following:

ρ =
√

ξ 2
1p + ξ 2

2p + ξ 2
3p (independent on p), (3)

and by a set of variables that in the Zernike and Brinkman
[48,57] representation are the polar angles ξ̂ip ≡ (θip, φip) of
each Jacobi vector, and the two additional “hyperspherical”
angles ϕ2p and ϕ3p defined as follows:

cos ϕ2p = ξ2p√
ξ 2

1p + ξ 2
2p

,

(4)
cos ϕ3p = ξ3p√

ξ 2
1p + ξ 2

2p + ξ 2
3p

= ξ3p

ρ
,

where ξjp is the magnitude of the Jacobi vector ξ jp. The
set of the variables ξ̂1p, ξ̂2p, ξ̂3p, ϕ2p, ϕ3p is denoted hereafter
as �p. To simplify the notation for p = 1, the subscript 1
will sometimes be omitted. The expression of a generic HH
function is as follows:

YKLM
�1,�2,�3,L2,n2,n3

(�p) = [(
Y�1 (̂ξ1p)Y�2 (̂ξ2p)

)
L2

Y�3 (̂ξ3p)
]
LM

×P�1,�2,�3
n2,n3

(ϕ2p, ϕ3p), (5)

where

P�1,�2,�3
n2,n3

(ϕ2p, ϕ3p) = N �1,�2,�3
n2,n3

(sin ϕ2p)�1 (cos ϕ2p)�2

× (sin ϕ3p)�1+�2+2n2 (cos ϕ3p)�3

×P
�1+ 1

2 ,�2+ 1
2

n2 (cos 2ϕ2p)

×P
�1+�2+2n2+2,�3+ 1

2
n3 (cos 2ϕ3p) (6)

and P a,b
n are Jacobi polynomials. The coefficients N �1,�2,�3

n2,n3
are

normalization factors, given explicitly by the following:

N �1,�2,�3
n2,n3

=
3∏

j=2

[
2νj�(νj − nj )nj !

�(νj − nj − �j − 1/2)�(nj + �j + 3/2)

] 1
2

,

(7)
where νj = Kj + (3j − 5)/2 with Kj defined to be the
following:

K2 = �1 + �2 + 2n2, K3 = K2 + �3 + 2n3 ≡ K,

(8)
and K is the grand angular quantum number.

The HH functions are eigenfunctions of the hyperangular
part of the kinetic energy operator �2. In fact, for A = 4 the
latter operator can be written using the variables {ρ,�p} as
follows: ∑

j=1,3

∇2
j =

[
∂2

∂ρ2
+ 8

ρ

∂

∂ρ
+ �2(�p)

ρ2

]
, (9)
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and

(�2(�p) + K(K + 7))YKLM
�1,�2,�3,L2,n2,n3

(�p) = 0. (10)

Another important property of the HH functions is that
ρKYKLM

�1,�2,�3,L2,n2,n3
(�p) are homogeneous polynomials of the

particle coordinates of degree K.
The WF of a state with total angular momentum J, parity

π and total isospin T can be expanded over the following
complete basis of antisymmetrical hyperangular-spin-isospin
states, defined as follows:

�KLST Jπ
µ =

12∑
p=1

�KLST Jπ
µ (i, j ; k; m), (11)

where the sum is over the 12 even permutations p and

�KLST Jπ
µ (i, j ; k; m) = {

YKLM
�1,�2,�3,L2,n2,n3

(�p)[[[sisj ]Sa
sk]Sb

× sm]S
}

JJz
[[[ti tj ]Ta

tk]Tb
tm]T Tz

. (12)

Here, YKLM
�1,�2,�3,L2,n2,n3

(�p) is the HH state defined in Eq. (5)
and si (ti) denotes the spin (isospin) function of particle i.
The total orbital angular momentum L of the HH function is
coupled to the total spin S to give a total angular momentum J,
Jz. The quantum number T specifies the total isospin, whereas
π = (−1)�1+�2+�3 is the parity of the state. The integer index µ

labels the possible choices of hyperangular, spin, and isospin
quantum numbers, namely

µ ≡ {�1, �2, �3, L2, n2, n3, Sa, Sb, Ta, Tb}, (13)

compatible with the given values of K,L, S, T , J , and π .
Another important classification of the states is to group them
into “channels”: states belonging to the same channel have
the same values of angular �1, �2, �3, L2, L, spin Sa, Sb, S and
isospin Ta, Tb, T quantum numbers but different values of
n2, n3.

Each state �KLST Jπ
µ entering the expansion of the four-

nucleon WF must to be antisymmetric under the exchange of
any pair of particles. Consequently, it is necessary to consider
states such that

�KLST Jπ
µ (i, j ; k; m) = −�KLST Jπ

µ (j, i; k; m). (14)

Under the exchange i ↔ j , the Jacobi vector ξ 3p changes its
sign, whereas ξ 1p and ξ 2p remain unchanged, and, therefore,
the HH function YKLM

�1,�2,�3,L2,n2,n3
(�p) transforms into itself

times a factor (−1)�3 [see Eqs. (2) and (5)]. Conversely, the
spin-isospin part transforms into itself times a factor (−1)Sa+Ta

for the i ↔ j exchange. Thus, the condition described by
Eq. (14) is fulfilled when

�3 + Sa + Ta = odd. (15)

The number MKLST Jπ of the antisymmetrical functions
�KLST Jπ

µ having given K,L, S, T , J , and π values but
different combination of the quantum numbers indicated by
µ is in general very large. In addition to the degeneracy of
the HH basis, the four spins (isospins) can be coupled in
different ways to S (T). However, many of the states �KLST Jπ

µ

are linearly dependent among themselves. In the expansion
of a four-nucleon WF it is necessary to include the linearly
independent states only. To search for the independent states,

the essential ingredient is the knowledge of the matrix elements
of the norm

NKLST Jπ
µµ′ = 〈

�KLST Jπ
µ

∣∣�KLST Jπ
µ′

〉
�
, (16)

where 〈〉� denotes the evaluation of the spin-isospin traces and
the integration over the hyperspherical variables.

The calculation of the above matrix elements, and also
those of the Hamiltonian, is considerably simplified by using
the following transformation:

�KLST Jπ
µ (i, j ; k; m) =

∑
µ′

aKLST Jπ
µ,µ′ (p)�KLST Jπ

µ′ (1, 2; 3; 4).

(17)
The coefficients aKLST Jπ

µ,µ′ (p) have been obtained using the
techniques described in Ref. [55]. The states �KLST Jπ

µ can be
written as follows:

�KLST Jπ
µ =

∑
µ′

AKLST Jπ
µ,µ′ �KLST Jπ

µ′ (1, 2; 3; 4), (18)

where

AKLST Jπ
µ,µ′ =

12∑
p=1

aKLST Jπ
µ,µ′ (p). (19)

The matrix elements of the norm can be easily obtained using
the orthonormalization of the HH basis with the result that:

NKLST Jπ
µµ′ =

∑
µ′′

(
AKLST Jπ

µ,µ′′
)∗

AKLST Jπ
µ′,µ′′ . (20)

Clearly, 〈
�KLST Jπ

µ

∣∣�K ′L′S ′T ′J ′π ′
µ′

〉
�

= 0,
(21)

if {KLST Jπ} 
= {K ′L′S ′T ′J ′π ′}.
Once the quantities NKLST Jπ

µµ′ are calculated, the Gram-
Schmidt procedure can be used, for example, to eliminate
the linear-dependent states between the various �KLST Jπ

µ

functions.
We have found that the number of independent states

M ′
KLST Jπ for given K,L, S, T , J , and π is noticeably smaller

than the corresponding value of MKLST Jπ . To give an example,
we have reported in Table I a few values of MKLST Jπ and
M ′

KLST Jπ for the case J = 0, T = 0, π = + corresponding
to the ground state of the α particle. As can be seen from the
table, the values of MKLL00+ are very large also for moderate
values of K, but those for M ′

KLL00+ are usually much smaller.
The total WF of the four-nucleon bound state can finally be

written as follows:

�Jπ
4 =

∑
KLST

∑
µ

uKLST,µ(ρ)

ρ4
�KLST Jπ

µ , (22)

where the sum is restricted only to the linearly independent
states. The expansion coefficients, which depend on the
hyperradius, are determined by the Rayleigh-Ritz variational
principle. By applying this principle, a set of second-order
differential equations for the functions u(ρ) are obtained.
These equations and the procedure adopted to solve them has
been outlined in the appendix of Ref. [56]. In this way, a large
number of equation can be solved.
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TABLE I. Number of four-nucleon antisymmetrical
hyperspherical-spin-isospin states for the case J = 0, T = 0,
and π = + and the selected values of the grandangular quantum
number K and total angular momentum L. MKLST Jπ is the total
number of the states defined in Eq. (11). M ′

KLST Jπ gives the number
of the linearly independent states with �1 + �2 + �3 � 6. See the text
for details.

K L = S = 0 L = S = 1 L = S = 2

MK0000+ M ′
K0000+ MK1100+ M ′

K1100+ MK2200+ M ′
K2200+

0 2 1
2 10 1 9 1 6 1
4 30 4 45 4 30 3
6 70 8 135 12 89 9
8 140 14 315 27 205 18

10 252 24 630 54 405 36
12 420 41 1,134 96 721 63
14 660 59 1,890 160 1,190 102
16 990 90 2,970 250 1,854 158
18 1,430 128 4,455 375 2,760 236
20 2,002 176 6,435 488 3,960 321
22 2,730 235 9,009 585 5,511 385
24 3,640 282 12,285 675 7,475 445
30 3,876 9,180 16,540
40 10,626 26,565 47,145
50 23,751 61,425 107,900

The main problem is the computation of the matrix
elements of the Hamiltonian. The kinetic energy operator
matrix elements are readily calculated analytically, whereas
the matrix elements of a local NN potential can be obtained by
one-dimensional integrations. To this aim, it is convenient to
write the basis in the jj coupling scheme as follows:

�KLST Jπ
µ =

∑
ν

BKLST Jπ
µ,ν �KT Jπ

ν (1, 2; 3; 4), (23)

where

�KT Jπ
ν (1, 2; 3; 4) = {[

(Y�3 (̂ξ3)(s1s2)Sa
)j3

(Y�2 (̂ξ2)s3)j2

]
J2

× (Y�1 (̂ξ1)s4)j1

}
JJz

[[[ti tj ]Ta

× tk]Tb
tm]T Tz

P�1,�2,�3
n2,n3

(ϕ2p, ϕ3p), (24)

and BKLST Jπ
µ,ν are related to the coefficients AKLST Jπ

µ,µ′ via
Wigner 3j and 6j coefficients. Now, the integer index ν labels
all possible choices of the

ν ≡ {n3, �3, Sa, j3, n2, �2, j2, J2, �1, j1, Ta, Tb}, (25)

compatible with the given values of K, T , J , and π .
In terms of the states �KT Jπ

ν (1, 2; 3; 4), it is easy to compute
the matrix elements of an NN potential. For example, the matrix
element of the isospin-conserving part VIC(1, 2) of the NN
potential〈

�KT Jπ
ν (1, 2; 3; 4)

∣∣VIC(1, 2)
∣∣�K ′T ′Jπ

ν ′ (1, 2; 3; 4)
〉
�

= 0,

(26)

unless

{j3, n2, �2, j2, J2, �1, j1, Ta, Tb, T }
= {j ′

3, n
′
2, �

′
2, j

′
2, J

′
2, �

′
1, j

′
1, T

′
a, T

′
b, T

′}. (27)

If Eq. (27) is verified, then〈
�KT Jπ

ν (1, 2; 3; 4)
∣∣VIC(1, 2)

∣∣�K ′T Jπ
ν ′ (1, 2; 3; 4)

〉
�

= N �1,�2,�3
n2,n3

N �1,�2,�
′
3

n2,n
′
3

∫ π
2

0
dϕ3 (cos ϕ3)2+�3+�′

3

× (sin ϕ3)5+2�1+2�2+4n2v
j3

�3,Sa,�
′
3,S

′
a
(ρ cos ϕ3)

×P
�1+�2+2n2+2,�3+ 1

2
n3 (cos 2ϕ3)

×P
�1+�2+2n2+2,�′

3+ 1
2

n′
3

(cos 2ϕ3), (28)

where v
j

�,S,�′,S ′ (r) is the isospin-conserving part of the NN po-
tential acting between two-body states 2S+1(�)j and 2S ′+1(�′)j .
The one-dimensional integral given in Eq. (28) can be com-
puted numerically with high accuracy. The case of the isospin-
breaking part of the NN interaction is a generalization of the
previous case: now we can have {Ta, Tb, T } 
= {T ′

a, T
′
b, T

′} as
well.

