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Calculations of the exclusive processes 2H(e, e′p)n, 3He(e, e′p)2H, and 3He(e, e′p)( pn) within a
generalized eikonal approximation
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The exclusive processes 2H(e, e′p)n, 3He(e, e′p)2H, and 3He(e, e′p)(pn) have been analyzed using realistic
few-body wave functions and treating the final state interaction (FSI) within a generalized eikonal approximation
(GEA), based on direct calculation of the Feynman diagrams describing the rescattering of the struck nucleon
with the nucleons of the A − 1 system. The approach represents an improvement of the conventional Glauber
approach (GA) because it allows one to take into account the effects of the nuclear excitation of the A − 1 system
on the rescattering of the struck nucleon. Using realistic three-body wave functions corresponding to the AV18
interaction, the results of our parameter-free calculations are compared with available experimental data. It is
found that in some kinematical conditions FSI effects represent small corrections, whereas in other kinematics
conditions they are very large and absolutely necessary to provide a satisfactory agreement between theoretical
calculations and experimental data. It is shown that in the kinematics of the experimental data that have been
considered, covering the region of missing momentum and energy with pm � 0.6 GeV/c and Em � 100 MeV in
the perpendicular kinematics, the GA and GEA predictions differ only by less than �3–4%.
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I. INTRODUCTION

One of the main aims nowadays of hadronic physics is the
investigation of the limits of validity of the so-called standard
model of nuclei, that is, the description of nuclei in terms of the
solution of the nonrelativistic Schrödinger equation containing
realistic nucleon-nucleon interactions. To this end, exclusive
lepton scattering could be very useful, for it might yield
relevant information on the nuclear wave function, provided
the initial and final states involved in the scattering process are
described within a consistent, reliable approach. In the case
of few-body systems, a consistent treatment of initial and final
states is currently possible at low energies (see, e.g., [1,2] and
references therein), but at higher energies, when the number
of partial waves sharply increases and nucleon-nucleon (NN)
interaction becomes highly inelastic, the Schrödinger approach
becomes impractical and other methods have to be employed.
In the case of complex nuclei, additional difficulties arise due to
the approximations necessary to solve the many-body problem.
In fact, whereas fundamental progress has been made in recent
years in the calculation of various properties of light nuclei
(see, e.g., [3] and [4] and references therein), much remains
to be done for the treatment of the continuum, for which
various approximate treatments of the final state cannot be
avoided. In this context, it should be stressed that calculations
involving few-body systems, where the ground state can be
treated exactly, can also be very useful for investigating the
limits of validity of various approximate schemes to treat the
continuum and their possible extension to complex nuclei.

The aim of this paper is to present the results of a systematic
theoretical investigation of the exclusive process A(e, e′p)B
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off 2H (to be also denoted by D) and 3He, based on a reliable
description of the following:

1. initial state correlations (ISC), treated using the state-of-art
few-body wave functions [2] corresponding to the AV18
interaction [5], and

2. final state interactions (FSI), treated within a relativistic
framework based on calculation of the relevant Feynman
diagrams that describe the rescattering of the struck nucleon
by the other A − 1 spectator nucleons of the target.

Whereas a correct treatment of ISC in few-body systems
is automatically achieved by using realistic wave functions,
the treatment of FSI at high energies is still matter of
discussion. The approach we are going to use has several
nontrivial advantages. It allows one to work within a relativistic
framework provided by the use of Feynman diagrams and,
moreover, it can be applied, in principle, to the treatment of
exclusive A(e, e′p)B processes off complex nuclei as well.
It should be stressed, at this point, that the diagrammatic
approach we are talking about is not a new one: It has
been first formulated in Refs. [6] and [7] (see also Ref. [8]),
within a spinless treatment of particle-nucleus scattering,
and applied subsequently to various types of high-energy
processes with nuclear targets. More recently, the diagram-
matic approach has been generalized to the treatment of
FSI in exclusive A(e, e′p)B [9–11] and A(e, e′2p)B [12]
processes, and a Feynman diagram approach has also been
used in Refs. [13,14], [15] to take into account off-shell
effects both in inclusive, A(e, e′)X, and exclusive, A(e, e′p)B,
processes.

The diagrammatic approach we are referring to is a
generalization of the standard Glauber approach (GA) [16]
based on the eikonal approximation, so that, following
Ref. [12], we will call it the generalized eikonal approximation
(GEA).
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It is well known that the application of the GA to the
treatment of A(e, e′p)B processes requires the following
approximations: (i) The NN scattering amplitude is obtained
within the eikonal approximation; (ii) the nucleons of the
spectator system A − 1 are stationary during the multiple
scattering with the struck nucleon (the frozen approximation),
and (iii) only perpendicular momentum transfer components
in the NN scattering amplitude are considered. In the GEA the
frozen approximation is partly removed by taking into account
the excitation energy of the A − 1 system, which results
in a correction term to the standard profile function of the
GA, leading to an additional contribution to the longitudinal
component of the missing momentum.

In the present paper we apply both the GA and the GEA
to the calculation of the processes 2H(e, e′p)n, 3He(e, e′p)2H,
and 3He(e, e′p)(np), and we compare our results with available
experimental data [17–22]. The 3He wave function of the
Pisa group [2], corresponding to the AV18 interaction [5],
will be used in the calculations. We will not consider, for
the time being, meson exchange currents (MEC), �-isobar
configurations, and similar effects, which have been the object
of intensive theoretical studies in A(e, e′p)B processes off both
few-body systems (see, e.g., [23,24]) and complex nuclei (see,
e.g., [25] and references therein). As in Refs. [9–12], we fully
concentrate on the effects of the FSI but we will consider
kinematical conditions for which the effects from MEC and
� excitation effects are expected to be small corrections, and,
whenever possible, we will compare our results with those of
other authors who include these effects.

The structure of the paper is as follows: In Sec. II the basic
formalism of lepton-hadron scattering is briefly illustrated and
the main formulas are obtained; in Sec. III the concepts of plane
wave impulse approximation and spectral function are re-
called; in Sec. IV, the GEA is introduced, the relevant Feynman
diagrams that one needs to take into account in the treatment of
the full FSI are analyzed, and the problem of the factorization
of the lepton-nucleus cross section within the GA and GEA is
also discussed; the results of the calculations and their com-
parison with available experimental data are shown in Sec. V;
summary and conclusions are presented in Sec. VI. Some
details concerning the formal aspects of our approach are given
in Appendixes A and B. Preliminary results of our calculations
have been reported in Refs. [26] and [27].

II. BASIC FORMULAS OF (e, e′p) SCATTERING
OFF NUCLEI

The one-photon-exchange diagram for the process
A(e, e′p)(A − 1), where A − 1 denotes a system of A − 1
nucleons in a bound or continuum state, is presented in
Fig. 1. Shown are the relevant four-momenta in the scattering
processes, namely, the electron momenta before and after
interaction, k = (E, k) and k′ = (E′, k′), the momentum of the
target nucleus, PA = (EA, PA), and the momenta of the final

proton and the final A − 1 system, p1 = (
√

p1
2 + M2

N, p1) and

PA−1 = (√
P2

A−1 + (Mf

A−1)2, PA−1
)
, where MN is the nucleon
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FIG. 1. The one-photon exchange approximation for the process
A(e, e′p)(A − 1).

mass, M
f

A−1 = MA−1 + E
f

A−1, and E
f

A−1 is the intrinsic
excitation energy of the A − 1 system.

Let us briefly recall some useful formulas regarding
the process described by the diagram shown in Fig. 1. The
differential cross section for the exclusive process has the
following form (see, e.g., [28]):

d6σ

dE′ d�′ d3p1
= σMott l̃

µνWA
µν, (1)

where σMott = 4α2 E′2 cos2 θ
2 /Q4 is the Mott cross section,

α is the fine-structure constant, Q2 = −q2 = −(k − k′)2 =
q2 − q2

0 = 4EE′ sin2 θ/2 is the four-momentum transfer, and
θ ≡ θk̂k′ is the scattering angle. The quantities l̃µν and WA

µν are
the reduced leptonic and hadronic tensors, respectively; the
former has the well-known standard form [28], whereas the
latter can be written as

WA
µν = 1

4πMA

∑
αA

∑
αA−1,αN

(2π )4δ(4)(PA + q − PA−1 − p1)

× 〈
αAPA

∣∣Ĵ A
µ (0)

∣∣αNp1, αA−1PA−1E
f

A−1

〉
× 〈

E
f

A−1PA−1αA−1, p1αN

∣∣Ĵ A
ν (0)

∣∣αAPA

〉
, (2)

where αi denotes the set of discrete quantum numbers
of systems A, A − 1, and N . In Eq. (2) the vector
|αNp1, αA−1PA−1E

f

A−1〉 consists asymptotically of a nucleus
A − 1, with momentum PA−1 and intrinsic excitation energy
E

f

A−1, and a nucleon with momentum p1. Two relevant
experimentally measurable quantities that characterize the
process are the missing momentum pm (i.e., the momentum
of the A − 1 system) and the missing energy Em defined,
respectively, by

pm = q − p1, Em =
√

P 2
A−1 + MN − MA

= MN + MA−1 − MA + E
f

A−1 = Emin + E
f

A−1, (3)

where Emin = EA − EA−1 = MN + MA−1 − MA, and the
(positive) ground-state energies of A and A − 1 are denoted
by EA and EA−1, respectively. The exclusive cross section can
then be written in the well-known form

d6σ

d�′ dE′ d3pm

= σMott

∑
i

ViW
A
i (ν,Q2, pm,Em), (4)

where i ≡ {L, T ,LT , T T }, and VL, VT , VLT , and VT T are
well-known kinematical factors.
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The evaluation of the nuclear response functions WA
i

requires knowledge of the nuclear vectors |αAPA〉 and
|αNp1, αA−1PA−1E

f

A−1〉 and the nuclear current operators
Ĵ A

µ (0). Because there is no rigorous quantum field theory to
describe, from first principles, a many-body hadronic system,
one is forced to adhere to various approximations. Whereas at
relatively low energies a consistent nonrelativistic treatment of
the electrodisintegration of two- and three-body systems can be
pursued, with increasing energy the treatment of the three-body
final state requires proper approximations. In the present paper
we describe the two- and three-body ground states in terms
of realistic wave functions generated by modern two-body
interactions [2], and we treat the final state interaction by a
diagrammatic approach of the elastic rescattering of the struck
nucleon with the nucleons of the A − 1 system. The relevant
diagrams that, within such an approximation, replace the
one-photon-exchange diagram of Fig. 1, are shown in Fig. 2:
the first one represents the plane wave impulse approximation
(PWIA); the others show the final state rescattering (FSI).

Although the PWIA appears to have a limited range of
validity, it is useful to analyze its predictions, since, within
such an approximation, the cross section is directly related to
a quantity, the spectral function, which, in the case of few-body
systems, can be calculated with a high degree of accuracy (see
[29–32]). The relevant point here is that, provided the FSI of
the struck nucleon with the A − 1 system can be disregarded,
the spectral function yields direct information on the nuclear
wave function. For this reason, we will present our results
obtained within two distinct approaches:

1. the PWIA [Fig. 2(a)], when the struck proton is described by
a plane wave, whereas the A − 1 system in the final state,
with momentum PA−1, represents the bound or continuum
state solutions of the Schrödinger equation with the same
potential used to obtain the A-body wave function. (Note
that some authors call the PWIA the state in which all
particles in the continuum are described by plane waves.)

2. the full FSI approach [Figs. 2(b) and 2(c)], when the A − 1
system (in the ground or continuum states) is still described
by the exact solution of the Schrödinger equation, but the
interaction of the struck nucleon with the A − 1 nucleons
is treated by evaluating the Feynman diagrams of Fig. 2, in
either the GA or the GEA approximations.

III. THE PLANE WAVE IMPULSE APPROXIMATION AND
THE NUCLEAR SPECTRAL FUNCTION

The main merit of the PWIA is that it allows one to express
the nuclear response functions WA

i in terms of the nucleon
response functions, which are very well known from e − N

experiments. In fact, by expressing the hadronic tensor for the
nucleus A [Eq. (2)] in terms of the hadronic tensor for the
nucleon N ,

WN
µν = 1

4πMN

∑
αN

∑
α′

N

(2π )4δ(4)(p + q − p1)

× 〈
αNp1

∣∣Ĵ N
µ (0)

∣∣α′
Np′

1

〉〈
α′

Np′
1

∣∣Ĵ N
ν (0)|αNp1〉, (5)

Q
’

p

2

1 1
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FIG. 2. Feynman diagrams for the process A(e, e′p)(A − 1).
(a) describes the plane wave impulse approximation (PWIA);
(b) the single rescattering; and (c) the full A − 1 rescattering. The
four-momenta of particle i before and after rescattering are denoted
by ki , k′

i , k′′
i , etc., respectively. The black ovals denote the elastic

nucleon-nucleon scattering matrix.

the cross section assumes the following form (see, e.g.,
Refs [33–35]):

d6σ

dE′ d�′ dpm

= K(Q2, x, pm) σ eN (Q̄2, pm)PA(|k1|, E), (6)

where Q̄2 = q2 − q̄2
0 (q̄0 = q0 + MA −

√
(k2

1 + (Mf

A−1)2 −√
k1

2 + M2
N ), and K(Q2, x, p) is a kinematical factor. In

Eq. (6), σ eN (Q̄2, pm) is the cross section describing electron
scattering by an off-shell nucleon, x = Q2/2MNq0 is the
Bjorken scaling variable, k1 = −pm is the nucleon momentum
before interaction, E ≡ Emis = Emin + E

f

A−1 is the removal
energy, and P (|k1|, E) is the nucleon spectral function, which
can be written as follows:

P (|k1|, E) = 1

(2π )3

1

2JA + 1

∑
f

∑
MA,MA−1, σN

× ∣∣〈αAPA

∣∣αNk1, αA−1PA−1E
f

A−1

〉∣∣2

× δ
(
E − (

E
f

A−1 + Emin
))

, (7)

where MA, MA−1, and σn are the spin projections, and the
sum over f includes all possible discrete and continuum states
of the A − 1 system.
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FIG. 3. (Color online) The proton spec-
tral function of 3He [Eq. (9)]. (Left panel)
ngr [Eq. (11)] vs p ≡ |k1|. (Right panel) Pex

[Eq. (12)] vs the excitation energy of the
two-nucleon system in the continuum Erel =
t2/MN = E

f

2 = E − Emin, for various values of
p ≡ |k1|. The dot-dashed curves represent the
PWA, when the three particles in the contin-
uum are described by plane waves, whereas
the full curves correspond to the PWIA, when
the interaction in the spectator proton-neutron
pair is taken into account. The arrows indicate
the position of the peak (∼p2/4MN ) predicted
by the two-nucleon correlation model for the
spectral function [38] (three-body wave function
from Ref. [2]; AV18 interaction from [5]).

Whereas the spectral function for the deuteron (D) has a
particularly simple form, that is,

PD(|k1|, E) = nD(|k1|)δ(E − εD), (8)

where εD is the (positive) binding energy of the deuteron
and nD(|k1|) = (2π2)

−1(u2
S(|k1|) + u2

D(|k1|)) is the nucleon
momentum distribution, in the case of A = 3, the proton
spectral function consists of two parts,

PHe(|k1|, E) = Pgr(|k1|, E) + Pex(|k1|, E), (9)

The ground part Pgr has the following form:

Pgr(|k1|, E) = ngr(|k1|)δ(E − Emin), (10)

where Emin = |E3| − |E2| ≈ 5.49 MeV, and ngr(|k1|), which
corresponds to the two-body breakup (2bbu) channel 3He →
D + p, is (hereafter, the projection of the spin of nucleon i

will be denoted by si)

ngr(|k1|) = 1

(2π )3

1

2

∑
M3,M2,s1

∣∣∣∣∣
∫

e−iρk1χ
†
1
2 s1

×�
M2†
D (r)�M3

He (ρ, r) dρ dr

∣∣∣∣∣
2

. (11)

In Eq. (11) �
M3
He (ρ, r) is the 3He wave function, M3 is

the projection of the spin of 3He, and r and ρ are the
Jacobi coordinates describing, respectively, the motion of the
spectator pair and the motion of the struck (active) nucleon
with respect to the c.m. of the pair.

The second, or excited, part Pex, of PHe(|k1|, E) corre-
sponds to the three-body breakup (3bbu) channel 3He →
(np) + p and can be written as follows:

Pex(|k1|, E) = 1

(2π )3

1

2

∑
M3,S23,s1

∫
d3t

(2π )3

∣∣∣∣∫ e−iρk1χ
†
1
2 s1

�t†
np(r)

×�
M3
He (ρ, r)dρdr

∣∣∣∣2

δ

(
E − t2

MN

− E3

)
,

(12)

where �t
np(r) is the two-body continuum wave function

characterized by spin projection S23 and by the relative

momentum t = (k2 − k3)/2 of the np pair in the continuum.
Obviously, for the neutron spectral function, only the excited
part (12) contributes.

In Fig. 3 we show the spectral function of 3He obtained
using the variational three-body wave function by the Pisa
group [2] corresponding to the realistic AV18 potential [5] (see
Appendix A). The two-body wave function entering Eq. (12)
has been obtained by solving the Schrödinger equation for the
continuum using the same AV18 two-nucleon potential. Our
results for the spectral function agree with the ones obtained
in Ref. [31], where the same three-body wave function has
been used. The normalization of the proton spectral function
has been fixed to 2 (two protons) and the normalization of the
neutron spectral function to 1. In Fig. 3 we also show the results
predicted by the plane wave approximation (PWA), which
corresponds to the replacement of the continuum interacting
(n − p) pair wave function with two plane waves. The left
panel of Fig. 3 shows ngr and the right panel Pex. It can be
seen that (i) Pex exhibits maxima centered approximately at
Em ∼ k1

2/4MN and (ii) around these values of Em and k1

the spectral functions, calculated disregarding the interaction
in the NN pair in the continuum (PWA) and taking it into
account (PWIA), are almost identical, in agreement with
the results obtained long ago [32] with the spectral function
corresponding to the Reid soft core interaction [36]. The region
centered at Em ∼ k1

2/4MN is the so-called two-nucleon
correlation region [37], where one of the nucleons of the
spectator NN pair is fast, with the other one being basically
at rest (for an improved description that takes into account
the motion of the third, uncorrelated nucleon, or the A − 2
spectator system in case of heavier nuclei, see [38]). Then
the fast nucleon becomes strongly correlated with the active
nucleon (the proton, in the case of the proton spectral function,
or the neutron, in the case of the neutron spectral function)
forming a correlated pair that carries most of the nuclear
momentum. In this case, it is intuitively expected that the
slow nucleon acts as a passive spectator and, consequently,
only the interaction in the correlated pair can be relevant for
the spectral function. Hence, in this region the calculations
including or omitting the interaction in the spectator pair are
expected to provide essentially the same results, as confirmed
by present and previous calculations of the spectral function
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FIG. 4. The neutron spectral function of 3He [Eq. (12)] vs
p ≡ |k1| and the excitation energy of the two-nucleon system in
the continuum Erel = t2/MN = E

f

2 = E − Emin. The dotted curves
represent the PWA, when the three particles in the continuum are
described by plane waves, whereas the full curves correspond to the
PWIA, when the interaction in the spectator proton-proton pair is
taken into account (three-body wave function from Ref. [2]; AV18
interaction from [5]).

[26,27,32]. The situation just described is clearly illustrated in
Fig. 4, where the three-dimensional neutron spectral function
is presented.

The PWIA results suggest that experimental insight about
the structure of the nuclear wave function at short distances
can be obtained from A(e, e′p)(A − 1) processes, provided
the PWIA entirely exhausts the reaction mechanism. Unfor-
tunately, we know that in many cases the simplified PWIA
mechanism fails to describe the experimental data (see, e.g.,
a recent discussion in Ref. [39]). However, properly chosen
kinematics can still leave room for studying NN correlations.
It is clear, from Figs. 3 and 4, that such kinematics should be
located around the two-nucleon correlation region, in order to
exclude the influence of the final state interaction between the
spectator nucleons. This requires high values of the missing
energy and momentum of the active nucleon (see Fig. 4).
Another important condition is that the range of |q| and q0

should not be too far from the quasi-elastic peak, where x � 1.
In this case the corrections from the off-mass shell effects
and meson production are minimized, and only the final state
interaction of the hit nucleon with the spectators becomes
relevant. However, it should always be kept in mind that if a
region exists where the interaction in the spectator pair (the
A − 1 system in case of complex nuclei) can be neglected, this
is no guarantee that the interaction of the struck nucleon with
the nucleons of the spectator pair (the A − 1 system) can be
neglected as well. It is clear therefore that one has to go beyond
the PWIA, which is precisely the aim of the present paper. The
effects of the full FSI on the process 3He(e, e′2p)n, treating
the FSI within the GA have been recently investigated, [40].
In the present paper we will investigate the same topic in the

A(e, e′p)X process off 2H and 3He within both the GA and the
GEA.