The 3N interaction matrix elements are more difficult to
compute and the adopted procedure is detailed in Appendix A.

III. CHOICE OF THE BASIS

The main difficulty of applying the HH technique is the
selection of a restricted and effective subset of basis states.
In fact, although the number of independent states proves
to be much smaller than the degeneracy MKLST Jπ of the
basis, the brute force application of the method, that is, the
inclusion of all HH states having K � KM in the expansion
and then increasing KM until convergence, would be destined
to fail. In fact, because of the strong correlations induced
by the NN potential, KM ≈ 60 are necessary to obtain a
good convergence. However, even for values of K > 20 it
is very difficult to find the linearly independent states via the
Gram-Schmidt procedure because the loss of precision in the
orthogonalization procedure.

It is convenient to separate the HH functions into classes
having particular properties and advantageously take into
account the fact that the convergence rates of the various
classes are rather different. As discussed in the Introduction,
we expect that the contribution of the HH functions describing
the two-body correlations to be very important [48]. Another
criterion adopted is first to consider the HH functions with low
values of �i .

An important quantity in the choice of the classes is
Mi(Ki), namely the number of linearly independent anti-
symmetrical spin-isospin-HH states �KLST Jπ

µ belonging to
a class i and having K � Ki . Only even parity states have been
included in the construction of the α-particle WF, and thus
the discussion hereafter will be limited to consider only even
values for Ki . In general, for a class i, the value Mi(Ki) is zero
for Ki < Ka

i , because of the fact that the linearly dependent
states have been removed from the expansion. For example,
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TABLE II. Quantum numbers of the first channels considered
in the expansion of the α-particle WF. See the text for details.

α �1 �2 �3 L2 L Sa Sb S Ta Tb T

1 0 0 0 0 0 1 1/2 0 0 1/2 0
2 0 0 0 0 0 0 1/2 0 1 1/2 0
3 0 0 2 0 2 1 3/2 2 0 1/2 0
4 1 1 0 0 0 1 1/2 0 0 1/2 0
5 1 1 0 0 0 0 1/2 0 1 1/2 0
6 1 1 0 1 1 1 1/2 1 0 1/2 0
7 1 1 0 1 1 1 3/2 1 0 1/2 0
8 1 1 0 1 1 0 1/2 1 1 1/2 0
9 0 2 0 2 2 1 3/2 2 0 1/2 0

10 2 0 0 2 2 1 3/2 2 0 1/2 0
11 1 1 0 2 2 1 3/2 2 0 1/2 0
12 1 0 1 1 0 1 1/2 0 1 1/2 0
13 1 0 1 1 0 0 1/2 0 0 1/2 0
14 0 1 1 1 0 1 1/2 0 1 1/2 0
15 0 1 1 1 0 0 1/2 0 0 1/2 0
16 1 0 1 1 1 1 1/2 1 1 1/2 0
17 1 0 1 1 1 1 3/2 1 1 1/2 0
18 1 0 1 1 1 0 1/2 1 0 1/2 0
19 0 1 1 1 1 1 1/2 1 1 1/2 0
20 0 1 1 1 1 1 3/2 1 1 1/2 0
21 0 1 1 1 1 0 1/2 1 0 1/2 0
22 1 0 1 1 2 1 3/2 2 1 1/2 0
23 0 1 1 1 2 1 3/2 2 1 1/2 0

as should be clear by inspection of Table I, there is only
one linearly independent state �KLS00+

µ with K = 0. If this
state is included in the first class, the other classes must have
at least Ka

i = 2, etc. For Ki � Ka
i , Mi(Ki) reaches a sort

of “asymptotic” value, given by Mi(Ki) ≈ Mi × (Ki)ri . The
choice of the classes has clearly to be optimized so that the
convergence for the classes with large values of Mi and ri

could be reached for relatively low values of K. The specific
values of Mi and ri are discussed below.

To study the α-particle ground state we have found very
convenient to choose the classes as follows:

a. Class C1. In this class the T = 0 HH states belonging to
the PB are included. For A = 4, the PB includes states
of the first three channels reported in Table II (the only
channels with �1 = �2 = 0) having n2 = 0. As can be seen
from Eq. (5), the corresponding states depend only on
ξ̂ 3p and cos ϕ3p = ξ3p/ρ ≡ rij /ρ and therefore contain
only two-body correlations. For this class, Ka

1 = 0. For
K1 � 4,M1(K1) = (3/2)K1. Then, this is a “small” class.
As shown in the next section, this is also the most slowly
convergent class, but because M1 = (3/2) and r1 = 1, it
is not difficult to reach the desired degree of accuracy. In
the present calculation, states up to K1 = 72 have been
included.

b. Class C2. This class includes the T = 0 states belonging to
the same three channels as those of class C1, but with n2 >

0. These states therefore include also part of the three-
body correlations. The first linearly independent states of
this class appear for K = 4, therefore Ka

2 = 4. Moreover,
M2(K2) = (3/4)(K2)2 + O(K2) for K2 � 1. This can be

considered a “small” class, too, and states up to K2 =
40 have been included in the present calculation without
difficulty.

c. Class C3. This class includes the remaining T = 0
states of the channels having �1 + �2 + �3 = 2. The
corresponding 20 possible channels are reported in
Table II in rows 4–23. In this case Ka

3 = 2 and M3(K3) =
5(K3)2 + O(K3) for K3 � 1. This is a fairly “large” class,
but with the necessary care states with K3 ≈ 34 can be
still included in the expansion.

d. Class C4. This class includes T = 0 states belonging to
the channels with �1 + �2 + �3 = 4. There are 57 channels
of this kind. In this case Ka

4 = 8 and it follows that
M4(K4) = (57/4)(K4)2 + O(K4) for K4 � 1. This is a
“large” class, but its contribution to the α-particle BE,
though still sizable, is by far less important than the
first three classes. States of up to K4 ≈ 28 have been
considered.

e. Class C5. This class includes T = 0 states belonging to the
channels with �1 + �2 + �3 = 6. There are 109 channels
of this kind. In this case Ka

5 = 12 and for K5 � 1 we have
M5(K5) = (109/4)(K5)2 + O(K5). This is a very “large”
class, but it contributes very little to the α-particle BE, as
we shall see. Therefore, we can truncate the expansion
already at K5 ≈ 20.

f. Class C6. This class includes the states having T > 0.
We have included in the expansion all the channels
of this kind with �1 + �2 + �3 � 2 (45 channels). In
this case Ka

6 = 0 and for K6 � 1 we have M6(K6) =
(45/4)(K6)2 + O(K6). Also the contribution of this class
to the BE is very tiny, and states up to K6 = 16 have been
included in the expansion.

The states belonging to the classes C2 and C3 describe
the most important three-body contributions to the WF. The
classes C4 and C5 take into account the remaining three- and
four-body correlations ordered with increasing values of �1 +
�2 + �3.

The convergence is studied as follows. First, only the states
of class C1 with K � K1 are included in the expansion and the
convergence of the BE is studied as the value of K1 is increased.
Once a satisfactory value of K1 = K1M is reached, the states
of the second class with K � K2 are added to the expansion,
keeping all the states of the class C1 with K � K1M . Then K2

is increased up to K2M to reach the desired convergence for
the BE. With some extra work, it is possible at this point to
optimize the basis by removing some of the K � K2M states
of class C2 that give very tiny contributions to the BE. The
procedure outlined is then repeated for each new class. Our
complete calculation includes about 8000 HH states.

It should be noticed that in the present calculation only HH
functions constructed in terms of the Jacobi vectors given in
Eq. (3), referred to as the set A, have been considered. As is
well known, there is another possible choice, namely

ξ ′
1p = rm − rk,

ξ ′
2p =

√
1
2 (rk + rm − r i − rj ), (29)

ξ ′
3p = rj − r i ,
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TABLE III. List of the parameters of the central NN potentials used in this article. Each potential V (r) is given by V (r) = ∑
i Vif (µi, r),

where the function f (µi, r) is either exp(−µir
2) for the Gaussian potentials or exp(−µir)/r for the Yukawa potentials. The operators Vi

act on the spin-isospin degrees of freedom and are written as Vi = V i × (Wi + BiPσ − HiPτ + MiPr ), where Pσ , Pτ , and Pr are the spin-,
isospin-, and space-exchange operators. The potential strengths V i are in units of MeV for Gaussian-type and MeV fm for Yukawa-type
potentials, respectively. The parameters Wi , Mi , Bi , and Hi are dimensionless and the ranges µ are in units of fm−2 for Gaussian-type or
fm−1 for Yukawa-type potentials, respectively. The Majorana mixture parameter M of the Volkov potential is set to 0.6 in the calculation.
The parameter u in the Minnesota parameter is set to unity in the calculation.

Potential Type i V i µi Wi Mi Bi Hi

MT-V Yukawa 1 1458.047 3.11 1.0 0.0 0.0 0.0
[49] 2 −578.089 1.55 1.0 0.0 0.0 0.0

MT I/III Yukawa 1 1438.72 3.11 1.0 0.0 0.0 0.0
[49] 2 −570.4255 1.55 1.0 0.0 0.0 0.0

3 −56.4585 1.55 0.0 0.0 1.0 0.0

Volkov Gauss 1 144.86 0.82−2 1.0 − M M 0.0 0.0
[64] 2 −83.34 1.60−2 1.0 − M M 0.0 0.0

ATS3 Gauss 1 1000.0 3.0 1.0 0.0 0.0 0.0
[65] 2 −326.7 1.05 0.5 0.0 0.5 0.0

3 −166.0 0.80 0.5 0.0 −0.5 0.0
4 −43.0 0.60 0.5 0.0 0.5 0.0
5 −23.0 0.40 0.5 0.0 −0.5 0.0

Minnesota Gauss 1 200.0 1.487 0.5u 1.0 − 0.5u 0.0 0.0
[66] 2 −178.0 0.639 0.25u 0.5 − 0.25u 0.25u 0.5 − 0.25u

3 −91.85 0.465 0.25u 0.5 − 0.25u −0.25u −0.5 + 0.25u

hereafter referred as the set B of Jacobi vectors. Considering,
for example, the α-particle ground state, the HH functions
Yset A of the set A are more appropriate for describing those
contributions to the WF corresponding to {3 + 1} clustering
structures, namely 3He + n or 3H + p. The HH functions
Yset B constructed with the set B, should be more suitable
for describing the {2 + 2} clustering structures, such as the
d + d configurations. It is rather obvious that the inclusion of
HH functions of both sets should speed up the convergence
in constructing the full state of the system [29,40]. If the
expansion of the WF is done over only a particular set,
those configurations in which other clustering structures are
important would be generally described with difficulty and a
slow convergence would result.