IV. THE FULL FINAL STATE INTERACTION WITHIN THE
GENERALIZED EIKONAL APPROXIMATION

Let us consider the interaction of the incoming virtual
photon γ ∗ with a bound nucleon (the active nucleon) of
low virtuality (p2 ∼ M2

N ) at a kinematics not very different
from the quasi-elastic one (i.e., corresponding to x ∼ 1). In
quasi-elastic kinematics, the virtuality of the struck nucleon
after γ ∗ absorption is also rather low and, provided p1 is
sufficiently high, nucleon rescattering with the “spectator”
A − 1 can be described to a large extent in terms of multiple
elastic scattering processes in the forward direction (in the
system of reference where the target nucleon is at rest).
These rescattering processes are diagrammatically depicted
in Fig. 2, where, as in the rest of this paper, the internal and
intermediate state momenta are denoted by ki’s and the final
state momenta by pi’s. The diagrams essentially describe the
process of multiple scattering in the most general case, within
the assumption that all intermediate nucleons are on-shell. The
low virtuality (before and after γ ∗ absorption) of the active
nucleon, coupled with the forward propagation, allows one to
simplify the description of the final state interaction, which can
be treated within the eikonal approximation. Before illustrating
in detail the approach we have used to treat FSI in (e, e′p)
reactions, we discuss an important related issue (see also [41]),
namely, the validity of the factorization approximation. This
approximation is frequently used in calculations at high Q2

and consists in factorizing the (e, e′p) cross section into e.m.
and nuclear parts, despite the fact that factorization, holding
exactly in PWIA, is violated when FSI is taken into account.
In the next section the factorization approximation will be
discussed within the GA and the GEA.

A. The FSI in A(e, e′p)B processes within a
diagrammatic approach

Most of the problems one faces when trying to develop a
fully covariant treatment of FSI arise because of the hadrons’
spins. Therefore, let us rewrite the hadronic tensor [Eq. (2)] in
the following, fully equivalent form, which however exhibits
explicitly the dependence upon the spin quantum numbers:

WA
µν = 1

4πMA

∑
αA

∑
αA−1,s1

T †
µ(MA,MA−1, s1)

× Tν(MA,MA−1, s1)(2π )4δ(4)(PA + q−PA−1−p1),

(13)

where Tµ is a shorthand notation for the transition matrix
element

Tµ(MA,MA−1, s1) ≡ 〈
αA−1PA−1E

f

A−1, s1p1

∣∣Ĵ A
µ (0)

∣∣αAPA

〉
.

(14)

The basic assumption underlying the eikonal diagrammatic
treatment of FSI at high Q2 is that the transition matrix element
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Tµ for a nucleus A can be written in the form

Tµ(MA,MA−1, s1) =
A−1∑
n=0

T (n)
µ (MA,MA−1, s1), (15)

where the superscript (n) corresponds to the order of rescat-
tering of the struck particle with the A − 1 nucleons (the
“spectator” nucleons); namely, T (0)

µ corresponds to the PWIA
(no rescattering), T (1)

µ to the single rescattering of the struck
nucleons with the spectator ones, T (2)

µ to double rescattering,
and so on. Such an approach is expected to be valid either
at high energies, when particles propagate mostly in the
forward direction along the direction of the three-momentum
transfer q, or when the momentum of the struck nucleon
p1 relative to A − 1 is sufficiently high; in both cases the
eikonal approximation could be applied. The calculation of
the rescattering part of Tµ in terms of Feynman diagrams
appears in principle to be a prohibitive relativistic task owing,
as previously stressed, to the treatment of the spin. A relevant
simplification occurs if the cross section factorizes into the e.m.
and the nuclear parts; in fact, many calculations performed
within the eikonal approximation treatment of the FSI simply
assume factorization. Let us try to analyze the limits of
validity of such an assumption, and to this end let us consider
the deuteron. In this case the Feynman diagrams describing
rescattering are given in Fig. 5, and the corresponding matrix
element is

Tµ(M2, s1, s2) = T (0)
µ (M2, s1, s2) + T (1)

µ (M2, s1, s2),

(16)

where M2, s1, and s2 are the spin projection of the deuteron
and of nucleon “1” (the active nucleon) and nucleon “2”
(the spectator nucleon) in the final state. Equation (16)
obviously states that in the deuteron the interaction between
the struck and the spectator nucleon can occur only via single

k

Q

2

1

D kP

1
’k  =k +q1

2

p
1

p2

(a)

k

Q

P k f

1k

D 2

1

’
2

NN

p
1

2p
(b)

FIG. 5. Feynman diagrams for the process 2H(e, e′p)n represent-
ing (a) the PWIA and (b) single rescattering in the final state. f NN

denotes the elastic NN scattering amplitude.

rescattering. The cross section of the process is given by

d5σ

dE′ d�′ = σMott l̃
µνLD

µν

d3p1

(2π )32E1

d3p2

(2π )32E2
, (17)

where Ei =
√

p2
i + M2, and the hadronic tensor is

LD
µν = 1

2MD

1

3

∑
M2,s1,s2

T †
µ(M2, s1, s2)Tν(M2, s1, s2)

× (2π )4δ(4)(PD + q − p1 − p2). (18)

Let us now obtain the factorization of the cross section,
expressed in terms of the hadronic tensor (18), within a fully
covariant approach.

1. The PWIA and the factorization of the cross section

The PWIA for the process 2H(e, e′p)n within a covariant
Feynman diagram approach has been considered by various
authors (see, e.g., [42–44]). The matrix element Tµ = T (0)

µ in
such a case has the following form:

T (0)
µ (M2, s1, s2) = 1

2MN

∑
s̃1

J eN
µ (Q2, p1, k1, s̃1, s1)

× [
ū(k1, s̃1)
M2

D (k1, k2)(k̂2 + MN )v(k2, s2)
]
, (19)

where

J eN
µ (Q2, p1, k1, s̃1, s1) = 〈p1, s1|�γ ∗N

µ

(
Q2, k2

1

)|k1, s̃1 〉,
(20)

�
γ ∗N
µ (Q2, k2

1) is the e.m. vertex, and 

M2
D (k1, k2) is the covari-

ant deuteron amplitude corresponding to the D → (pn) vertex.
The explicit form of the amplitude 


M2
D (k1, k2) depends on

the specific covariant model used to describe the deuteron
and could be found elsewhere (see, e.g., [42,43,45]). Here,
without loss of generality, we will use the Bethe-Salpeter (BS)
formalism according to Refs. [45] and [44].

When Eq. (19) is placed into Eq. (18), the e.m. and nuclear
parts get coupled by the summation over the intermediate
spins s̃1 and s̃1

′. However, it can be shown (see Appendix B)
that the square of the expression in brackets in Eq. (19) after
summation over M2 and s2 yields a δ function δs̃1 s̃

′
1

(i.e.,
becomes diagonal in s̃1); this leads to the decoupling between
the e.m. and the nuclear parts in Eq. (19), with the resulting
hadronic tensor given by

LD
µν = 1

2MD

1

3

∑
M2,s1,s2

T †
µ(M2, s1, s2)Tν(M2, s1, s2)

= 2MD

(
2Ep1 2Ek1L

eN
µν (Q2, p1, k1)

)
× nD(|k1|)(2π )4δ(4)(PD + q − p1 − p2). (21)

In Eq. (21), nD is the deuteron momentum distribution given
by

nD(|k1|) = 1

3

∑
M2,s̃1,s2

∣∣[ū(k1, s̃1)
M2
D (k1, k2)

× (k̂2 + MN )v(k2, s2)
]∣∣2
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= 1

3

∑
M2,s̃1,s2

∣∣〈s̃1, s2|�M2
D (k1)

〉∣∣2

= 1

2π2

(
u2

S(|k1|) + u2
D(|k1|)

)
, (22)

where the (covariant) deuteron wave function has been cast in
a form similar to the nonrelativistic one with the scalar parts of
the wave function, uL(|k|)’s, related to the corresponding ver-
tex functions, GL(k2

1, k
2
2 = M2

N ), by a well-known definition
[see Eqs. (B8) and (B9)], leading to

uL(|k|) ∼
√

2MN

GL(|k|, k10 = MD − Ek)

k2 − M2
N

. (23)

Placing Eq. (21) in Eq. (17) the well-known factorized form
for the cross section is obtained:

d6σ

dE′ d�′ dpm

= K(Q2, x, pm) σ eN (Q̄2, pm)nD(|k1|))

× δ
(
q0 + MD − Ek1+q − Ek1

)
. (24)

We reiterate that factorization has been obtained because
the sum over s2 and M2 in (18) leads to the appearance of a
δ function δs̃ ′

1,s̃1 , which means, in turn, that the square of T (0)
µ

becomes diagonal in s̃1. This particular (exact) result is part
of a more general assertion that within the PWIA the nuclear
spectral function is always diagonal in spins [35]. Let us now
consider FSI; in this case the tensor (18) is off-diagonal in
spins and factorization does not occur. However, we will show
that under certain kinematical conditions, satisfied to a large
extent by the GA and GEA, factorization can be recovered.

2. FSI: single scattering contribution and factorization
of the cross section

Let us compute the second diagram of Fig. 5. To this end,
we introduce a two-nucleon scattering operator T̂ in terms
of which the elastic scattering amplitude f NN , describing the
elastic scattering of two on-shell nucleons, will be defined as
follows

f NN
s̃1 s̃2;s1,s2

(p1, p2; k1, k2) = ū(p1, s1)ū(p2, s2) T̂

× u(k1, s̃1)u(k2, s̃2), (25)

which is obviously the free NN scattering amplitude; for
a bound nucleon one has in principle to consider off-shell
effects but in the GEA no virtuality is considered; this
could be done for example by the approach of Ref. [14], by
introducing cutoff form factors in the corresponding nucleon
lines, which formally leads to two Feynman diagrams with
different “nucleonic” masses. In the presence of FSI, the
transition matrix element is

Tµ(M2, s1, s2) = T (0)
µ (M2, s1, s2) + T (1)

µ (M2, s1, s2)

(26)

with T (0)
µ given again by Eq. (19), and T (1)

µ is given by the

following form (note that henceforth we always have k1 =
−k2):

T (1)
µ (M2, s1, s2) = 1

2MN

∑
s̃1 s̃

′
1 s̃2

∫
d4k2

i(2π )4

×
f NN

s̃ ′
1 s̃2;s1,s2

(p1, p2, k′
1, k2)

k′
1

2 − M2
N + iε

× [
ū(k′

1, s̃
′
1)�γ ∗N

µ (Q2, k′2
1 )u(k1, s̃1)

]
× [

ū(k1, s̃1)
M2
D (k1, k2)v(k2, s̃2)

]
.

(27)

The full matrix element will therefore be

Tµ(M2, s1, s2) = 1

2MN

∑
s̃1

J eN
µ (Q2, p1, pm, s̃1, s1)

× [
ū(k1, s̃1)
M2

D (k1, k2)(k̂2 + MN )v(k2, s2)
]

+ 1

2MN

∑
s̃1 s̃

′
1 s̃2

∫
d4k2

i(2π )4

f NN
s̃ ′

1 s̃2;s1,s2
(p1, p2, k′

1, k2)

k′
1

2 − M2
N + iε

× [
ū(k′

1, s̃
′
1)�γ ∗N

µ (Q2, k′2
1 )u(k1, s̃1)

]
× [

ū(k1, s̃1)
M2
D (k1, k2)v(k2, s̃2)

]
. (28)

When Eq. (28) is placed into Eq. (18), the resulting
equation is not diagonal in the spin quantum numbers and
factorization does not hold. Let us however consider the
basic assumptions underlying the eikonal multiple scattering
approach:

1. The momentum transfer κ in the elastic rescattering is small
and mostly transverse, that is,

κ = p1 − k′
1 = k2 − p2 � k2⊥ − p2⊥ = κ⊥ (29)

2. The spin-flip part of the NN amplitude is very small, which
means that, taking into account the previous assumption,
one can write

f NN
s̃ ′

1 s̃2;s1,s2
(p1, p2, k′

1, k2) ≈ δs̃ ′
1,s1δs̃2,s2f

NN(κ⊥), (30)

which is realized either at high values of the three-
momentum transfer q, or at high values of the momentum
p1 of the struck nucleon relative to the A − 1 spectator
nucleons.