In the present calculation we have included HH states
Yset A only, that is, constructed with the Jacobi vectors of the
set A, because this has been found to be sufficient to reach the
desired degree of convergence. In fact, the full basis considered
(classes C1–C6) is large enough to include all the possible
independent states for K � 20. Additional linearly independent
states constructed with the set B would appear only for K � 22.
As clarified below, the contribution of states with K � 22 not
belonging to classes C1–C3 is rather small. Therefore, in the
present calculation it is not necessary to introduce states of the
set B. However, in the present formalism there would be no
particular difficulty in also including states constructed with
the set B.

IV. RESULTS FOR THE α-PARTICLE GROUND STATE

In this section, the results obtained for the ground state
of the α particle are presented. The convergence of the HH

expansion in terms of the various classes is examined in
Sec. IV A. The results obtained for the BE and other
ground-state properties for a number of different interaction
models are reported in Sec. IV B. The origin of the T >

0 components in the α-particle ground state is discussed
in Sec. IV C. The effect of the truncation of the NN
and 3N interactions is studied in Sec. IV D. The calcula-
tion of the various 4He asymptotic normalization constants
is considered in Sec. IV E. Finally, some details of the
practical implementation of the method are discussed in
Sec. IV F.

A. Convergence of the HH expansion

To study the convergence of the HH expansion, we have
considered three different interaction models frequently used
in literature. The first calculation has been performed using the
MT-V potential [49], a central spin-independent interaction.
The parameters defining this potential has been reported
in Table III for completeness. We have used in this work
h̄2/m = 41.47 MeV fm2. This potential has been used for
a number of benchmarks. It does contains not noncentral
components, but it retains a rather strong repulsion at short
interparticle distance going like 1/r . It is therefore rather
challenging for a technique where the correlations are not
built in. In the second example, we have considered the AV18
potential model [5], which represents a NN interaction in
its full richness, with short-range repulsion, tensor and other
noncentral components, charge symmetry breaking terms, and
Coulomb and other electromagnetic interactions. In the third
case, we have added to the AV18 potential the Urbana IX
model [2] of 3N interaction (AV18+UIX model). For the latter
two models we have used h̄2/m = 41.47108 MeV fm2.

024006-7



M. VIVIANI, A. KIEVSKY, AND S. ROSATI PHYSICAL REVIEW C 71, 024006 (2005)

TABLE IV. Convergence of α-particle binding energies (MeV) corresponding to the inclusion
in the WF of the different classes C1–C6 in which the HH basis has been subdivided.

K1 K2 K3 K4 K5 K6 MT-V AV18 AV18 + UIX

20 28.928 14.701 14.902
30 29.794 15.992 16.162
40 29.962 16.172 16.337
50 30.008 16.205 16.369
60 30.024 16.213 16.377
70 30.032 16.214 16.379
72 30.033 16.214 16.379

72 8 30.714 18.286 18.985
72 16 31.170 19.755 20.645
72 24 31.240 19.967 20.865
72 32 31.256 20.014 20.909
72 36 31.259 20.022 20.916
72 40 31.261 20.026 20.919

72 40 8 31.300 21.940 24.682
72 40 16 31.336 23.237 27.142
72 40 24 31.340 23.371 27.350
72 40 30 31.341 23.385 27.370
72 40 34 31.341 23.388 27.373

72 40 34 8 31.341 23.525 27.553
72 40 34 16 31.344 24.086 28.312
72 40 34 20 31.346 24.145 28.382
72 40 34 24 31.347 24.163 28.404
72 40 34 28 31.347 24.170 28.414

72 40 34 28 16 24.181 28.427
72 40 34 28 20 24.191 28.439
72 40 34 28 24 24.195 28.444

72 40 34 28 24 4 24.205 28.456
72 40 34 28 24 8 24.209 28.461
72 40 34 28 24 12 24.210 28.462
72 40 34 28 24 16 24.210 28.462

“exact” 31.359 24.25 28.50

We study the convergence as explained in the previous
section, and the results presented in Table IV are arranged
accordingly. For example, the BE B reported in a row with
a given set of values of K1, . . . , K6 has been obtained by
including in the expansion all the HH functions of class Ci

with K � Ki, i = 1, . . . , 6.
For the MT-V potential, we observe a slow convergence

of the classes C1 and C2 and fairly large values of K have
to be used. Conversely, they give 96% of the total BE.
The contributions of the other classes are extremely small.
The class C3 increases the BE by an additional 0.08 MeV and
the class C4 by less than 0.01 MeV. Class C5 gives a negligible
contribution, and class C6 has not been included in the
expansion because for this potential isospin is a good quantum
number and there is no mixing with T > 0 components.
The final value B = 31.347 MeV is in good agreement with
the results found in the literature, whose “average” (based on
the results reported in Refs. [26,29,33,58] is reported in the last
row of Table IV. There is approximately 10 keV of missing
energy because of the truncation of our expansion as discussed
at the end of this subsection.

For the AV18 potential, the first two classes give important
contributions but a large amount of BE is still missing. The
inclusion of the third class increases the BE by more than
3 MeV but 0.8 MeV are still missing. Because the second
and third classes take into account a large part of the
contributions of the three-body correlations, this means that
also the four body correlation is important. These are related to
the configurations where the clusterization 2 + 2 is important.
In our calculation, such configurations are included when the
classes C4 and C5 are taken into account. The number of the
states of class C4 increases very rapidly with K4 but fortunately
the convergence is reached around K = 24. The gained BE is
almost 0.8 MeV. There are no linearly independent states of
class C5 with K < 14 and its contribution is rather small. The
convergence is again obtained around K = 24, but the gain
in energy is only about 0.02 MeV. Because the number of
states of this class is very large, for example, M6(20) ≈ 800
when confronted with a very tiny gain in BE, a selection of the
states has to be performed to save computing time and to avoid
loss of numerical precision. For example, all the channels of
class C5 with a total orbital angular momentum L = 0 have
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not been included in the expansion because their contribution
is absolutely negligible. With their inclusion the procedure of
Ref. [56] for finding the eigenvalue would become numerically
instable.

From Table IV, one can try to estimate the contribution
of the states with L = �1 + �2 + �3 = 8. From the previous
discussion we have already seen that the states having L = 4
(class C4) contribute by about 0.8 MeV, whereas the states with
L = 6 (class C5) contribute by less than 0.03 MeV. Therefore,
the states with L = 8 are expected to give a negligible
contribution to the α-particle BE. Finally, the inclusion of
states with T > 0 (class C6) increases the BE by another
20 keV, approximately.

The convergence rate when considering the UIX 3N
interaction is similar to the AV18 case. The correspond-
ing results are reported in the last column of Table IV
(they have been obtained in the approximation described in
Sec. IV D). Because the models most frequently used for the
3N interactions are rather soft at short interparticle distances,
the convergence rate of the C1 and C2 classes does not change
appreciably. However, the 3N potential has a very strong state
dependence and the convergence of the C3–C5 classes are
now slightly slower. For example, the gain in BE of the C4
class is about 0.8 MeV without any 3N interactions, and it
becomes about 1 MeV when including the 3N interaction. Our
final results for the AV18 and AV18+UIX models agree well
with the FY results of Ref. [24] reported in the last row of
Table IV. The convergence properties for other NN and
NN+3N potential models has been found rather similar to
those showed in Table IV.

Finally, let us comment about the convergence rate of the
expansion as a function of the maximal grand angular quantum
numbers Ki of the various classes of HH states included in our
expansion. Previous studies [47,48,59,60] have shown that the
trend of convergence toward the exact BE depends primarily
on the form of the potential. In particular, for potentials that
are given as functions of r2

ij (as, for example, those given as
a sum of Gaussians) the increase of BE with Ki diminishes
exponentially. Conversely, for potentials given as a function
of rij (as a sum of exponentials or Yukawians), the increase
of BE decreases as (1/Km)p, where p is a positive integer
number. The value of p is smaller for potentials of Yukawa type
because of the 1/r divergence at the origin but may depend
also on the class of the HH functions whose convergence is
studied. It is important to determine the value of Km at which
the convergence starts to behave as stated previously. The
asymptotic behavior of the convergence should be reached for
HH functions whose kinetic energy ∝ (h̄2/m)K(K + 7)/ρ2

0
is much greater than the BE, where ρ0 is a value of the
hyperradius ρ for which �(ρ0) can be regarded as small [47].
In our studies, we have found that the asymptotic falling starts
at Km ≈ 30 ÷ 40.

To study the convergence behavior we have indicated with
B(K1,K2,K3,K4,K5,K6) the BE obtained by including in
the expansion all the HH states of the class C1 with K � K1,
all the HH states of the class C2 having K � K2, and so on.
Let us compute

�1(K) = B(K, 0, 0, 0, 0, 0) − B(K − 2, 0, 0, 0, 0, 0), (30)
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FIG. 1. Binding energy differences for the α particle for the
classes C1 (circles), C2 (squares), and C3 (triangles) as function
of the grand angular value K (see the text for more details). The
potential used is the MT-V. The curves are fitted to the large K part
of the energy differences.

�2(K) = B(K1M,K, 0, 0, 0, 0) − B(K1M,

×K − 2, 0, 0, 0, 0), K1M = 72, (31)

�3(K) = B(K1M,K2M,K, 0, 0, 0) − B(K1M,K2M,

×K − 2, 0, 0, 0), K2M = 40, (32)

and so on. The values obtained for �i, i = 1, 3 are shown in
Fig. 1 for the MT-V potential model, together with the curves
(1/K)p for p = 5 [the curves have been normalized to fit
the high K part of the �1÷3(K) values]. As can be seen in
Fig. 1, all the energy differences �1,�2, and �3 decrease
as 1/K5 for K � 20, approximately. However, for a given K,
there is a clear hierarchy �1(K) � �2(K) � �3(K). Note
that there are slight fluctuations in the �(K) as K is increased
(this is evident in particular for �3).

The values obtained for �i, i = 1, 4 for the AV18 potential
are reported in Fig. 2. The decrease of �1,�3, and �4 clearly
follows a law (1/K)p with p = 7. The behavior of the energy
difference �2 can be approximated either by a 1/K6 or a
1/K7 law. The faster decrease of these results compared
to the previous case is because of the fact that the AV18
potential does not diverge at the origin, whereas the MT-V
has a 1/r divergence. The study of Ref. [47], in fact, predicts a
difference of two units in the exponential coefficient for the two
cases (Yukawian potentials vs. regular potentials). For fixed K,
also for the AV18 we note a systematic hierarchy �1(K) �
�2(K) � �3(K) � �4(K), although less pronounced than
in the MT-V case. The same behavior is observed when the
UIX 3N potential is included.

From the observed simple behavior, we can readily estimate
the missing BE due to the truncation of the expansion to finite
values of K = K . Let us suppose that the states of class i up
to K = K have been included and to have computed �i(K).
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FIG. 2. Binding energy differences for the α particles for the
classes C1 (circles), C2 (squares), C3 (up triangles), and C4 (down
triangles) as function of the grand angular value K (see the text for
more details). The potential used is the AV18. The curves are fitted
to the large K part of the energy differences.

Then, the missing BE due to the states with K = K + 2,K +
4, . . ., is given by the following:

(�B)i = c(K,p)�i(K), c(K,p) =
∞∑

K=K+2,K+4,...

(
K

K

)p

,

(33)

where c(K,p) is a numerical coefficient. For example, let us
consider the “missing” energy for the Class C1 in the MT-V
case. In this case K = 72 and p = 5 and c(72, 5) = 8.51. Be-
cause �1(K = 72) = 0.99 keV, we find that �B1 = 8.4 keV.
Adding this value to B(72, 0, 0, 0, 0, 0) we can extrapolate
the BE for the case of the inclusion of the whole class C1:
B(72, 0, 0, 0, 0, 0) + (�B)1 ≈ 30.041 MeV. The BE obtained
corresponding to this case (converged PB expansion) has been
computed very precisely in Ref. [61] using a “pair-correlated”

potential basis (PPB). In such an expansion, each PB function
is multiplied by a pair correlation factor and this allows for
a very rapid convergence of the expansion. In that article, we
found B(PPB) = 30.042 MeV, which agrees very well with
the above extrapolated value. To reach such a value, it would
be necessary to use K ≈ 150 for the class C1.

For the AV18, we find c(72, 7) = 5.52,�1(K = 72) =
0.24 keV and therefore (�B)1 ≈ 1.3 keV, a rather tiny
quantity. Because of the faster convergence for this potential
like 1/K7, it does not seem necessary to increase K1 any
further in this case.

The “missing” energy of the other classes can be estimated
in the same way. However, to estimate the “missing” energy for
the whole calculation due to the truncation of the expansion of
the first class up to K � K1, of the second class up to K � K2,
and so on, we cannot simply add the (�B)i , i = 1, . . . , 6 so
obtained. The reason is that, for example, the inclusion of the
HH states of classes C2, C3, . . ., also alters the convergence
of class C1, and so on by a small amount. To study the “full”
rate of convergence, let us consider the following:

�̄1(K) = B(K,K2M,K3M,K4M,K5M,K6M )

−B(K − 2,K2M,K3M,K4M,K5M,K6M ),

�̄2(K) = B(K1M,K,K3M,K4M,K5M,K6M )
(34)

−B(K1M,K − 2,K3M,K4M,K5M,K6M ),

�̄3(K) = B(K1M,K2M,K,K4M,K5M,K6M )

−B(K1M,K2M,K − 2,K4M,K5M,K6M ),

and so on. Clearly �6(K) ≡ �̄6(K). The differences between
�i(K) and �̄i(K) for i = 2 ÷ 5 have been found to be
negligible. Only the differences between �1(K) and �̄1(K)
are sizable. In any case the behavior of �̄i(K) for large K is
the same as that discussed for �(K). Therefore, we propose
to estimate the “total missing” BE by using the formula

(�B)T =
∑
i=1,6

c(KiM, p)�̄i(KiM ), (35)

where p = 5 (7) for the MT-V potential (AV18 and AV18+
UIX). To give an example, the values for �i(KiM ) and
c(KiM, p) computed for the MT-V case are reported in Table V,
from which it is possible to derive that (�B)T ≈ 11 keV.

TABLE V. Increments of the α-particle BE �̄(K), computed using Eq. (34) for the various classes i = 1, . . . , 6 and
the MT-V and AV18 potential models. The quantities c(K,p) are defined in Eq. (33) and (�B)i , given by c(k, p)�̄i(K),
represents the “missing BE” for having truncated the expansion over the class i up to the given value of K = KM . Finally, the
“total missing BE” (�B)T is computed from Eq. (35).

MT-V AV18

i KM �̄i(K) [keV] c(K, 5) (�B)i [keV] �̄i(K) [keV] c(K, 7) (�B)i [keV]

1 72 0.89 8.51 7.57 0.10 5.52 0.55
2 40 0.71 4.52 3.21 0.91 2.86 2.60
3 34 0.07 3.77 0.26 1.16 2.37 2.75
4 28 0.13 3.03 0.39 2.30 1.87 4.30
5 24 — — — 1.47 1.54 2.26
(�B)T 11.43 12.46
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TABLE VI. The α-particle binding energies B (MeV), rms radii (fm), and expectation value 〈K〉 of the kinetic energy
operator (MeV) for various central interaction models as computed by means of the HH expansion are compared with
the results obtained by other techniques. The binding energies obtained by using the extrapolation technique described
in Sec. IV A are enclosed in parentheses.

Interaction Method B 〈r2〉1/2 〈K〉
Volkov HH (this work) 30.420 1.490 50.319

SVM [26] 30.424 1.49
HH [45] 30.399

ATS3 HH (this work) 31.618 1.412 74.366
SVM [62] 31.616 1.42

Minnesota HH (this work) 29.947 1.4105 58.086
SVM [26] 29.937 1.41
EIHH [33] 29.964 1.4106

MT-V HH (this work) 31.347(31.358) 1.4081 69.792
SVM [26] 31.360 1.4087
EIHH [33] 31.358 1.40851
CRCG [29] 31.357

FY [58] 31.364 69.739
ATMS [63] 31.364 1.40

MT-I/III HH (this work) 30.310(30.331) 1.4380 66.180
FY [22] 30.312

If this value is added to B(72, 40, 34, 28, 0, 0) = 31.347 MeV,
we obtain 31.358 MeV, which is in very good agreement with
the results obtained by other groups. For the AV18 potential,
Eq. (35) gives (�B)T = 12 keV, and if this value is added
to B(72, 40, 34, 28, 24, 16) = 24.210 MeV, we obtain 24.222
in close agreement with the FY estimates of 24.25 MeV of
Ref. [24] and 24.223 of Ref. [11]. Note that for the class
C2 we have computed the coefficient c(K,p) with p = 7.
Using p = 6, we have c(40, 6) = 3.52 and (�B)2 = 3.20 keV
(instead of 2.60 keV), a very small change. For the AV18+UIX
model, the same procedure allows for an extrapolated BE
estimate of 28.474 MeV, again in agreement with the FY value
28.50 MeV. Note that the FY BE results are quoted with an

uncertainty of 50 keV due to the truncated model space in their
calculations [24].

B. Results for different NN and 3N potentials

The BE values obtained for a number of different potential
models after including the states of the 6 different classes up to
the values K1 = 72,K2 = 40,K3 = 34,K4 = 28,K5 = 24,
and K6 = 16 (the last two values only for the realistic
cases, for central potential we have taken K5 = K6 = 0) are
presented in Tables VI and VII. Table VI presents the results
for some central potential models, whereas Table VII reports
the results for various realistic potentials with and without

TABLE VII. The α-particle binding energies B (MeV), the rms radii (fm), the expectation values of the kinetic
energy operator 〈K〉 (MeV), and the P and D probabilities (%) for various realistic interaction models as computed by
means of the HH expansion are compared with the results obtained by other techniques. The binding energies obtained
by using the extrapolation technique described in Sec. IV A are enclosed in parentheses.

Interaction Method B 〈K〉 〈r2〉1/2 PP PD

AV18 HH (this work) 24.210(24.222) 97.84 1.512 0.347 13.74
FY [24] 24.25 97.80 0.35 13.78
FY [11] 24.223 97.77 1.516

Nijm II HH (this work) 24.419(24.432) 100.27 1.504 0.334 13.37
FY [24] 24.56 100.31

AV18+UIX HH (this work) 28.462(28.474) 113.30 1.428 0.73 16.03
FY [24] 28.50 113.21 0.75 16.03
GFMC [4] 28.34(4) 110.7(7) 1.44

AV18+TM′ HH (this work) 28.301(28.313) 110.27 1.435 0.73 15.63
FY [24] 28.36 110.14 0.75 15.67
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including different models for the 3N forces, too. The BE’s
obtained by using the extrapolation technique described in the
previous section are enclosed in parentheses. Results obtained
by other techniques are also reported.

Let us consider first the central potentials (for all of them
we have taken h̄2/m = 41.47 MeV fm2). We have selected
five different potential models, that is, the Volkov [64], the
Afnan-Tang S3 (ATS3) [65], the Minnesota [66], the MT-V,
and the Malfliet-Tjon version I/III (MT-I/III) [49]. These
potentials have been used by several groups to produce
benchmark calculations, but unfortunately for each of them
different versions exist. For that reason, we have reported
the parameters of the potentials used in the present work in
Table III. Note that the first four potentials mentioned above
are equal to those used in Ref. [26], whereas the version of the
MT-I/III used is the same as reported in Table I of Ref. [22].
The Volkov and MT-V are spin independent, whereas the other
three potentials are spin dependent. It is customary to include
the point-Coulomb interaction (e2 = 1.44 MeV fm) with the
Minnesota potential, whereas the MT-I/III version acts only on
S waves. Clearly for this group of potentials, the total orbital
angular momentum is a good quantum number and therefore
we have included in the WF’s only the channels with L = 0.

The first example is the Volkov potential with Majorana
parameter M = 0.6. As can be seen in Table VI, our result
agrees very well with the estimates by other techniques,
especially with the one using the SVM [26]. The Volkov
potential, given as a sum of Gaussians, has a very soft core
and therefore the induced two-body correlations in the ground
state WF are weaker than in the other cases. In fact, we have
found that the convergence of the HH expansion is in this case
much faster (it is reached for K1 ≈ 30). Because inclusion of
HH states with fairly low values of the grand angular quantum
number are sufficient to obtain convergence, a successful HH
calculation for this potential was already possible 20 years
ago [45].

Others central potentials often used in the literature are
the ATS3 and Minnesota potentials. Both are given as a
sum of Gaussians but have a rather strong repulsion at
short interparticle distances. This induces important two-body
correlations in the WFs and consequently an acceptable
convergence for the first class is reached only for K1 > 40. The
chosen version of the Minnesota potential has the exchange
parameter u = 1. As mentioned before, the point-Coulomb
potential is included in the calculation; however, in the WF
we have included only states with T = 0. In both cases, we
observe a good agreement between the different theoretical
estimates.

The three potentials examined so far are given as functions
of Gaussians and thus depend on r2

ij . As is well known, in such
a case the convergence of the HH expansion as a function of
the grand angular quantum number is exponential and fast. We
actually observe such a behavior in all three cases. However,
especially for the class C1, the convergence is relatively more
difficult for the two models with a repulsive core than in
the Volkov case, confirming that the short-range repulsion is
mostly responsible for the need of the two-body correlations.

The next examples considered are the MT-V and MT-I/III
potentials. They are given as a superposition of Yukawians and

have a strong repulsive core with a 1/r divergence. As already
mentioned they represent the most challenging problem for the
HH expansion, due to the difficulty of constructing accurate
two-body correlations at short interparticle distances, where
the cancellation between kinetic and potential energy is
critical. As can be seen by inspecting Table VI, the BE for the
MT-V is slightly underestimated. We have already discussed
this case in the previous subsection and we have seen that it is
possible to obtain very precise estimates for the “missing” BE
using the known behavior � ∝ 1/K

5
. Adding this “missing”

BE to the value B = 31.347 MeV brings the HH result very
close to the estimates computed by other techniques. For the
(S-wave) MT-I/III we observe that our estimate is already close
to the very precise calculation of Ref. [22]. The “missing” BE
in this case is estimated to be 21 keV, bringing our estimated
BE to be 30.331 MeV.