If these conditions are satisfied, Eq. (27) assumes the
following form (cf. Appendix B):

T (1)
µ (M2, s1, s2) �

∑
s̃1

J eN
ν (Q2, pm, p1, s̃1, s1)

× 1

2MN

∫
d4k2

i(2π )4

f NN(κ⊥)

k′
1

2 − M2
N + iε

× [
ū(k1, s̃1)
M2

D (k1, k2)v(k2, s2)
]

(31)

and one can write

Tµ(M2, s1, s2) � 1

2MN

∑
s̃1

J eN
ν (Q2, pm, p1, s̃1, s1)

×
{[

ū(k1, s̃1)
M2
D (k1, k2)(k̂2+MN )v(k2, s2)

]
024005-7
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+
∫

d4k2

i(2π )4

f NN(κ⊥)

k′
1

2 − M2
N + iε

× [
ū(k1, s̃1)
M2

D (k1, k2)v(k2, s2)
]}

. (32)

It can be seen that T (0)
µ and T (1)

µ in Eq. (32) have very similar
structures, except that in T (1)

µ the vector k2 is now an integration
variable, since k2 �= p2. When Eq. (18) is evaluated, with Tµ

given by Eq. (32) and assuming soft NN rescattering (low
values of κ⊥), the main contribution in the integral over
k2 results from the region where k2 ∼ p2 and this, in turn,
originates again a delta function δs̃1s1 (see Appendix B) and
the hadronic tensor becomes

LD
µν = 1

2MD

1

3

∑
M2,s1,s2

T †
µ(M2, s1, s2) · Tν(M2, s1, s2)

× (2π )4δ(4)(PD + q − p1 − p2)

� 1

2

∑
s̃2,s1

[
J eN†

µ (Q2, pm, p1, s̃2, s1)

· J eN
ν (Q2, pm, p1, s̃2, s1)

]
× 1

(2MN )2

∑
M2 s̃1,s2

∣∣∣∣∣[ū(k2, s̃1)
M2
D

× (k1, k2)(k̂2 + MN )v(k2, s2)
]
k2=p2

+
∫

d4k2

i(2π )4

f NN(κ⊥)

k′
1

2 − M2
N + iε

× [ū(k2, s̃1)
M2
D (k1, k2)v(k2, s2)]

∣∣∣∣∣
2

× (2π )4δ(4)(PD + q − p1 − p2) (33)

and the factorization of the e.m. and the nuclear parts is
recovered. Equation (33) could be written in a more familiar
form if one integrates over k20 by taking into account the pole in
the amplitude 


M2
D (k1, k2) (k20 = Ek) and neglecting the pole

from the active propagator, which is located at large values of
k20 and does not contribute to the integral. Using (22) and (23)
one obtains [

∫
d4k/[i(2π )4] → ∫

d3k/[2Ek(2π )3]]

LD
µν � 2MD

[
2Ep1 2Epm

LN
µν(Q2, pm, p1)

]
×

∑
M2,s1,s2

∣∣∣∣∣〈s1, s2

∣∣�M2
D (k2)

〉
k2=p2

+
∫

d3k2

2Ek2 (2π )3

× f NN(κ⊥)

k′
1

2 − M2
N + iε

〈
s1, s2

∣∣�M2
D (k2)

〉∣∣∣∣∣
2

× (2π )4δ(4)(PD + q − p1 − p2). (34)

By placing this equation into Eq. (17), one obtains

d6σ

dE′ d�′ dpm

= K(Q2, x, pm )σ eN (Q̄2, pm)

× nFSI
D (pm)δ(q0+MD−Ep1+q − Ep2 ), (35)

where the distorted momentum distribution nFSI
D is

nFSI
D (pm) = 1

3

∑
M2,s1,s2

∣∣∣∣∣〈s1, s2

∣∣�M2
D (k2)

〉
k2=p2

+
∫

d3k2

2Ek2 (2π )3

f NN(κ⊥)

k′
1

2−M2
N +iε

〈
s1, s2

∣∣�M2
D (pm)

〉∣∣∣∣∣
2

= 1

3

∑
M2,s1,s2

∣∣T (0)
D (M2, s1, s2) + T (1)

D (M2, s1, s2)
∣∣2

(36)

and the quantities

T (0)
D (M2, s1, s2) = 〈

s1, s2

∣∣�M2
D (k2)

〉
(37)

and

T (1)
D (M2, s1, s2) =

∫
d3k2

2Ek2 (2π )3

f NN(κ⊥)

k′
1

2 − M2
N + iε

× 〈
s1, s2

∣∣�M2
D (p2)

〉
(38)

can be called the reduced (Lorentz index independent) ampli-
tudes; in these equations �

M2
D is the deuteron wave function

and the spin wave function refers to the two particles in the
continuum.

In summary we have shown the following:

1. The cross section that includes FSI factorizes provided (i)
the spin-flip part of the NN scattering amplitude can be
disregarded, which is consistent with the high energies we
are considering, and (ii) the momentum transfer κ in the NN
rescattering is small and transverse, so that in the integral
(31) one has k2 ∼ p2 or, equivalently, k2 � pm; this is a
reasonable approximation, thanks to the behavior of the
elastic NN scattering amplitude, which is sharply peaked
in the forward direction.

2. In the eikonal approximation and neglecting the spin
dependence (spin-flip part) of the NN amplitude, the FSI is
not affected by the spin structure of the wave functions of
the deuteron and the two-body final state. This means that
in computing the Feynman diagrams, the intermediate spin
algebra can be disregarded, and only the scalar part of the
corresponding vertex functions can be considered, using
Eq. (23) to define the scalar parts of the wave functions.
Then the resulting amplitude has to be merely sandwiched
between the spin functions of initial and final particles.

These conclusions can be generalized to a nucleus A, for
which the cross section of the process A(e, e′p)(A − 1) is given
by the following expression:

d6σ

dE′ d�′ dpm

= K(Q2, x, pm) σ eN (Q̄2, pm)P FSI
A (pm,Em),

(39)

where P FSI
A (pm,Em), the distorted spectral function, is given

by
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P FSI
A (pm,Em) = 1

(2π )3

1

2JA + 1

∑
f

∑
MA,MA−1, s1

×
∣∣∣∣∣
A−1∑
n=0

T (n)
A (MA,MA−1, s1)

∣∣∣∣∣
2

× δ(Em − (
E

f

A−1 + Emin
)
) (40)

and n denotes the order of rescattering. In what follows the
distorted momentum distributions for the deuteron [Eq. (36)]
and the distorted spectral function for 3He [Eq. (40)] will be
calculated within the GA and GEA.

B. The process 2H(e, e′p)n within the GA and GEA

Let us now calculate the reduced amplitude T (1)
D in the

process 2H(e, e′p)n, taking FSI into account by the GEA. This
amounts to replacing the energy denominator in Eq. (38) by
its generalized eikonal approximation. To this end, we will
consider both the “canonical” case, in which the value of the
three-momenta transfers |q| is so high that q � p1, with the z

axis naturally directed along q, as well as the case of smaller
values of q, but high values of p1, when q and p1 may point
in different directions, in which case the z axis is oriented
along p1.

Remembering that κ = p1 − k′
1 = k2 − p2, we can write

the energy denominator as follows:

k′2
1 − M2

N = (p1 − κ)2 − M2
N = −2p1κ + κ2

= 2|p1|
(

κz + κ0
(
κ0 − 2Ep1

)
2|p1| − κ2

2|p1|

)

≈ 2|p1|
(

κz− Ek1+q + Ep1

2|p1| κ0

)
≈ 2|p1| (κz + �z) ,

(41)

where

�z = Ek1+q + Ep1

2|p1| (Em − |EA|) (42)

and the relation

κ0 = Ep1 − Ek1+q ≈ −(Em − |EA|) (43)

resulting from energy conservation q0 + MD = Ep1 + Ep2 has
been used.

By changing the normalization of the NN amplitude from
the covariant one to the nonrelativistic analog (Ep � MN ), one
has

f NN(κ⊥)

4Ep|p1| ≈ f NN(κ⊥)

4MN |p1| = aNR(κ⊥) ≡ i

∫
d2b eiκ⊥b �(b)

(44)

and T (1)
D becomes

T (1)
D (M2, s1, s2) =

∫
d3k

(2π )3
aNR(κ⊥)

× 1

κz + �z + iε

〈
s1, s2

∣∣�M2
D (p)

〉
. (45)

Using

1

κz + �z + iε
= −i

∫
θ (z) ei(κz+�z)·z dz (46)

we obtain, in coordinate space,

T (0)
D (M2, s1, s2) + T (1)

D (M2, s1, s2)

= 〈
s1, s2

(
1 − θ (z)ei�zz�(b)

)
e−ipmr

∣∣�M2
D (r)

〉
.

(47)

As a result, the cross section will read as follows:

d6σ

dE′ d�′ dpm

= K(Q2, x, pm) σ eN (Q̄2, pm)

× nFSI
D (pm)δ

(
MD + ν − Ep1 − Epm

)
(48)

with the distorted momentum distributions nFSI
D defined by

nFSI
D (pm) = 1

3

1

(2π )3

∑
M2,S23

∣∣∣∣∣
∫

dr χ
†
S23

�
M2†
D (r)

×SFSI
� (r) exp(−ipmr)

∣∣∣∣∣
2

, (49)

where SFSI
� (r), which describes the final state interaction

between the hit nucleon and the spectator, is

SFSI
� (r) = 1 − θ (z)ei�zz�(b) (50)

with r = (b, z). In these formulas the z axis is along p1; it
should be pointed out, however, that at large values of the
momentum transfer, the hit nucleon propagates almost along
q so that by choosing the z axis along the three-momentum
transfer and neglecting the virtuality of the struck nucleon
before and after interaction, one can write [10]

k′2
1 − M2

N = (k1 + q)2 − M2
N ≈ 2|q| (κz + �z) , (51)

where

�z = q0

|q|Em. (52)

It can be seen that the FSI factor (50) in the GEA
differs from the one of the standard GA [46–48], simply
by the additional factor ei�zz. It should be pointed out that
whereas the well-known factor θ (z) [47,48] originates from the
nonrelativistic reduction of the covariant Feynman diagrams
and guarantees the correct time ordering of the rescattering
processes, the quantity �z is of a pure nuclear structure origin
and, as can be seen from Eq. (47), represents a correction to the
parallel component of the missing momentum. Therefore the
corrections from �z are expected to be important in parallel
kinematics at |pz| � �z. As we shall see from the results
of our calculations performed in perpendicular kinematics in
the range |pm| � 600 MeV/c and Em � 100 MeV, one always
has |�z| � |p|⊥ with q0/|q| � 1, so that �z is always very
small. We can therefore anticipate that the effects of �z on the
experimental data we have considered are also very small.
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FIG. 6. Feynman diagrams representing (a) the PWIA and
(b) single and (c) double rescattering in the processes 3He(e, e′p)D
and 3He(e, e′p)(np). In the former case the final two-nucleon state
is a deuteron with momentum PD = P2, whereas in the latter
case the final state represents two free nucleons with momenta
p2 and p3, with P2 = p2 + p3. The trivial single and double
rescattering diagrams with nucleons “2” and “3” interchanged are
not drawn. The black ovals denote the elastic NN scattering matrix T̂

[see Eq. (25)].