Let us now consider the calculations performed using
the realistic models of the NN interactions (see Table VII).
Again the value h̄2/m = 41.47108 MeV fm2, corresponding
to 2/m = 1/mp + 1/mn, has been used. Let us consider first
the calculations performed without any 3N interaction. We
have considered here the AV18 and the Nijmegen II [6]
(Nijm-II) interactions models. Both potentials belong to the
group of the modern NN potentials which reproduce the NN
Nijmegen data set [67] with a χ2 per datum ≈1. They have been
selected because they are local in coordinate space, whereas
other modern potentials either have a “nonlocal” term like ∇2

(Nijmegen I potential [6]) or are given in momentum space
(Bonn interaction [7]). Note that our technique does not, in
principle, present any difficulties in treating these other kind
of potentials. The only problem is that now it is not possible to
solve the hyperradial second order differential equations by the
method proposed in Ref. [56]. Work is in progress to overcome
this difficulty and to compute the A = 3 and 4 WF’s also with
nonlocal potentials in coordinate or momentum space.

The convergence of the HH expansion in the case of the
AV18 potential has been already discussed in the previous
subsection. An analogous pattern of convergence is also found
for the Nijm-II potential. In Table VII, the results for the
BE and other properties are compared with the results of
other techniques. Note that in the Nijm-II model we have
included also the electromagnetic interactions, in addition to
the Coulomb potential, as in the case of the AV18 potential.
These terms contribute an additional −0.07 MeV to the BE and
this explains the difference with the reported FY calculation,
where they were not included. By taking into account this
fact, our Nijm-II BE agrees well with the corresponding value
obtained using the FY equations. Moreover, by taking into
account the “missing” BE estimated as explained previously,
our results practically reproduce the FY ones, by again taking
into account the quoted 50-keV uncertainty of the latter method
[24].

We now consider the inclusion of the 3N interaction. We
have considered here two models: the already-discussed UIX
and Tucson-Melbourne [13] (TM) models. In the latter case,
we have used the modified version TM′, more consistent with
chiral symmetry [68], with the cutoff parameter fixed to be
� = 4.756 mπ [3]. We have used them together with the AV18
potential (AV18+UIX and AV18+TM′ models). The cutoff
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TABLE VIII. Percentages of the total isospin components T = 1
and 2 in the α-particle ground states for various interaction models.

Interaction Method PT =1 (%) PT =2 (%)

AV18 HH this work 2.8 × 10−3 5.2 × 10−3

AV18 FY [24] 3 × 10−3 5 × 10−3

Nijm-II HH this work 1.6 × 10−3 7.4 × 10−3

AV18+UIX HH this work 2.5 × 10−4 5.0 × 10−3

parameter of the TM′ 3N interaction was chosen to reproduce
the BE of 3He. The inclusion of the UIX or the TM′ models of
the 3N interaction does not change the convergence behavior
of the HH expansion and also in these cases it is possible to
obtain nearly converged results (they have been obtained in
the approximation described in Sec. IV D). Note that in the
AV18+UIX case, the HH and FY estimates for the BE are
slightly above the GFMC result. This is probably due to fact
that in the GFMC technique, the L2 and (L · S)2 terms of the
NN interaction are not treated exactly and therefore the GFMC
estimates have to be regarded as an upper bound of the true
ground state energy.

In summary, the HH expansion has proved to be flexible
enough to describe accurately the α-particle bound state using
realistic NN and 3N interaction models.

C. Origin of the T > 0 components

In the calculations performed with the realistic NN and
NN + 3N interaction we have included components with
total isospin T = 0, 1, and 2 in the WF. The calculated
percentages of the states with T = 1 and 2 for the AV18 and
AV18+UIX models are reported in Table VIII. The results
obtained by the FY calculations [24] have been also reported.
These components appear in the WF when the class C6 is
included in the expansion. From Table IV, it can be seen
that the convergence of the BE for that class is reached
without difficulties, including states up to K = 16. However,
the percentage values of the T = 1 and 2 states have been found
to converge substantially more slowly and HH functions of
class C6 up to K = 32 have to be considered. The contribution
to the BE of the C6 states with K > 16 is very small, less than
1 keV.

As can be seen by inspecting Table VIII, the percentages
of the components with T = 1 and 2 in the α-particle wave
function are extremely small. For the AV18 potential, they are
in good agreement with the FY estimates [24]. The percentages
obtained using the Nijm-II potential differ by about 40% with
respect to those obtained with the AV18. The inclusion of
the 3N interaction tends to reduce them slightly. The adopted
models of 3N interaction contain no isospin mixing term.

The knowledge of the T = 1 and 2 percentages is important
for parity-violating experiments of electron scattering on 4He,
devoted to studying the admixture of strange quark ss̄ pairs
in the nucleon. Information on this quantity can be extracted
from the measurement of the “left-right” asymmetry ALR of
polarized electrons on a target nucleus, resulting from the
interference between the electromagnetic and the weak neutral

current mediating the scattering process. The study of the
asymmetry is particularly simple in case of a (Jπ , T ) = (0+, 0)
system, because in that case the number of matrix elements
entering this observable is small. Moreover, the use of 4He as
a target nucleus is also favored by the fact that its first excited
state is at 20.1 MeV, which allows for an easy experimental
control of inelastic processes. Indeed, there are approved
experiments at the Jefferson Lab [69,70].

However, the extraction of the information from the exper-
iments could be complicated by the presence of components
with isospin T = 1 and 2 in the WF of 4He. This question was
analyzed in Ref. [71] and found that the contribution from the
T = 1 isospin mixing configurations to ALR was negligible.
Considering the effect of the Coulomb potential alone, the
percentage of the T = 1 component in that work was estimated
to be PT =1 = 7 × 10−4. From the present calculation, in
agreement with the study of Ref. [24], the T = 1 component
results to be 4 times larger and this could be of some effect on
ALR .

The presence of T = 1 and 2 components in the α-particle
WF could play an important role also in the study of the
reaction d + d → α + π0. This reaction is possible only if
the isospin symmetry is violated, namely it probes directly
the charge symmetry breaking (CSB) terms in the nuclear
Hamiltonian. These terms come from both the u- and d-quark
mass difference (a fundamental quantity poorly known) and
from electromagnetic effects. Very recently, such a reaction has
been actually observed at IUCF [72], with a cross section at
threshold (Ed = 228.5 MeV) of σ = 12.7 ± 2.2 pb. Clearly,
this reaction can take place since the α-particle WF has a
nonvanishing T = 1 component. It can also proceed via some
explicit CSB transition operators. The theoretical study of this
reaction is currently under way [73].

Therefore, it is interesting to study the origin of the T = 1
and 2 isospin admixtures to the α-particle WF. To this end
we have performed a series of calculations by removing from
the Hamiltonian the different terms that induce the T > 0
components. Let us write the following:

H = HIC + HC + HCSB + He.m. + K�, (36)

where HIC is the isospin-conserving part of the nuclear Hamil-
tonian, HC the point-Coulomb interaction, HCSB the charge
symmetry breaking nuclear interaction (namely the operators
15–18 in AV18), He.m. the remaining electromagnetic (e.m.)
interaction (finite-size effects, vacuum polarization, magnetic
moment interactions, etc.), and K� the term originating from
the proton and neutron mass difference in the kinetic energy.
This latter term has not been included in the solution of
the four-body problem and its effects have been evaluated
perturbatively as explained in Appendix B.

By approximating the Hamiltonian with HIC only, one
would get no isospin admixture at all. We have then added
the various terms one by one to HIC and reported the results in
Table IX. As can be seen from that table, with the inclusion of
the Coulomb potential HC , the percentage of the T = 1 state
is in rough agreement (within a factor 2) with that estimated in
Ref. [71]. The percentage of the T = 2 state is very tiny in this
case. This can be understood from the perturbative treatment
described in Appendix B.
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TABLE IX. Effect of the inclusion of the various isospin mixing
terms in the nuclear Hamiltonian on the percentages of the total
isospin components T = 1 and 2 in the α-particle ground states.
The calculations have been performed using the AV18 model for the
nuclear Hamiltonian. For the explanation of the various terms HIC ,
and so on, see the text.

Interaction PT =1 [%] PT =2 [%]

HIC 0 0
HIC + HC 1.5 × 10−3 0.1 × 10−3

HIC + HC + HCSB 3.0 × 10−3 4.9 × 10−3

HIC + HC + HCSB + Hem 2.8 × 10−3 5.2 × 10−3

When the CSB terms of the AV18 NN interaction are
taken into account, however, the previous picture is noticeably
modified and both components increase, in particular the
T = 2 component, which becomes larger than the T = 1 one.
The CSB part of the AV18 potential is explicitly given by the
following:

HCSB = H
(1)
I,CSB + H

(2)
I,CSB, (37)

H
(1)
I,CSB =

∑
i<j

V (1)(i, j )[τz(i) + τz(j )], (38)

H
(2)
I,CSB =

∑
i<j

V (2)(i, j )

[
τz(i)τz(j ) − 1

3
τ i · τ j

]
, (39)

where V (1)(i, j ) and V (2)(i, j ) are functions depending on
the interparticle distance rij and on the spin operators of the
particles i and j. The operator [τz(i)τz(j ) − 1

3τ i · τ j ] in H
(2)
I,CSB

induces differences between the pp and pn interactions (it
originates mainly from the difference between the charged and
neutral pion masses). These differences are well established
and, although rather small, are of sizable value in some observ-
ables (such as the singlet np and pp scattering lengths). The
operator [τz(i) + τz(j )] in H

(1)
I,CSB induces instead differences

between the pp and nn interaction, too. Because of the lack
of precise nn data, the magnitude of this charge independence
breaking term is not very well known; however, its strength
should satisfy H

(1)
I,CSB � H

(2)
I,CSB. The part H

(2)
I,CSB is therefore

responsible for the (relatively) large T = 2 state percentage
in the α- particle ground-state WF. Finally, the effect of He.m.

is rather tiny as can be seen by inspecting Table IX (see also
Appendix B).

Finally, in Appendix B, we have considered the effect of
K� on PT =1,2, which has been found to be very small. The
corresponding change in the α-particle BE is found to be δB =
+0.15 keV. We can conclude that the effect of the n − p mass
difference to the BE and structure of the α particle is practically
negligible.

D. Truncation studies

In prevision of future applications of the present technique
to heavier systems, we have explored the effect of truncating
part of the NN and 3N interaction. The aim is to find a way
of simplifying the Hamiltonian, still obtaining very precise
results, with a maximum deviation of the order of 0.1% with

TABLE X. Effects of the truncation of the NN potential when
acting only on pairs having total angular momentum j � jM on
the binding energy B (MeV), the expectation value of the kinetic
energy operator 〈K〉 (MeV), and the P and D probabilities (%). The
potential model chosen is the AV18 and the selected HH basis has
{K1, K2, K3, K4, K5, K6} = {64, 40, 34, 24, 0, 0}.

jM B 〈K〉 PP PD

4 24.124 97.692 0.344 13.713
6 24.161 97.771 0.345 13.724
8 24.164 97.773 0.345 13.725

10 24.165 97.773 0.345 13.725
20 24.163 97.774 0.345 13.720
∞ 24.163 97.774 0.345 13.720

respect to the results obtained with no approximation. We have
explored both the effect of neglecting the NN interaction when
the total angular momentum j of the pair is greater than a given
value jM and the effect of neglecting the 3N interaction when it
acts on HH states with grand angular quantum number greater
than a given KM .

Let us first discuss the case of truncation of the NN in-
teraction. We have considered an NN interaction that vanishes
when acting on pairs with total angular momentum j > jM and
have varied jM to see the effect on the α-particle BE. We have
considered the AV18 interaction, becasue its operatorial form
allows one to compute it for arbitrary values of j. The results
obtained can be seen in Table X. The calculation with jM = ∞
means that we have retained the NN interaction acting in all
states. By inspecting the table, it can be seen that by taking
jM � 6 the BE and other quantities vary very little. Therefore,
it seems safe to retain the NN interaction as acting only on
states with j � 6 ÷ 8.