C. The processes 3H(e, e′p)2H and 3H(e, e′p)(np)
within the GA and GEA

Let us now consider the three-body system. The distorted
spectral function is given by Eq. (40):

P FSI
He (pm,Em)= 1

(2π )3

1

2

∑
f

∑
M3,M2, s1

∣∣∣∣∣
2∑

n=0

T (n)
A (M3,M2, s1)

∣∣∣∣∣
2

× δ(Em − (
E

f

2 + Emin
)
), (53)

where the magnetic quantum number M2 refers either
to the deuteron or to the “2” nucleon in the continuum,
depending upon the breakup channel we are considering
[Emin = E3 − E2 (Emin = E3) for the two-body (three-body)
breakup channel]. The diagrams representing the rescattering
processes are shown in Fig. 6. The evaluation of these diagrams
follows the standard procedure adopted for the deuteron. Let
us illustrate it in the case of the 3bbu considering, for ease of
presentation, the single scattering diagram of Fig. 6(b). After
integration over k20 and k30 in the corresponding poles of

the propagators of the spectators (k20 = Ek2 and k30 = Ek3 ),
we obtain

T (1)
3 (M3, s1, s2, s3) =

∫
d3k2

2Ek2 (2π )3

d3k3

2Ek3 (2π )3

× GHe→1(23)(k1, k2, k3, s1, s2, s3)(
k2

1 − M2
N

) fNN(p1 − k′
1)

k′2
1 − M2

N

× G+
(23)→f (k′

2, k3, s2, s3)(
k′2

2 − M2
N

) , (54)

where the overlaps of the vertex functions Gi are

GHe→1(23)(k1, k2, k3, s1, s2, s3)

= 〈k1, s1, k2, s2, k3, s3|GHe→1(23)(M3, P3)〉, (55)

G(23)→f (k2, k3, s2, s3) = 〈
k2, s2, k3, s3|

×G(23)→f

(
M23, S23, P2, E

f

2

)〉
. (56)

The vertex functions Gi are replaced by the nonrelativistic
overlap functions according to the general convention (where
we omit for ease of presentation the proper normalization
factors)〈

s1, s2, s3

∣∣�M3
He (k1, k2, k3)

〉
≈ GHe→1(23)(k1, k2, k3, s1, s2, s3)(

k2
1 −M2

N

) , (57)

and, using the completeness relation when summing over s2

and s3, one gets

T (1)
3 (Q2, s1, S23) =

∫
d3k2

2Ek2 (2π )3

d3k3

2Ek3 (2π )3 �
f

(23)(k3, k′
2; S23)

× fNN(κ)(
k′

1
2 − M2

N + iε
) 〈

s1

∣∣�M3
He (k1, k2, k3)

〉
. (58)

Following the procedure adopted for the deuteron, we
obtain

T (1)
3 (Q2, s1, S23) =

∫
d3κ

(2π )3 2Ek2

�
f

(23)(k3, k′
2; S23)

× fNN(κ)

k′2
1 −M2

N +iε

〈
s1

∣∣�M3
He (k1, k2, k3)

〉
≈

∫
d3κ

(2π )3
�

f

(23)(k3, k′
2; S23)

× fNN(κ)/4MN |p1|
(κz+�z+iε)

× 〈
s1

∣∣�M3
He (k1, k2, k3)

〉
, (59)

where

�z = Ek1+q + Ep1

2|p1| (Em − E3). (60)

Including also the 2buu channel, we can write, in coordinate
space,

P FSI
He (pm,Em) = P FSI

gr (pm,Em) + P FSI
ex (pm,Em), (61)
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where

P FSI
gr (pm,Em) = nFSI

gr (pm)δ(Em − (E3 − E2)) (62)

with

nFSI
gr (pm) = 1

(2π )3

1

2

∑
M3,M2,s1

∣∣∣∣∣
∫

eiρpmχ
†
1
2 s1

�
M2 †
D (r)

×SFSI
� (ρ, r)�M3

He (ρ, r) dρ dr

∣∣∣∣∣
2

(63)

and

P FSI
ex (pm,Em) = 1

(2π )3

1

2

∑
M3,S23,s1

∫
d3t

(2π )3

∣∣∣∣∣
∫

eiρpmχ
†
1
2 s1

×�t†
np(r)SFSI

� (ρ, r)�M3
He (ρ, r) dρ dr

∣∣∣∣∣
2

× δ

(
Em − t2

MN

− E3

)
. (64)

The FSI factorSFSI
� describes the single and double rescattering

of nucleon “1” with spectators “2” and “3” and has the
following form:

SFSI
� (ρ, r) = SFSI

(1) (ρ, r) + SFSI
(2) (ρ, r) (65)

with the single-scattering contribution SFSI
(1) given by

SFSI
(1) (ρ, r) = 1 −

3∑
i=2

θ (zi − z1)ei�z(zi−z1)�(b1 − bi) (66)

and the double-scattering contribution given by [10,12]

SFSI
(2) (ρ, r) = [θ (z2 − z1)θ (z3 − z2) e−i�3(z2−z1)

× e−i(�3−�z)(z3−z1) + θ (z3 − z1)θ (z2 − z3) e−i�2(z3−z1)

× e−i(�2−�z)(z2−z1)] × �(b1 − b2)�(b1 − b3), (67)

where �i = (q0/|q|)(Epi
− Ek′

i
) and �z is given by Eq. (52).

When �z = 0, the familiar form for SFSI is obtained,
namely,

SFSI(ρ, r) =
3∏

i=2

[1 − θ (zi − z1) �(bi − b1)] , (68)

and when � = 0, the distorted spectral function (61) trans-
forms into the usual spectral function (9).

Using Eq. (61), the cross section of the process 3He(e, e′p)X
[X = D or (np)] assumes the following form:

d6σ

dE′ d�′ dpm

= K(Q2, x, pm) σ eN (Q̄2, pm)P FSI
He (pm,Em).

(69)

V. RESULTS OF THE CALCULATIONS

We have used Eqs. (48), (50), (69), and (67) to calculate the
cross sections of the processes 2He(e, e′p)n, 3He(e, e′p)2H,
and 3He(e, e′p)(np). All calculations have been performed
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FIG. 7. (Color online) The process 2H(e, e′p)n: The NIKHEF
experimental data [17] vs the missing momentum pm ≡ |pm| are
compared with our theoretical calculations; the dotted line represents
the PWIA, whereas the full line includes the final state rescattering.
The curves labeled L01, L02, and L03 correspond to Q2 = 0.1, 0.2,

and 0.3 (GeV/c)2, respectively, and x � 0.3–0.6. (In this figure and
in Figs. 8–12, p′ ≡ |p1|.)
using the following well-known parametrization of the profile
function �(b):

�(b) = σ tot
NN(1 − iαNN)

4πb2
0

e−b2/2b2
0 , (70)

where σ tot
NN is the total NN cross section, αNN is the ratio of

the real to imaginary part of the forward NN amplitude, and
b0 is the slope of the differential elastic NN cross section.
The values of the energy-dependent quantities σ tot

NN and αNN

have been taken from Ref. [49]. For the electron-nucleon cross
section σ eN (Q̄2, pm) we used the De Forest σ eN

cc1 (Q̄2, pm) cross
section [35]. All two- and three-body wave functions are direct
solutions of the nonrelativistic Schrödinger equation; therefore
our calculations are fully parameter free.

Calculations have been performed in PWIA and include
the full rescattering within the GA and GEA by evaluating the
Feynman diagrams shown in Figs. 5 and 6. It should be pointed
out that, apart from minor differences (e.g., the structure of �z

for complex nuclei) that do not affect the numerical results, our
GEA is essentially the same as the one developed in [10,12].

A. The process 2H(e, e′p)n

Our results for the process 2H(e, e′p)n are compared
in Figs. 7, 8, and 9 with three different sets of experi-
mental data, covering different kinematical ranges, namely,
the experimental data from NIKHEF [17], SLAC [19], and
Jlab [18]. The relevant kinematical variables in the three
experiments are as follows: (i) 0.1 � Q2 � 0.3, 0.3 � x � 0.6
[17]; (ii) 1.2 � Q2 � 6.8, x � 1 [19]; and (iii) Q2 �
0.665 (GeV/c)2, |q| � 0.7 GeV/c, x � 0.96 [18]. In Figs. 7
and 9 the theoretical cross section corresponding to Eq. (48),
namely,

d5σ

dE′ d�′ d�pm

= frec K(Q2, x, pm) σ eN
cc1 (Q̄2, pm)nFSI

D (pm),

(71)
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FIG. 8. (Color online) The process 2H(e, e′p)n: The Jlab experi-
mental data [18] [Neff defined by Eq. (72)] vs the missing momentum
pm ≡ |pm|, compared with our theoretical calculations. The dotted
line represents the PWIA, whereas the full line includes the final state
rescattering. The experimental data correspond to the perpendicular
kinematics, with Q2 � 0.665 (GeV/c)2, |q| � 0.7 GeV/c, and x �
0.96.

is compared with the corresponding data, whereas in Fig. 8 we
compare, as in Ref. [18], the effective momentum distributions
Neff(pm) (or reduced cross section) defined by [18],

Neff(|pm|) = d5σ exp

d�′ dE′ d�pm

[
frec K σ eN

cc1

]−1
, (72)

where in Eqs. (71) and (72) frec and K are kinematical factors
that arise from the integration over dTp1 .

The results presented in Figs. 7–9 exhibit a general
satisfactory agreement between theoretical calculations and
experimental data, particularly in view of the wide range of
kinematics covered by the data we have considered. Figures 8
and 9 show, however, that quantitative disagreements with
data exist in some regions. Particularly worth noting is
the disagreement in the region around |pm| � 0.25 GeV/c

appearing in Fig. 8. We did not try to remove such a
disagreement by adjusting the quantities entering the profile
function (48), but it turns out that nFSI

D in the region around
|pm| � 0.25 GeV/c is rather sensitive to the value of αNN .
The NIKHEF kinematics deserves a particular comment. The
four-momentum transfer in this experiment is rather low,
raising doubts as to the validity of the eikonal approximation.
In this respect, it should, however, be pointed out, that what
really matters in GA and GEA is the relative three-momentum
of the hit nucleon with respect to the A − 1 system; in the
NIKHEF experiment, because of the large value of the energy
transfer, the three-momentum transfer is also large, and γ ∗
absorption occurs on a proton moving along q, with the
recoiling neutron moving with low momentum against q; the
resulting proton-neutron relative momentum is of the order
of few hundred MeV/c, which, though representing the lower
limit for the validity of the eikonal approximation, still appears,
according to our results, to be suitable for the application
of the GEA. In fact our results appear to be in reasonable
agreement with the ones obtained within approaches that are
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FIG. 9. (Color online) The process 2H(e, e′p)n: SLAC experi-

mental data at x � 1 [19] vs the missing momentum pm ≡ |pm|,
compared with our theoretical calculations. The dotted lines represent
the PWIA, and the full lines include the final state rescattering.
The positive and negative values of pm correspond to values of the
azimuthal angle φ of π and 0, respectively.

better justified at low energies, such as, for example, the ones
presented in Refs. [50–54].

Let us conclude this section by stressing that the effects
of MEC and �-isobar excitations have been found to be
very small (�5–6%) in the SLAC kinematics (see [19]), with
the results from [55] exhibiting the same trend also in the
Jlab kinematics. We should also remark that the results of
the GA and GEA differ by only few percent and cannot be
distinguished in the figures.

B. The processes 3He(e, e′p)2H and 3He(e, e′p)(np)

Calculations for the three-body systems are very involved,
mainly because of the complex structure of the wave function
of Ref. [2], which is given in a mixed (Lρ,X, j23, S23)
representation, including angular momentum values up to
Lρ = 7 and j23 = 8 [a total of 58 configurations with dif-
ferent combinations of (Lρ,X, j23, S23) quantum numbers].
Correspondingly, the wave function of the spectators (the
deuteron or the continuum two-nucleon states) is given in
a JLS scheme (see Appendix A). We would like to stress
that no approximations have been made in the evaluation of
the single- and double-scattering contributions to the FSI:
Proper intrinsic coordinates have been used and the energy
dependence of the profile function has been taken into account
in the properly chosen c.m. system of the interacting pair. The
Feynman diagrams that have to be evaluated for both the 2bbu
and 3bbu channels are shown in Fig. 6.
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1. The two-body breakup channel 3He(e, e′p)2H

The 2bbu channel cross section

d5σ

dE′ d�′ d�p1

= K2bbu(Q2, x, pm) σ eN
cc1 (Q̄2, pm)nFSI

gr (pm)

(73)

obtained from Eq. (69), with nFSI
gr (pm) given by Eq. (63), is

compared in Fig. 10 with recent experimental data from the
Jlab collaboration [21]. The relevant kinematical variables in
the experiment are |q| = 1.5 GeV/c, q0 = 0.84 GeV, Q2 =
1.55 (GeV/c)2, and x ≈ 1. The cross section is presented
as a function of the missing momentum |pm| (which, for
the 3He(e, e′p)D process, exactly coincides with the final
deuteron momentum). In PWIA the cross section is directly
proportional to ngr [Eq. (11)], shown in the left panel of Fig. 3.
It can be seen that, up to |pm| ∼ 400 MeV/c, the PWIA and
FSI results are almost the same and agree fairly well with
the experimental data, which means, in turn, that the 2bbu
3He(e, e′p)2H does provide information on ngr; in contrast,
at larger values of |pm| � 400 MeV/c the PWIA appreciably
underestimates the experimental data. It is very gratifying to
see that when FSI is taken into account, the disagreement is
fully removed and an overall very good agreement between
theoretical predictions and experimental data is obtained. It
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FIG. 10. (Color online) The process 3He(e, e′p)D: Experimental
data from JLab (JLab Experiment E-89-044 [21]) vs pm ≡ |pm|
compared, at Q2 = 1.55 (GeV/c)2 and x = 1, with our theoretical
results. The dashed line corresponds to the PWIA, and the full line
includes the full FSI calculated using Eq. (63); the predictions by Eq.
(65) (GEA) and Eq. (68) (GA) differ by at most 4% and cannot be
distinguished in the figure (three-body wave function from [2]; AV18
interaction from [5]).

should be pointed out that the experimental data shown in
Fig. 10 correspond to the perpendicular kinematics, when
the deuteron momentum (the missing momentum) is always
almost perpendicular to the momentum transfer q; such
kinematics maximize the effects from FSI, whereas in the
so-called parallel kinematics, the effects are minimized (see,
e.g., [9], [48], [56]). The kinematics therefore reflects itself
in the relevance of the calculated FSI; in fact, we have found
that the effects of the FSI calculated within either the GA
or GEA approximations, differ by only a few percent, which
was expected in view of the observation that the factor �z

[Eq. (60) or (52)] affects only the longitudinal component
of pm and therefore has minor effects on the data we have
considered. The effects of MEC and �-isobar contributions
have been estimated in [55] and were found to be negligible
up to about pm � 600 MeV/c.

2. The three-body breakup channel 3He(e, e′p)(np)

From Eq. (69), we obtain the cross section for the 3bbu in
the following form:

d6σ

dE′ d�′ d�p1dEm

= K3bbu(Q2, x, pm)

× σ eN
cc1 (Q̄2, pm)P FSI

ex (pm,Em), (74)

where P FSI
ex (pm,Em) is given by Eq. (64). We have calculated

Eq. (74) correspondending to two different kinematical ranges:
the one from Ref. [20] and the one corresponding to the
experimental data from Jlab [22]. In contrast to the results
from the 2bbu channel, the 3bbu cross section depends on
an extra kinematical variable, the removal energy Em, and
corresponds to the process in which three particles interact in
the continuum. We have considered three different theoretical
approaches:

1. the PWA, when FSI effects are completely ignored, that is,
the three particles in the continuum are described by plane
waves;

2. the PWIA, in which the struck nucleon is described in
the continuum by a plane wave and the spectator pair is
described by the continuum solution of the Schrödinger
equation (obviously, in the case of the deuteron the PWIA
coincides with the PWA); and

3. the full FSI, when the struck nucleon interacts in the
continuum with the nucleons of the spectator pair via the
standard GA or the more refined GEA.

In Fig. 11 the results of our calculations are compared
with the experimental data from Ref. [20]. In the experiment,
which corresponds to a relatively low beam energy (E =
0.560 GeV), the scattering angle (θe = 25◦) and the energy
transfer (q0 = 0.32 GeV) were kept constant, and protons with
different values of the missing momentum and energy were
detected correspondending to several values of the proton
emission angle θp1 : θp1 = 45◦, 60◦, 90.5◦, 112◦, and 142.5◦.
The kinematics is far from the quasi-elastic peak (x � 0.1) and
the values of the four- and three-momentum transfers are low
[Q2 � 0.03 (GeV/c)2 and |q| = 0.28 GeV/c]. At first glance
this would invalidate the use of the eikonal approximation;
however, a detailed analysis of the kinematics shows that the
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FIG. 11. (Color online) The process 3He(e, e′p)(np): Experimen-
tal data from Saclay [20] vs Em and for various values of the proton
emission angle θp1 (p′ ≡ |p1|) are compared with our theoretical
results. The dotted lines correspond to the PWA, when the three
nucleons in the final state are described by plane waves; the dashed
lines correspond to the PWIA, when the interaction in the spectator
neutron-proton pair is taken into account; and the full lines include
the full FSI calculated using Eq. (63); the predictions by Eq. (65)
(GEA) and Eq. (68) (GA) differ by at most 4% and cannot be
distinguished in the figure. Note that the values of the experimental
pm and Em corresponding to the maxima of the cross section
satisfy to a large extent the relation predicted by the two-nucleon
correlation mechanism [38], namely, Em � p2

m/4MN (cf. Fig. 3, right
panel), with the full FSI mainly affecting only the magnitude of the
cross section (three-body wave function from [2]; AV18 interaction
from [5]).

value of both p1 and pm are rather large (400–600 MeV/c), and
so is the value of the angle between them (θp̂1pm

∼ 150◦); thus
the momentum of the struck nucleon relative to the spectator
pair is high enough to justify use of the eikonal approximation.
Moreover, the values of the experimentally measured missing
momenta and missing energy at each value of θp1 always cover
the kinematical range where the condition for a two-nucleon
correlation mechanism Em ∼ p2

m/4MN holds; in fact, as can
be seen from Fig. 11, the positions of the bumps in the cross
section are reasonably predicted by the PWA and PWIA.

The results presented in Fig. 11 clearly show that, with
increasing missing momentum, the experimental peak moves
to higher values of missing energy, in qualitative agreement
with the two-nucleon correlation mechanism. More important,
it can be seen that at the highest value of |pm| (θp1 = 112◦)
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FIG. 12. (Color online) The process 3He(e, e′p)(np): Same as in
Fig. 11 but for the Jlab experimental data [22] at Q2 = 1.55 (GeV/c)2

and x = 1. Note that, unlike what is shown in Fig. 11, here the
differential cross section is plotted vs the excitation energy of the
two-nucleon system in the continuum, i.e., Erel = t2/MN = E

f

2 =
Em − E3.

the effects of FSI, both in the spectator pair and between the
struck nucleon and the spectator pair, is very small. The reason
for such a behavior is that the kinematics of the experiment is
not purely perpendicular: The relation between |pm⊥| and |pm|
is such that |pm⊥| ∼ 1

2 |pm|, so that the dominant role played
by FSI in the purely perpendicular kinematics diminishes with
increased values of θp1.

In Fig. 12 our results are compared with the recent data
from Jlab [22], where the cross section was measured at fixed
values |pm| versus the missing energy Em. As in the case of
the Saclay data previously analyzed, even in this case the cross
section exhibits bumps approximately located at values of Em

and |pm| satisfying the two-nucleon correlation mechanism
relation (Em ∼ p2

m/4MN ), and in agreement with the behavior
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of the spectral function (see Figs. 3 and 4). However, in contrast
to the Saclay case, the PWIA dramatically underestimates the
experimental data. This is clear evidence that the FSI between
the struck nucleon and the nucleons of the spectator pair
[Feynman diagrams in Fig. 6(b) and Fig. 6(c)] does play a
relevant role, as the results of our calculations (the full line
in Fig. 12) do indeed really show. Since, as already stressed,
the Jlab experiment corresponds to perpendicular kinematics,
this explains the larger effects of the FSI with respect to the
Saclay experiment. The effects of the FSI calculated within
either the GA or GEA approximations differ only by a few
percent, which was expected in view of the observation that
the factor �z [Eq. (60) or (52)] affects only the longitudinal
component of pm and therefore has minor effects on the data
we have considered.