Let us now consider the 3N interaction. The behavior of
the radial parts of the UIX or TM′ 3N potential are rather
soft at short interparticle distances. Because the large grand
angular quantum number components in the WF are induced
by the repulsive core of the potentials, this suggests that the
correlations induced by the 3N interaction would not need
such high components. Therefore, we have included in the
Hamiltonian an effective 3N interaction of the following kind:

W̃KM
(i, j, k) = P

†
KM

W (i, j, k)PKM
, (40)

where W (i, j, k) is a 3N interaction and PKM
a projection

operator which gives 0 when it acts on four-body HH
states with a given grand angular quantum number K having
K > KM . Actually, W̃KM

(i, j, k) is an effective four-body
interaction. We have then studied the effects on the α-particle
BE by varying KM . We have considered here the AV18+UIX
model. The results obtained can be found in Table XI, where
for simplicity we have restricted the HH basis to include only
the first three classes (in any case, the other classes include
HH states with K < 30). As can be seen by inspecting the
table, the BE and the other quantities depend very little on
KM . Already for KM = 20, the corresponding BE differs from
that obtained in the nontruncated case by less than 0.1%. The
calculation of the 3N potential matrix elements between states
with K � 20 ÷ 30 is noticeably simpler than in the general case
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TABLE XI. Effects of the truncation of the 3N potential when
acting only on four-body HH states of grand angular quantum
number K � KM on the binding energy B (MeV), the expectation
value of the kinetic energy operator 〈K〉 (MeV), and the P and D
probabilities (%). The potential model chosen is the AV18+UIX
and the selected HH basis has {K1,K2, K3, K4, K5, K6} =
{64, 40, 34, 0, 0, 0}.

KM B 〈K〉 PP PD

20 27.351 109.71 0.596 15.05
24 27.366 109.67 0.596 15.05
30 27.372 109.65 0.596 15.05
34 27.374 109.64 0.596 15.05

and still the results are of acceptable precision. This should
allow for HH calculations including 3N interactions also for
scattering states and for heavier systems. This conclusion is
also supported by the study of Ref. [74] of the incorporation
of the 3N interaction in the EIHH method. Note that the results
reported in Tables IV and VII have been obtained using the 3N
interactions “truncated” as in Eq. (40) and taking KM = 30.

E. Asymptotic normalization constants

The asymptotic normalization constants (ANCs) are prop-
erties of the bound-state WF that can be related to experimental
observables. They are interesting quantities from which useful
information on the nuclear structure can be extracted. In par-
ticular, the D-state component percentage of the α particle can
be revealed by a (d, α) reaction initiated by a tensor-polarized
deuteron beam. In fact, an analysis of the experimental results
can allow for the extraction of the “distorted-wave” parameter
Ddd

2 , in turn closely related to the asymptotic d- to s-state d-d
ANCs ratio [75–78]. An estimate of Ddd

2 using some of the
modern NN + 3N interactions are given below. The ANCs
also provide a test of the quality of the variational WF in the
asymptotic region, as we shall see. This test will be particularly
severe in our approach, as the description of the 4He WF in
terms of the four-body HH functions in regions where the
1 + 3 or 2 + 2 clustering configurations are dominant will be
difficult.

Let us concentrate first on the proton-triton ANC C
pt

S of
4He, defined by the following:

�4(ξ 1, ξ 2, ξ 3) → C
pt

S

√
2βpt

W−ηpt ,1/2(2βpt rpt )

rpt

×�
pt

0 (̂ξ 1, ξ 2, ξ 3), rpt → ∞, (41)

where the Jacobi vectors ξ i correspond to the permutation
p = 1 (the index p will be suppressed in this section) and
rpt = √

2/3 ξ 1 is the distance between the 3H center of mass
and the fourth nucleon. The function �

pt

L is defined as follows:

�
pt

L (̂ξ 1, ξ 2, ξ 3) = {YL (̂ξ 1)[ψt (1, 2, 3)χ4ξ4]S}0,0, (42)

where ψt (1, 2, 3) ≡ ψt (ξ 2, ξ 3) is the 3H WF and χ4 (ξ4) is the
spin (isospin) function of the fourth nucleon. In the previous
equation, the spin 1/2 of 3H is coupled to the spin 1/2 of the
other nucleon to give a “channel” spin S = 0, 1. The channel

spin is in turn coupled to L to give a total angular momentum
J = 0; therefore L = S. Because of the even parity of the 4He
state, the p-3H clusters can only be in the state S = L = 0. In
Eq. (41), W−η,j (2βr) is the Whittaker function that behaves
irregularly at the origin and decays exponentially for r → ∞,
whereas βpt and ηpt are determined by the following:

βpt =
√

3

2

m

h̄2 (B4 − Bt ), ηpt = 3

4

m

h̄2

e2

βpt

, (43)

where e2 ≈ 1.44 MeV fm; h̄2/m ≈ 41.47 MeV fm2 and B4

and Bt are the 4He and 3H BE, respectively. Finally, the factor√
2βpt in Eq. (41) has been introduced so that the ANC C

pt

S is
dimensionless.

To calculate C
pt

S , let us introduce the 3H-4He overlap
function as follows:

fpt (rpt ) =
∫

d3ξ1 d3ξ2 d3ξ3 δ

(√
2

3
ξ1 − rpt

)

× �
pt

0 (̂ξ 1, ξ 2, ξ 3)†

rpt

�4(ξ 1, ξ 2, ξ 3), (44)

and the ratio

cpt (rpt ) = fpt (rpt )

(3/2)
3
2
√

2βpt W−ηpt ,1/2(2βpt rpt )
. (45)

If �4 is the exact 4He WF, for rpt → ∞ the overlap function
behaves as follows:

fpt (rpt ) →
(

3

2

) 3
2

C
pt

S

√
2βpt W−ηpt ,1/2(2βpt rpt ), (46)

and therefore cpt (rpt ) → C
pt

S , allowing for the extraction of
the ANC. The 3H WF has been determined by means of the
pair-correlated HH (PHH) technique described in Ref. [35]
and is believed to be very precise [79]. The dependence to
the truncation level of the HH basis used to compute the 4He
WF has been studied by computing the overlap function for
the following three different choices of the maximum values
of the grand angular quantum numbers of the six classes as
defined in Sec. IVA as follows:

{K1M,K2M,K3M,K4M,K5M,K6M}
= {56, 32, 26, 16, 14, 24}, case a,

{K1M,K2M,K3M,K4M,K5M,K6M}
(47)

= {60, 36, 30, 20, 18, 28}, case b,

{K1M,K2M,K3M,K4M,K5M,K6M}
= {64, 40, 34, 24, 22, 32}, case c.

The corresponding ratios cpt are shown in Fig. 3 by the open
circles (case a), open squares, (case b) and solid triangles
(case c). The potential used to generate the WF is the AV18
interaction. As can be seen by inspection of the figure,
all three functions cpt start to deviate from the expected
asymptotic constant behavior already for rpt > 5 fm, showing
the difficulty of reproducing the cluster structure of the WF by
means of the four-body HH functions. From the differences
between the three ratios, the very slow convergence of cpt (r)
as a function of {K1M,K2M,K3M,K4M,K5M,K6M} results to
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FIG. 3. Ratios cpt (rpt ) as function of the p-3H distance rpt .
The ratios obtained by the direct calculation of the overlap using
Eqs. (44) and (45) with the 4He WF corresponding to the grand
angular quantum numbers specified in Eq. (47) are shown by the open
circles (case a), the open squares (case b), and the solid triangles
(case c). The ratios obtained by the solution of the differential
equation defined in Eq. (48) are shown by the dotted (case a), dashed
(case b), and solid lines (case c), respectively (the dashed and solid
line are almost coincident). The 4He WF were generated using the
AV18 potential.

be evident. In particular, a detailed analysis has shown that the
convergence is sensitive to the value of K1M . The ratio cpt (r)
obtained with the larger basis shows a slightly larger “plateau”
around rpt = 5 fm, allowing for a crude estimate of the ANC,
C

pt

S ≈ 1.7.
To obtain a greater accuracy in the extraction of the ANC

we have followed another procedure [80]. Assuming that �4

and ψt are “exact,” it is not difficult to show that the overlap
function should satisfy the following differential equation:

−2

3

h̄2

m
f ′′

pt (r) + e2

r
fpt (r) + (B4 − Bt )fpt (r) + g(r) = 0,

(48)
where r ≡ rpt and

g(r) =
∫

d3ξ1 d3ξ2 d3ξ3 δ

(√
2

3
ξ1 − r

)
�

pt

0 (̂ξ 1, ξ 2, ξ 3)†

r

×
[
V14 + V24 + V34 + W124 + W134 + W234 − e2

r

]
×�4(ξ 1, ξ 2, ξ 3), (49)

Vij and Wijk being the NN and 3N potential, respectively.
As r → ∞, the function g(r) → 0, and the solution of
Eq. (48) coincides with the Whittaker function, allowing for
the extraction of the ANC via Eq. (45). We have computed
the function g(r) with the three different choices of the 4He

2 4 6 8 10
r (fm)

0.01

0.1

1

10

g(
r)

   
(M

eV
 f

m
-1

/2
)

FIG. 4. Functions g(r) obtained for three choices of the HH basis
specified in Eq. (47) are shown by the dotted (case a), dashed
(case b), and solid lines (case c). The three lines are practically
coincident and cannot be distinguished.

WF �4 given in Eq. (47) and reported the results in Fig. 4.
As can be seen, the function g(r) is peaked at r ≈ 2 fm, goes
to zero exponentially, and depends slightly on the choice of
�4. In fact, the selected HH bases are already large enough
to accurately describe the p-3H decomposition for r < 4 fm.
For larger distances, probably g(r) is not computed accurately
using our variational WF, but there g(r) becomes vanishingly
small and the resulting effect on the ANC is negligible. This
has been checked explicitly by solving Eq. (48) [imposing
the boundary conditions fpt (0) = fpt (∞) = 0] and computing
cpt (r) for the same three cases as before. The results for cpt (r)
are shown in Fig. 3 by the dotted, dashed, and solid lines (the
results of the latter two cases are practically indistinguishable).
As expected, for r < 5 fm, the line goes through the ratio
functions cpt (r) computed directly via the overlap integral and
reaches a constant value, corresponding to C

pt

S , around r =
5 fm. The extraction of the ANC can be now achieved with no
difficulty and the value found is C

pt

S = 1.715.
An analogous procedure has been repeated for the n-3He

ANC and the S- and D-wave d-d ANCs. We have used the
following definition:

�4 → Cnh
S

√
2βnh

e−βnhrnh

rnh

�nh
0 (̂ξ 1, ξ 2, ξ 3),

rnh =
√

2

3
ξ1 → ∞, (50)

�4 → Cdd
S

√
2βdd

W−ηdd ,1/2(2βddrdd )

rdd

�dd
0 (ξ ′

1, ξ̂
′
2, ξ

′
3)

+Cdd
D

√
2βdd

W−ηdd ,5/2(2βddrdd )

rdd

�dd
2 (ξ ′

1, ξ̂
′
2, ξ

′
3),

(51)
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TABLE XII. ANCs and the parameter Ddd
2 obtained with the HH expansion and the solution

of the differential equation of Eq. (48) for two potential models. The Ddd
2 parameter is defined

in Eq. (56). In the third row, the theoretical estimate for Ddd
2 of Ref. [81] is also shown. Finally,

in the last three rows, some available experimental values for the parameter Ddd
2 have been also

reported.