There exist at present only two approaches to the calcula-
tions of the 2bbu and 3bbu channels at the Jlab kinematics: the
one presented in this paper and the one by Laget reported
in Refs. [21–23]. A comparison of the results of the two
approaches exhibits an encouraging agreement in both the
2bbu and 3bbu channels, with some minor differences that
should most likely be ascribed to the different wave functions
used in the two calculations. It is therefore gratifying to observe
that different approximations to the treatment of FSI lead to
very similar results.

The effects of MEC and �, as previously pointed out, have
not yet been considered in our approach; the calculation of
Ref. [23] shows they reduce the cross section in the peak
by about 10%, leaving the missing energy dependence and,
consequently, our conclusions, practically unchanged.

VI. SUMMARY AND CONCLUSIONS

We have calculated the cross section of the processes
2H(e, e′p)n, 3He(e, e′p)D, and 3He(e, e′p)(np), using realistic
wave functions for the ground state, which exhibits the
very rich correlation structure generated by modern NN
interactions; the FSI of the struck nucleon with the specta-
tors have been treated within the standard Glauber eikonal
approximation [16], as well as with its generalized version
(GEA) [9–11]. The two approaches differ by a factor �z

[Eqs. (42) and (52)], which modifies [see Eq. (65)] the FSI
factor appearing in the standard GA [Eq. (68)]. This factor
takes into account the removal energy of the struck nucleon
in the NN scattering amplitude, or, equivalently, the excitation
energy of the system A − 1. By properly choosing the z axis
(along q or p1), we were able to calculate FSI effects for large
values of the three-momentum transfer q or for large values
of the momentum of the struck nucleon p1 relative to the
A − 1 system; by this method calculations could be extended
successfully even at relatively low values of Q2. For the three-
body breakup channel in 3He, the FSI in the spectator pair was
always calculated by the solution of the Schrödinger equation,
whereas the interaction of the active, fast nucleon with the two
nucleons of the spectator pair has been taken care of by the
GA or GEA approximations. The method we have used is a
very transparent one and fully parameter free: It is based on
Eqs. (49), (61), and (65), which only require knowledge of the
nuclear wave functions, since the FSI factor is fixed directly

by NN scattering data. Of course, with increasing A, the order
of rescattering increases up to the (A − 1)-th order; we have
performed calculations in the three-body case exactly but did
not investigate the problem of the convergence of the multiple
scattering series. This problem is under investigation for 4He.
Most of our calculations have been performed in kinematical
conditions where the effects of MEC, �-isobar creation, etc.,
are minimized, as confirmed by calculations performed, for
example, in Refs. [23,50–53,55,57,58]. The main results we
have obtained are as follows:

1. The agreement between the results of our calculations and
the experimental data for both the deuteron and 3He is a
very satisfactory one, particularly in view of the lack of any
adjustable parameter in our approach.

2. The effects of the FSI are such that they systematically
bring theoretical calculations in better agreement with the
experimental data. For some quantities, FSI simply improve
the agreement between theory and experiment (cf., e.g.,
Figs. 7, 9, and 11), whereas for some other quantities, they
play a dominant role (see, e.g., Figs. 10 and 12).

3. A comparison of the PWA and the PWIA with the full FSI
calculation does show that proper kinematics conditions
could be found corresponding to an overall very small effect
of FSI, thus leaving room for the investigation of details of
the nuclear wave function; in fact, we always found that in
the 3bbu channel in 3He, 3He(e, e′p)(np), the experimental
values of pm and Em corresponding to the maximum values
of the cross section satisfy to a large extent the relation
predicted by the two-nucleon correlation mechanism [38],
namely, Em � p2

m/4MN + E3 (cf. Fig. 3, right panel),
with the full FSI mainly affecting only the magnitude of
the cross section; thus, quasi-elastic one-nucleon emission
A(e, e′p)B processes at x � 1, together with processes at
x � 2, when the virtual photon is absorbed by a correlated
two-nucleon “system,” would represent a valuable tool for
the investigation of correlations in nuclei.

4. Calculations of the 2bbu channel disintegration of 4He, that
is, the process 4He(e, e′p)3H, have already been performed
[15] using realistic wave functions and taking exactly into
account nucleon rescattering up to third order, that is, by
using the generalization of Eq. (65) to the four-particle
case,

SFSI
� = SFSI

(1) (R, r12, r34) + SFSI
(2) (R, r12, r34)

+SFSI
(3) (R, r12, r34), (75)

where R, r12, and r34 are four-body Jacobi coordinates.
Calculations for the 3bbu and 4bbu channels are in progress
and will be reported elsewhere [59]; they should in principle
yield results appreciably differing from the predictions
based on shell-model-type four-body wave functions.

5. Our results for 3He generally agree with the ones obtained
in Ref. [23], so that it would appear that the problem of
the treatment of FSI at high values of Q2 (or high p1) is
under control; nevertheless, a systematic comparison of the
various approaches would be highly desirable.

6. We have given the criteria according to which at high
energies the exclusive A(e, e′p)B cross section should
factorize, and the similarity of our results with the ones
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based on a nonfactorized cross section [23] confirm the
validity of these criteria.

7. In the kinematical range we have considered, only minor
numerical differences were found between the conventional
Glauber eikonal approach and its generalized extension;
this does not mean that the same will hold in other
kinematical conditions (see, e.g., [9–11]).
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APPENDIX A: THE NUCLEAR WAVE FUNCTIONS

In our calculations we have used two- and three-body wave
functions corresponding to the AV18 potential [5].

1. The ground-state wave function of 3He

For the 3He wave function we have adopted the correlated
variational wave function by the Pisa group [2], which is
written in a mixed (Lρ,X, j23, S23) representation, where j23

and S23 are the total angular momentum and the total spin
of the pair “23,” X is an intermediate angular momentum
resulting from the coupling j23 + s1, and Lρ is the radial
angular momentum of the motion of the nucleon “1” relative
to the pair “23.” The explicit form of the wave function is

�
M3
He (ρ, r)

=
∑
{α}

∑
{m}

〈
XMX Lρmρ

∣∣∣1

2
M3

〉〈
j23m23

1

2
σ1

∣∣∣XMX

〉
×χ 1

2 σ1
YLρMρ

(ρ̂) 〈l23µ23 S23ν23|j23m23〉
×Yl23µ23 (r̂)χS23ν23R{α}(r, ρ) IT23

1
2

1
2
, (A1)

where {α} labels all possible configurations in 3He with quan-
tum numbers Lρ , X, j23, S23, and T23 and 〈l1m1l2m2| l12m12 〉
is a Clebsch-Gordan coefficient. The total isospin function is
IT23

1
2

1
2

= ∑〈T23τ23
1
2τ1| 1

2
1
2 〉JT23τ23η 1

2 τ1
, whereJT23τ23 and η 1

2 τ1
are

the isospin functions of the pair and the nucleon, respectively.
Obviously, because of Pauli principle and parity constraints,
the allowed configurations in Eq. (A1) are those that satisfy

the following conditions:

Lρ + l23 is even, and l23 + S23 + T23 is odd. (A2)

The corresponding radial part of the wave function, R{α}(r, ρ),
has been obtained [2] by a variational method using the AV18
potential including values of Lρ, l12 = 0, . . . , 9 (for a total
of 58 different configurations of Lρ,X, j23, l23, S23) in the
calculations.

2. The two-body continuum wave function � t
23(r)

With the representation (A1) of the 3He wave function, it
was convenient to adopt for the two-nucleon scattering state
�t

23(r) the spin-channel representation �t
S23ν23

(r), character-
ized by the total (conserved in the scattering process) spin S23

and its projection ν23. For spin S23 = 1 one has

�t
Sf νf

(r) = 4π
∑
Jf Mf

∑
l0lf

〈l0µ0 Sf νf |Jf Mf 〉

× Yl0µ0 (t̂)R|t|
Jf ,l0lf

(r)ilf YJf Mf

1lf
(r̂)JT23τ23, (A3)

where l0, lf = Jf ± 1, Jf . Note that the presence of tensor
forces in the NN potential leads to an admixture of partial
waves with l = Jf − 1 and l = Jf + 1. This hinders the
use of real phase shifts for the asymptotic behavior of the
radial functions R

|t|
Jf ,l0lf

(r) and, consequently, the Schrödinger
equation cannot be solved in terms of real solutions. However,
a unitary transformation V allows one to define new radial
functions R̃ = V R that are eigenfunctions of the scattering
problem, that is, solutions of the Schrödinger equation with
the proper asymptotic behavior.

3. Wave function overlaps and the spectral
function P(|k1|, E) of 3He

The spectral function for the three-body breakup channel
can be expressed in terms of the overlap between the
three-body and two-body radial functions by substituting
(A1)–(A3) into Eq. (12). Using the orthogonality of the
spherical harmonics Ylm(t̂) and the completeness of the
Clebsch-Gordan coefficients, one obtains that only diagonal
({α} = {αN }) matrix elements contribute to the spectral func-
tion, namely,

Pex(|k1|, E) = 1

2

∑
M3

∑
σf ,Sf ,νf

∫
d3t

(2π )3

∣∣∣∣∣
∫

dρ dr �
M3
He (ρ, r)

×�t
Sf νf

(r)e−iρk1

∣∣∣∣∣
2

δ

(
Em − t2

MN

− E3

)

= MN

√
MNErel

2π3
fiso

∑
{α}

∣∣∣∣∫ ρ2 dρ jLρ
(pρ)OErel

{α} (ρ)

∣∣∣∣2

,

(A4)

where fiso = 3(1) for the pair in the isosinglet (isotriplet)
final state, jLρ

(pρ) are the spherical Bessel functions, and
the dimensionless overlap integrals OErel

{α} (ρ) are defined as
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follows:

OErel
{α} (ρ) =

∫
R{α}(r, ρ)R̃|t|

{α}(r)r2 dr. (A5)

The normalization of the proton spectral function (A4)–(A5)
is ∫

d3k1 dEP (|k1|, E) ≈
{

0.15 for T23 = 0
0.50 for T23 = 1 (A6)

so that the two-body breakup channel is normalized to
≈1.35. Since the FSI factors SFSI and SFSI

� [Eqs. (65) and
(68)] are not spherically symmetric, the distorted spectral
function P FSI

ex (pm,Em) [Eq. (64)] is no longer diagonal with
respect to the (Lρ,X, j23, S23) configurations. Except for
parity constraints (A2), any values of angular momenta of
the pair in the final state contribute to P FSI

ex (pm,Em).