Parameter C
pt

S Cnh
S Cdd

S Cdd
D Ddd

2 (fm2)

AV18 1.72 1.67 1.96 −0.209 −0.115
AV18+UIX 1.75 1.69 1.99 −0.277 −0.113
Adhikari et al. [81] −0.12
Karp et al. [77] −0.3 ± 0.1
Merz et al. [82] −0.19 ± 0.04
Weller et al. [78] −0.2 ± 0.05

rdd =
√

1

2
ξ ′

2 → ∞, (52)

where ξ ′
i are the set B of the Jacobi vectors defined in Eq. (29)

corresponding to the permutation p = 1 and

�nh
L (̂ξ 1, ξ 2, ξ 3) = {YL(̂ξ 1)[ψh(1, 2, 3)χ4ξ4]S}0,0, (53)

�dd
L (ξ ′

1, ξ̂
′
2, ξ

′
3) = {YL(̂ξ

′
2)[φd (1, 2)φd (3, 4)]S}0,0. (54)

In the latter, ψh and φd are the 3He and deuteron WF,
respectively, and

βnh =
√

3

2

m

h̄2 (B4 − Bh), βdd =
√

2m

h̄2 (B4 − 2Bd ),

ηdd = m

h̄2

e2

βdd

, (55)

with Bh and Bd the 3He and deuteron BE, respectively. For the
d-d case, one can also estimate the distorted-wave parameter
Ddd

2 defined by the following:

Ddd
2 = 1

15

∫ ∞

0
drddr

3
ddf

D
dd (rdd )

/∫ ∞

0
drddrddf

S
dd (rdd ),

(56)
where f X

dd (rdd ) (X = S,D) are the S- and D-wave (d-d)-4He
overlap functions, respectively, defined in analogy to
Eq. (44). The results obtained have been reported in
Table XII, together with some other theoretical and exper-
imental estimates available for Ddd

2 (for a more complete
list of references, see Ref. [81]). The Ddd

2 parameter was
determined in Ref. [81] using an approximated method (a
cluster model) which however seems to provide an estimate
rather close to ours. This parameter is also in reasonable
agreement with the experimental values reported in Table XII,
also considering the difficulty of the extraction of this quantity
from the experimental data.

F. Details of the practical implementation of the method

It may be opportune at this point to give some detail of the
computer resources needed to perform the full calculation. The
first step consists of computing the transformations coefficients
given in Eq. (23). This task can be performed once and for

all as it does not depend on the adopted potential model.
The coefficients are then stored in computer disks (in the
present case, they occupy about 4 Gb of disk space). The
orthogonalization does not present a problem of CPU time,
as it can be separately performed for each subspace of HH
functions of given K,L, S, T quantum numbers.

The second step is to compute the one-dimensional integrals
of the NN potential given in Eq. (28). The CPU time depends
noticeably by the value of jM defined in the Sec. IV D. Taking
jM → ∞, the calculation can last several hours, which are
reduced to a few hours when jM = 10 or less. Also these
integrals can be saved on a computer disk (the allocated space
in this case is less than 1 Gb).

The third step consists in the calculation of the NN potential
matrix elements〈

�KLST Jπ
µ

∣∣V (1, 2)
∣∣�K ′L′S ′T ′Jπ

µ′
〉
. (57)

This task is simply reduced to a sum of products of the
transformation coefficients BKLST Jπ

µ,ν , defined in Eq. (23), and
the integrals given in Eq. (28) calculated as discussed above.
The NN matrix elements (which are function of ρ) are again
written in a computer disk. For example, in a calculation with
5000 HH functions, a grid of 65 points in ρ, and storing the
matrix elements as double precision numbers, the needed disk
space is about 6 Gb. Most of the CPU time here is spent
in disk I/O and therefore the total time of this calculation
depends critically on the particular computer used. For the case
jM → ∞, using a “normal” pentium PC, where the I/O speed
is not very high, the calculation can last several days. When
jM = 10 or less, the task is noticeably simplified, allowing
the calculation to be performed in 1–2 days. Using a more
sophisticated machine, this time could be reduced to less than
1 day.

In parallel, one can eventually calculate the matrix elements
of a 3N interaction. As explained in Appendix A, again this
task is divided in two steps: calculation of the integrals given
in Eqs. (A10)–(A11) and the sum given in Eq. (A12). The
first part can be performed beforehand and the values of
I

p,q

i,j,k and J
p,q

i,j,k stored in computer disks (the CPU time and
disk space needed in this case is rather small). To evaluate
the sum given in Eq. (A12), one needs the integrals (A7).
This part can be easily parallelized to run on a PC farm,
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and so on. The CPU time depends very critically on the
value of KM used to “truncate” the 3N interaction as given
in Eq. (40). Calculations with KM � 40 appeared impossible
with the computers available to the authors. Calculations with
KM ≈ 30 are rather lengthy but possible (several days using
16 CPUs). Calculations with KM = 20 are much less time
consuming and still very accurate. The disk space used to
store the 3N potential matrix elements is correspondingly very
small for KM = 20 (<1 Gb), and it increases like K2

M .
The last step corresponds to the solution of the second-order

differential equations for the functions uKLST,µ(ρ). Also in this
case the I/O speed of the computer is the critical factor. The
calculation corresponding to the full basis can take several
hours of CPU time on a small computer.

In summary, having prepared beforehand the transfor-
mation coefficients and the integrals given in Eq. (28), a
calculation with a NN potential can be performed in a few
days. Including a 3N interaction with KM = 20 would take a
similar time, having the possibility to run the code on a (small)
parallel machine.

V. CONCLUSIONS AND PERSPECTIVES

We have studied the solution of the Schroedinger equation
for the four-nucleon ground state using the HH function
expansion. The main difficulty when using the HH basis is its
large degeneracy, accordingly a suitable selection of the HH
functions giving the most important contributions has to be
performed. In this work, the HH functions have been divided
into classes, depending on the number of correlated particles,
the values of the orbital angular momenta, the total isospin
quantum number, and so on. For each class, the expansion has
been truncated so as to obtain the required accuracy. We have
applied this procedure in particular to the study of the ground
state of the α particle using a number of NN and NN + 3N
interaction models. In all the cases, accurate calculations of the
BE and other ground-state properties, such as the asymptotic
normalization constants, have been achieved.

A similar procedure can be also applied for solving
scattering problems. The calculation of the phase shifts and
the various observables for n-3H and p-3He elastic scattering
is now in progress and will be published elsewhere [83].

The hyperspherical formalism is adequate for treating all
kinds of modern potentials, except those containing a hard
core. We have considered here the AV18 and Nijmegen-II
NN potentials and the UIX and TM′ 3N interactions. The
inclusion of the ∇2 term present in the Nijmegen-I [6]
potential introduces no additional difficulties. As an example,
such a term was taken into account in Ref. [84] where the
PHH approach was used. Moreover, the HH method can be
easily formulated in momentum space. It can therefore be
applied also to the case of the Bonn potential [7] although
one additional numerical integration and the solution of an
integral equation are then required. The application of the HH
technique to the A = 3, 4 systems with the Bonn potential is
actually underway.

At present there are only a few other methods available
for accurate calculations of the four-nucleon problem, in
particular taking into account a 3N force. There are two

other important motivations behind this work. The first one
is to show in detail that the HH expansion applied to the
four–nucleon bound and scattering problems is very powerful
even for realistic NN interactions. The second motivation
is the possibility of the extension of the method to larger
systems. The feasibility of such an application would require
the solution of the following different problems. First, the
calculation of the generalized “Raynal-Revai” coefficients,
namely of the coefficients relating HH functions constructed
with different sets of Jacobi vectors. The direct generalization
of the algorithm proposed in Ref. [55] is adequate for A =
5 ÷ 8. Otherwise, different algorithms could be used [52–54].
Second, the computation of the matrix elements of NN and
3N interactions, which can be reduced to the evaluation of
low-dimensional integrals as in the present case. In particular,
the possibility of approximating the 3N interaction as acting
only on HH functions of low K, as discussed in Sec. IV D,
should appreciably simplify this task. Finally, the choice of an
optimal subset of HH functions. As A grows, the number of
HH states for a given K increases very rapidly. The criteria
for selecting the subclasses of HH functions chosen in the
present article can be readily generalized to systems with
A > 4. However, additional properties of the HH function
could be exploited to further reduce the number of terms
in the expansion. For example, one could take into account
the symmetry of the space part of the states constructed as
a product of the HH functions and the spin-isospin states.
Another possibility to be explored is to include classes of HH
functions constructed with those Jacobi vectors pertaining to
different partitions of the particles. For example, in the study
of the d + 3H → 4He + p reaction, the use of HH functions
constructed in terms of 2 + 3 and 4 + 1 clusterizations should
be very useful. Alternatively, one could try to integrate the
present study with the effective interaction formalism [33,34].
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APPENDIX A: THE MATRIX ELEMENTS OF
A LOCAL 3N FORCE

In this Appendix, the method used for calculating the matrix
elements of a local 3N interaction operator H3N between
the antisymmetric hyperangular-spin-isospin states defined in
Eq. (11) will be briefly illustrated. The major problem to be
overcome is to achieve a sufficient numerical precision, so that
the differential equations for the functions uKLST,µ(ρ) defined
in Eq. (22) could be solved without any numerical trouble. In
general, a 3N interaction is written as follows:

H3N =
∑

i<j<k

∑
cyclic

W3N (i; j, k), (A1)

where
∑

cyclic represents a cyclic sum over indices i, j, and k
and W3N (i; j, k) is symmetric under the exchange of the
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particles j and k. Therefore, the problem can be reduced
to the computation of the matrix element of the operator
W3N (1; 2, 3). Once the antisymmetric hyperangular-spin-
isospin states are expanded in terms of the jj states as in
Eq. (23), one has to compute the following integrals:

Wν,ν ′ (ρ) =
∫

d�
〈
�KT Jπ

ν (1, 2, 3, 4)
∣∣

×W3N (1; 2, 3)
∣∣�K ′T Jπ

ν ′ (1, 2, 3, 4)
〉
, (A2)

where the states �KT Jπ
ν (1, 2, 3, 4) are defined in Eq. (24)

(hereafter all the Jacobi vectors are chosen to correspond
to the permutation p = 1, and therefore the index p will be
omitted). In the case of the Urbana or TM-like 3N interactions,
W3N (1; 2, 3) can be taken to have the following general form
[85]:

W3N (1; 2, 3) =
6∑

p,q=1

Fp,q(r12, r13, µ12,13) Op

12 Oq

13, (A3)

where µ12,13 = r̂12 · r̂13 and r ij is the relative distance
between the particles i and j. In the latter equation, Op=1,6

ij

are the following operators:

Op=1,6
ij = 1, (τ i · τ j ), (σ i · σ j ), (σ i · σ j )(τ i · τ j ),

r2
ij Sij , r2

ij Sij (τ i · τ j ), (A4)

where Sij is the tensor operator (the factor r2
ij has been

included in the definition of Op=5,6 so that these operators
are polynomials in the Cartesian coordinates of the particles).

Because W3N (1; 2, 3) depends only on the variables
ρ, ϕ3, ϕ2, ξ̂2, ξ̂3 we can easily integrate over the variables
ξ̂1. Moreover, by evaluating the spin-isospin traces and the
integrals over the angles ξ̂2, ξ̂3 (except for µ = ξ̂2 · ξ̂3) one
reduces the matrix element given in Eq. (A2), to an integral of
the type:

Wν,ν ′(ρ) =
∑
p,q

∫ 1

−1
dz

√
1 + z

∫ 1

−1
dx

√
1 − x2

×
∫ 1

−1
dµ Fp,q(r12, r13, µ12,13)Pp,q(z, x, µ)

(A5)

where

z = cos 2ϕ3 = 2
r2

12

ρ2
− 1, x = cos 2ϕ2 = 2

ξ 2
2

ρ2
− 1,

(A6)
and

Pp,q(z, x, µ) = (4π )2

128
√

2

∫
dξ̂1

〈
�KT Jπ

ν (1, 2, 3, 4)

× ∣∣Op

12 Oq

13

∣∣�K ′T Jπ
ν ′ (1, 2, 3, 4)

〉
. (A7)

In Eq. (A7) the integration over the angles ξ̂2, ξ̂3 (except
for µ = ξ̂2 · ξ̂3) and the trace over the spin-isospin degrees
of freedom is implicit. This latter part of the calculation can
be performed analytically in terms of Wigner D matrices and
Clebsch-Gordan coefficients. The remaining two-dimensional
integration over dξ̂1 = d cos θ1 dφ1 in Eq. (A7) can be easily

performed by taking into account that the integrand is a
polynomial in cos θ1 and cos φ1 of degree K + K ′.

The functions P can be therefore calculated exactly using
an appropriate Gauss integration formula with a small number
of points. Conversely, the functions Fp,q entering the tridi-
mensional integral (A5) are very complicated functions of the
variables z, x, µ. Therefore, the integral (A5) requires the use
of extended and dense integration grids [about (1000)3 points]
to yield the needed accuracy. Because the same integration has
to be repeated for each ν, ν ′, the complete calculation of Wν,ν ′

could be very time consuming.
However, the function Pp,q(z, x, µ) can be written in

general as follows:

Pp,q(z, x, µ) = Pe
p,q(z, x, µ)

+√
1 + x

√
1 − z2Po

p,q(z, x, µ), (A8)

where Pe
p,q and Po

p,q are polynomials in z, x, and µ of
maximum degree N = K + K ′ + 2, the 2 coming (eventually)
from the factor r2

ij multiplying the tensor operators in Eq. (A4).

More precisely Pe (
√

1 + x
√

1 − z2Po) is the even (odd) part
of P with respect to the variable µ.

Now, if p(t) is a polynomial of degree n with respect to the
variable t and its value in each of n + 1 points t1, . . . , tn+1 is
known, using the following “Lagrange interpolation” formula,
p(t) can be computed exactly for any t:

p(t) =
∑

i=1,...,n+1

p(ti)L
(n+1)
i (t),

(A9)

L
(n+1)
i (t) ≡

j 
=i∏
j=1,...,n+1

t − tj

ti − tj
.

Therefore, once three sets of points z1, . . . , zN+1,
x1, . . . , xN+1, and µ1, . . . , µN+1 in the interval (−1, 1) have
been selected, and Pe,o

p,q in the (N + 1)3 points zi, xj , µk have
been computed, the functions Pp,q are then known exactly for
all possible values of (z, x, µ). Because the matrix elements
of the 3N interaction are needed only between HH states
with K <∼ 30 (and therefore max[N ] � 100), as discussed
in Sec. IV D, this means that in practice the functions P have
to be evaluated only a fairly small number of times. Finally, if
we evaluate the following:

I
p,q

i,j,k =
∫ 1

−1
dz

√
1 + z

∫ 1

−1
dx

√
1 − x2

×
∫ 1

−1
dµFp,q(r12, r13, µ12,13)

×L
(N+1)
i (z)L(N+1)

j (x)L(N+1)
k (µ), (A10)

J
p,q

i,j,k =
∫ 1

−1
dz

√
1 + z

∫ 1

−1
dx

√
1 − x2

×
∫ 1

−1
dµFp,q (r12, r13, µ12,13)

√
1 + x

×
√

1 − z2 L
(N+1)
i (z)L(N+1)

j (x)L(N+1)
k (µ), (A11)
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the required matrix elements can be obtained simply as
follows:

Wν,ν ′(ρ) =
∑
p,q

N∑
i,j,k=1

[
Pe

p,q(zi, xj , µk)

× I
p,q

i,j,k + Po
p,q(zi, xj , µk)Jp,q

i,j,k

]
. (A12)

where the integrals given in Eqs. (A10) and (A11) no longer
depend on the quantum numbers ν, ν ′ of the HH states and
therefore can be computed with the necessary accuracy once
and for all and stored on computer disks. In this way, the matrix
elements Wν,ν ′(ρ) obtained via Eq. (A12) are obtained very
quickly [with only ∼(N + 1)3 operations].

APPENDIX B: THE n − p MASS DIFFERENCE

To analyze the effect of n − p mass difference, we have
repeated the approximate calculation of Ref. [71]. Let us write
the Hamiltonian of our system as in Eq. (36),

H = HIC + HC + HCSB+He.m. + K� ≡H (0)+H
(1)
I + H

(2)
I ,

(B1)

namely as a sum of an isoscalar, isovector, and isotensor term.
Let us treat H (0) as the unperturbed Hamiltonian and try to
evaluate the T > 0 components using first-order perturbation
theory. Namely

|δ�(T )〉 =
∑
n>0

|�n〉 〈�n|H (T )
I |�0〉

E0 − En

, (B2)

where �0 is the unperturbed ground state and �n, n = 1, 2, . . .

the unperturbed excited states of H (0), which therefore have
definite values of the total isospin quantum number. In
particular, �0 has T = 0, and so on. The most important
contributions to the components T = 1, 2 of δ�(T ) would
come from the lowest excited states. Following Ref. [71] (see
also Ref. [86]), we model these states as follows:∣∣�(T )

1

〉 = �T |�0〉
〈�0|�†

T �T |�0〉1/2
, (B3)

where �T , T = 1, 2, are excitation operators of the form

�1 =
∑
ij

r2
ij (τz(i) + τz(j )), (B4)

�2 =
∑
ij

r2
ij (τz(i)τz(j ) − (1/3)τ (i) · τ (j )). (B5)

The operator �1 generates a state (Jπ , T ) = (0+, 1) corre-
sponding to a “breathing” mode where neutrons and protons
oscillate in counterphase. Furthermore, �2 generates a state
(Jπ, T ) = (0+, 2) with “tensor” oscillations. The T = 1, 2
components in the 4He wave function would be given by the
following:

|δ�(T )〉 ≈ ∣∣�(T )
1

〉 〈
�

(T )
1

∣∣H (T )
I

∣∣�0
〉

E0 − E
(T )
1

≡ χT

∣∣�(T )
1

〉
, (B6)

where E
(T )
1 = 〈�(T )

1 |H (0)|�(T )
1 〉. The percentage of the T wave

is just 100|χT |2.

In the following, we applied the procedure outlined above
using the AV18 potential model. �0 is the WF computed with
the HH expansion excluding any states belonging to the class
C6. We have found the following:

E0 = −24.19 MeV, E
(1)
1 = 7.05 MeV,

(B7)
E

(2)
1 = 29.07 MeV.

To check the consistency of this procedure, let us consider
the (point) Coulomb potential HC , given by the following:

HC =
∑
i<j

e2

rij

(
1 + τz(i)

2

) (
1 + τz(j )

2

)
(B8)

and therefore the terms entering H
(1)
I and H

(2)
I are as follows:

H
(1)
I,C =

∑
i<j

e2

rij

(
τz(i) + τz(j )

4

)
, (B9)

H
(2)
I,C =

∑
i<j

e2

rij

(
τz(i)τz(j ) − 1

3τ (i) · τ (j )

4

)
. (B10)

The necessary matrix elements can be readily computed with
the result that〈

�
(T =1)
1

∣∣H (T =1)
I,C |�0〉 ≈ −100 keV,

(B11)〈
�

(T =2)
1

∣∣H (T =2)
I,C |�0〉 ≈ −37 keV.

and therefore PT =1 ≈ 1 × 10−3 and PT =2 ≈ 0.05 × 10−3 con-
firming that the T = 2 component induced by the Coulomb
potential is smaller than the T = 1 one. In fact, the radial
dependence (and strength) of H

(1)
I,C and H

(2)
I,C are the same.

However, the T = 2 breathing mode has a higher excited
energy and this reduces the probability of a “transition” to the
state |�(T =2)

1 〉. The values PT =1 and PT =2 are also in agreement
within a factor 2 with the results reported in the second row of
Table IX. Therefore, we expect that the estimate of the isospin
admixture percentage using this approximate method are of
the right order of magnitude.

Considering now the CSB interaction, we have found the
following: 〈

�
(T =1)
1

∣∣H (T =1)
I,CSB |�0〉 ≈ −23 keV,

(B12)〈
�

(T =2)
1

∣∣H (T =2)
I,CSB |�0〉 ≈ −84 keV,

where H
(T =1,2)
I,CSB are defined in Eqs. (38) and (39). As expected,

the matrix elements 〈�(T =2)
1 |H (2)

I,CSB|�0〉 are larger than the

corresponding matrix elements of H
(1)
I,CSB. Adding the values

given in Eqs. (B11) and (B12), we find PT =1 = 1.5 × 10−3

and PT =2 = 0.6 × 10−3 as the percentage of the isospin
components induced by the Coulomb+CSB part of the Hamil-
tonian. Our approximate calculation seems to underestimate
both component percentages (in particular PT =2), but it is in
qualitative agreement with the results reported in Table IX.

The e.m. part of the Hamiltonian produces small effects.
This is also supported by our approximate calculation. We
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have found, in fact, the following:〈
�

(T =1)
1

∣∣He.m.|�0〉 ≈ 6 keV,
〈
�

(T =2)
1

∣∣He.m.|�0〉 ≈ −3 keV .

(B13)

Let us finally apply the perturbative treatment to the mass
difference between neutrons and protons. The associated term
in the Hamiltonian is as follows:

K� =
∑
i=1,4

1

2

(
1

2mp

− 1

2mn

)
∇2

i τz(i) ≡ H
(1)
I,�, (B14)

and therefore K� is an isovector operator contributing to H
(1)
I

and may increase the percentage of the T = 1 state. We have
found the following:〈

�
(T =1)
1

∣∣H (T =1)
I,� |�0〉 ≈ −9 keV. (B15)

The effect of K� is therefore rather small as it would produce
a change of PT =1 of about 0.1 × 10−4.

As a by-product of this calculation, we can also estimate
the change in the BE produced by taking into account the

n − p mass difference. First of all, let us restrict to the case
H = H (0) + K� and let us treat K� as a perturbation. Then,
the first-order energy shift δE1 vanishes, whereas the second
order can be computed as outlined above to be as follows:

δE2 ≈
∣∣〈�(T =1)

1

∣∣K�|�0〉
∣∣2

E0 − E
(T =1)
1

≈ −0.003 keV, (B16)

a very small change. However, one has to take into account
the T > 0 components present in the α-particle wave func-
tion because of the Coulomb, CSB interaction, and so on.
Therefore, we consider now HIC + HC + HCSB + He.m. as the
unperturbed Hamiltonian and use the first order perturbation
theory. As unperturbed WF we now use �full, namely that
computed including in the expansion the HH components of
all classes C1–C6. For the AV18 case, we find the following:

〈�full|K�|�full〉 = −0.15 keV. (B17)

We can conclude that the effect of the n − p mass difference to
the BE and structure of the α particle is practically negligible.
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