APPENDIX B: FACTORIZATION OF THE
COVARIANT CROSS SECTION

In this appendix we will show, within a fully covariant
approach, that under certain kinematical conditions the cross
section for the A(e, e′p)X process factorizes even in the pres-
ence of FSI. We shall consider, to this end, the deuteron treated
within the Bethe-Salpeter (BS) formalism. As mentioned, the
factorization depends on the spin structure of the square of
the matrix element [ū(k1, s̃1)
M2

D (k1, k2)(k̂2 + MN )v(k2, s2)]
appearing in Eq. (19) or, in case of FSI, on the structure
of [ū(k1, s̃1)
M2

D (k1, k2)v(k2, s2)] [cf. Eq. (28)]. The relevant
spin parts can be evaluated directly by using the explicit form
of the Dirac spinors, u and v, and the explicit expressions for
the amplitudes 


M2
D (k1, k2) (cf. Refs. [42,43,45]).

1. The PWIA

In Ref. [44] the Feynman diagrams for the process
D(e, e′p)X have been evaluated including all BS components.
Here we recalculate the diagrams for the 3S++

1 and 3D++
1

components in a slightly different manner that will be useful
when FSI effects are considered.

In PWIA the cross section reads as follows:

d5σ

dE′ d�′ = σMott l̃
µνLD

µν

d3p1

(2π )32E1

d3p2

(2π )32E2
, (B1)

where l̃µν and LD
µν are the leptonic and hadronic tensors,

respectively, the latter being

LD
µν = 1

2MD

1

3

∑
M2,s1,s2

Tµ(M2, s1, s2)Tν(M2, s1, s2)(2π )3δ(4)

× (PD + q − p1 − p2)

= 1

2MD

1

3

∑
M2,s1,s2

〈M2|Ĵ N
µ |p2, s2, p1, s1〉〈p1, s1, p2, s2

× |Ĵ N
ν |M2 〉(2π )3δ(4)(PD + q − p1 − p2), (B2)

where Ĵ N
µ is the nucleon electromagnetic current operator. The

amplitude Tµ could be written in the following form:

Tµ(M2, s1, s2) = ū(p1, s1)�γ ∗N
µ

(
Q2, k2

1

)
×


M2
D (k1, k2)S̃−1(k̂2)v(p2, s2), (B3)

where 

M2
D is a shorthand notation for the main BS ampli-

tudes 
3S++
1

and 
3D++
1

, corresponding to L = 0 and L = 2,

respectively (see Refs. [42,45]), k2 = p2, Ŝ−1(k̂2) = k̂2 + m,
and �

γ ∗N
µ (Q2, k2

1) is the electromagnetic eN vertex, which,
for an off-mass-shell nucleon, depends not only on Q2 but on
k2

1 �= m2 as well.
By introducing between �µ(Q2, p1, k1) and 


MD

D (k1, k2)
the complete set of the Dirac spinors

1

2MN

∑
s̃1

[u(k1, s̃1)ū(k1, s̃1) − v(k1, s̃1)v̄(k1, s̃1)] (B4)

and bearing in mind that for the 3S++
1 and 3D++

1 partial waves
the second term in (B4) does not contribute, we obtain

Tµ(M2, s1, s2) = 1

2MN

∑
s̃1

J eN
µ (Q2, p1, k1, s̃1, s1)

× [
ū(k1, s̃1)
M

D (k1, k2)S̃−1(k̂2)v(p2, s2)
]
, (B5)

where J eN
µ (Q2, p1, k1) = 〈p1, s1|�γ ∗N

µ (Q2, k2
1)|k1, s̃1 〉.

Evaluating Eq. (B5) for the D wave, we have[
ū(k1, s̃1)
M2

3D++
1

(k1, k2)S̃−1(k̂2)v(p2, s2)
]

= −NN2
1√

2

(
k2

2 − M2
N

)
φD(k0, |k|) 2m〈χ †

s̃1
|{−(σξM )

+ 3(nξM )(nσ )}|χ̃s2〉, (B6)

where n is a unit vector along k, that is, n = k/|k| = k1/|k1|.
When Eq. (B6) is inserted in the expression for the cross
section, we obtain

1

3

∑
M2,s2

〈
χs̃1

∣∣{−(σξM2 ) + 3(nξM2 )(nσ )}∣∣χ̃s2

〉〈
χ̃s2

∣∣
×{−(σξ+M2 ) + 3(nξ+M)(nσ )}∣∣χs̃1

〉 = 2δs̃1 s̃
′
1
. (B7)

The last relation ensures factorization of the cross section; in
fact, by performing the same procedure for the S wave, it easy
to show that, because of Eq. (B7), the cross section [Eq. (B1)]
factorizes, assuming the form (24) with nD given by Eq. (22).
In obtaining these equations we expressed the BS amplitudes
φL(k0, |k|) in terms of the BS vertices G3L++

1
(k0, |k|) and the

radial functions uL, by the relations

NN2
1√

2

(
k2

2 − M2
N

)
φD(k0, |k|) = NN2

1 2Ek√
2

G3D++
1

(k0, |k|)
MD − 2Ek

,

(B8)

where k0 = MD/2 − Ek, and

uS(D) = G3S++
1 (3D++

1 )(k0, |k|)/(4π )√
2MD(MD − 2Ek)

. (B9)

Note that in Eq. (B9) the normalization of the wave function
is chosen so as to correspond to the nonrelativistic deuteron
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wave function

2

π

∫
|k|2d|k| (u2

S(|k|) + u2
D(|k|)) ≈ 1. (B10)

We reiterate that factorization in PWIA occurs because the
sum over s2 and M2 of the square of the matrix element in
Eq. (B7) becomes diagonal with respect to s̃1.

When FSI are taken into account, instead of Eq. (B7), one
obtains for the D wave

1

3

∑
M2,s2

[
ū(k1, s1)
M2

D (k1, k2)v(k2, s2)
]†

× [
ū(k′

1, s̃1)
M2
D (k′

1, k
′
2)v(k′

2, s2)
]

× 1

3

∑
M,s2

〈
χs1

∣∣{−(σξM2 ) + 3(nξM2 )(nσ )}∣∣χ̃s2

〉
× 〈

χ̃s2

∣∣{−(σξ+M2 ) + 3(n′ξ+M2 )(n′σ )}∣∣χs̃1

〉
= 1

3

∑
M2

〈
χs1

∣∣{−(σξM2 ) + 3(nξM2 )(nσ )}

× {−(σξ+M2 ) + 3(n′ξ+M2 )(n′σ )}∣∣χs̃1

〉
, (B11)

where n(n′) is a unit vector along k1(k′
2). (For the S wave the

spin structure is trivial.)

By taking into account the completeness of the polarization
vectors ξ , the only spin dependence remaining in Eq. (B11) is
contained in the term

1

3

∑
M

(nξM )(nσ )(n′ξ+M )(n′σ )= (nn′)((nn′)−iσ [n×n′]),

(B12)

so that for rescattering with low momentum transfer, in the
integral over k2 the main contribution comes from k2 ∼
p2, k′

2 ∼ p2, and one has σ [n × n′] = 0 and factorization is
approximately recovered, with the S and D waves adding
incoherently.

Thus, in summary, factorization is compatible with FSI if
the following conditions hold:

1. The spin-flip part of the NN amplitude should be very small,
as it occurs when either the three-momentum transfer q or
the momentum |p1| is large.

2. The momentum transfer κ in the NN rescattering has to
be small so that, in the integral, k2 ∼ p2. This appears
to be the case since the NN amplitude is sharply peaked
forward.

3. The contribution from NN̄ pair currents can be neglected,
which is to a large extent legitimate owing to the smallness
of the P wave in the deuteron.

[1] W. Glöckle, H. Witala, D. Huber, H. Kamada, and J. Golak,
Phys. Rep. 274, 107 (1996).

[2] A. Kievsky, S. Rosati, and M. Viviani, Nucl. Phys. A551, 241
(1993); A. Kievsky (private communication).

[3] S. C. Pieper and R. B. Wiringa, Ann. Rev. Nucl. Part. Sci. 51,
53 (2001).

[4] S. C. Pieper, R. B. Wiringa, and V. R. Pandharipande, Phys. Rev.
C 46, 1741 (2000).

[5] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C
51, 38 (1995).

[6] V. N. Gribov, Sov. Phys. JETP 30, 709 (1970).
[7] L. Bertocchi, Nuovo Cimento A 11, 45 (1972).
[8] J. H. Weis, Acta Phys. Pol. B 7, 851 (1976).
[9] L. L. Frankfurt, W. R. Greenberg, G. A. Miller, M. M. Sargsian,

and M. I. Strikman, Z. Phys. A 352, 97 (1995).
[10] L. L. Frankfurt, M. M. Sargsian, and M. I. Strikman, Phys. Rev.

C 56, 1124 (1997).
[11] M. M. Sargsian, Int. J. Mod. Phys. E 10, 405 (2001).
[12] M. M. Sargsian, T. V. Abrahamyan, M. I. Strikman, and

L. L. Frankfurt, arxiv: nucl-th/0406020.
[13] M. A. Braun, C. Ciofi degli Atti, and D. Treleani, Phys. Rev. C

62, 034606 (2000).
[14] M. Braun, C. Ciofi degli Atti, L. P. Kaptari, Eur. J. Phys. A 19,

143 (2004).
[15] H. Morita, M. Braun, C. Ciofi degli Atti, and D. Treleani, Nucl.

Phys. A699, 328c (2002).
[16] R. J. Glauber, in Lectures in Theoretical Physics, Vol. I, p. 315,

edited by W. E. Brittin and L. G. Dunham (Wiley Interscience,
New York, 1959).

[17] W.-J. Kasdorp et al., Few-Body Syst. 25, 115 (1998).
[18] P. E. Ulmer et al., Phys. Rev. Lett. 89, 062301 (2002).

[19] H. J. Bulten et al., Phys. Rev. Lett. 74, 4775 (1995).
[20] C. Marchand et al., Phys. Rev. Lett. 60, 1703 (1988).
[21] M. M. Rvachev et al., arxiv: nucl-ex/0409005v2.
[22] F. Benmokhtar et al., arxiv: nucl-ex/0408015v2.
[23] J.-M. Laget, arxiv: nucl-th/0410003.
[24] J. J. van Leeuwe et al., Phys. Lett. B523, 6 (2001).
[25] S. Janssen, J. Ryckebusch, W. Van Nespen, and D. Debruyne,

Nucl. Phys. A672, 285 (2000).
[26] C. Ciofi degli Atti and L. P. Kaptari, in International Workshop

on Probing Nucleons and Nuclei via the (e, e′p) Reaction, Eds.
D. Higinbotham, J. M. Laget, and E. Voutier (The Print House,
New York 2004), p. 121.

[27] M. Alvioli, C. Ciofi degli Atti, L. P. Kaptari, and H. Morita, Pro-
ceedings of the 6th Workshop on Electromagnetically Induced
Two Hadron Emission, Pavia, Italy, 24–27 Sept. 2003.

[28] S. Boffi, C. Giusti, and F. D. Pacati, Phys. Rep. 226, 1
(1993).

[29] R.-W. Schulze and P. E. Sauer, Phys. Rev. C 226, 38 (1993).
[30] C. Ciofi degli Atti, E. Pace, and G. Salmè, Phys. Rev. C 21, 805
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