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Charge-symmetry-breaking three-nucleon forces
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Leading-order three-nucleon forces that violate isospin symmetry are calculated in heavy-baryon chiral
perturbation theory. The effect of the charge-symmetry-breaking three-nucleon force is investigated in the
trinucleon systems using Faddeev calculations. We find that the contribution of this force to the 3He-3H
binding-energy difference is given by �ECSB

3NF � 5 keV.
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I. INTRODUCTION

Isospin violation [1–3] has recently been investigated
in the context of (heavy-baryon) chiral perturbation theory
(χPT). This powerful technique [4,5] casts the symmetries
of QCD into effective Lagrangians that are expressed in
terms of pions and nucleons, which are the effective degrees
of freedom of nuclear physics. These Lagrangian building
blocks can then be combined in a systematic way to develop
isospin-violating forces. Although most of the forces resulting
from this procedure were anticipated and developed using
phenomenological methods, new forces have also been found.
It is the purpose of this work to complement the earlier
work on isospin-violating two-nucleon [6–14] forces by
calculating the leading-order three-nucleon isospin-violating
force, which breaks charge symmetry. In addition, we estimate
the contribution of this force to the 3He-3H binding-energy
difference. This is the first such calculation of isospin-violating
three-nucleon forces1 and completes the χPT calculations of
isospin violation—both charge-independence breaking (CIB)
and charge-symmetry breaking (CSB)—through the first three
orders.

Chiral perturbation theory is organized around power
counting (dimensional analysis [15]), which allows estimates
of the sizes of various mechanisms to be made in terms of the
parameters and scales intrinsic to QCD. These scales (using
Weinberg power counting [4,6,16]) include the pion decay
constant, fπ ∼ 93 MeV, which sets the scale for pion emission
or absorption; the pion mass, mπ , which sets the scale for
chiral-symmetry breaking; the typical nucleon momentum,
Q ∼ mπ (which also determines the inverse correlation length
in nuclei); and the characteristic QCD bound-state scale,
� ∼ mρ , which is appropriate for heavy mesons, nucleon
resonances, etc. The latter states are frozen out and do not
explicitly appear in χPT, although their effect is present in
the counter terms of the effective interactions. The resulting

1While this manuscript was being written, we learned of a similar
investigation—using, however, a different choice of fields—by
Epelbaum, Meißner and Palomar [37], where there is no attempt
to calculate binding energies.

field theory is a power series in Q/�, and the number of
implicit powers of 1/� (e.g., n) can be used to label individual
terms in the Lagrangian (viz., L(n)). In this way, higher powers
denote smaller terms, and this is a critical part of the organizing
principle of χPT. We note that power-counting estimates of
sizes are typically within a factor of 2–3 of the actual sizes.

The nucleon-nucleon correlation-length scale is not rel-
evant for one-body operators; it occurs once for two-body
operators, twice for three-body operators, etc. Thus it is
important to incorporate this mechanism into the power
counting if we wish to compare mechanisms with differing
numbers of interacting nucleons. In addition to adding the
indexes “n” for each of the individual Lagrangians (see above)
that are used in a given calculation, we must add 2 for each
loop and N − 1 for an N -body Feynman diagram in order
to determine the effective order � [16]. Thus three-nucleon
forces with an order determined by an index n − 2 should
be comparable in size in nuclei to one-body operators (such
as the kinetic energy) corresponding to an index n, or to
a two-body force corresponding to an index n − 1. (Notice
that this accounting of the relative sizes of few-body forces is
different from Weinberg’s [4,6] by one order, which reflects
the fact that we are counting the nucleon mass MN as �, rather
than �2/Q.) This is the underlying reason why N -body forces
in nuclei get systematically smaller as N increases (and this
makes nuclear physics tractable).

Isospin violation in nuclei arises from three distinct mech-
anisms. The first is the up-down quark-mass difference, which
dominates and makes the neutron heavier than the proton. The
second mechanism is hard electromagnetic (EM) interactions
at the quark level, which try to make the proton heavier
than the neutron. This is also the mechanism that produces
most of the pion-mass difference. The final mechanisms are
the soft-photon interactions (such as the Coulomb interaction
between protons) that dominate isospin violation in nuclei.

Direct comparison [10,11] of the sizes of the EM and
quark-mass terms demonstrates that the EM terms (which
contain a factor of α, the fine-structure constant) are roughly
the same size as quark-mass terms that are formally three
orders smaller in the power counting. We adjust our power
counting accordingly and adopt the convenient mnemonic of
adding 3 to the order of the EM-induced isospin-violating
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Lagrangian when comparing sizes with quark-mass-induced
mechanisms [6]. Henceforth our power counting for any EM-
induced interactions will contain this additional factor of 3.

Our prior work on isospin-violating nucleon-nucleon forces
(both CSB and CIB) in the context of (heavy-baryon) chiral
perturbation theory with the �-isobar integrated out [6–11]
identified the leading mechanisms for isospin violation in
nuclei. In Sec. II we discuss their impact on the 3He-3H
binding-energy difference. In Sec. III we calculate the leading
isospin-violating three-nucleon force and evaluate its con-
tribution to the 3He-3H binding-energy difference. We then
conclude.

II. VARIOUS CSB MECHANISMS

We have shown [6,7,10,11] that the following ten mecha-
nisms are expected to contribute dominantly to CSB in nuclei:
� The mass difference of the proton and neutron, δMN =

mp − mn < 0
� The CSB nuclear kinetic energy
� The Coulomb potential between protons
� The Breit-interaction ((v/c)2) corrections to the Coulomb

potential
� The CSB one-pion-exchange potential (OPEP)
� The CSB short-range nuclear potential
� The CSB two-pion-exchange potential incorporating the

nucleon-mass difference
� The Class IV CSB interactions (antisymmetric in isospin

coordinates and with a spin-orbit-type spin-space depen-
dence)

� An OPEP with Class IV isospin structure that vanishes in
the two-nucleon center-of-mass, but not in a three-nucleon
system

� A two-pion-exchange three-nucleon force proportional
to the quark-mass-difference contribution, δM

qm
N , to the

nucleon-mass difference

We briefly discuss each of them in turn in the context of the
3He-3H binding-energy difference.

The first four mechanisms are fairly well known. They in-
clude the two largest mechanisms, and we start our discussion
with them.

The mass (rest-energy) difference of the nucleons, δMN ,
contributes to the χPT Lagrangian at order n = 1. From a
nuclear-physics perspective it makes an uninteresting contribu-
tion to the mass difference of 3He and 3H and is conventionally
removed, leaving only a binding-energy difference. Although
3H is heavier than 3He, this removal leads to 3He being less
bound than 3H by 764 keV, which is the target for all CSB
calculations in the three-nucleon systems. The nucleon-mass
difference nevertheless plays a nontrivial role in intermediate
states where two protons are converted to two neutrons (or
vice versa) by exchanging pions. That effect was recently
treated in a systematic fashion [11] by removing the δMN

mass-difference term from the χPT Lagrangian. This removes
δMN from asymptotic states and nuclear energies, but its effect
in intermediate states is compensated by the addition of new
terms in the Lagrangian that must be incorporated in any
calculations. The resulting scheme is much simpler to use
than older techniques, and we use it below.

The kinetic-energy difference between two protons and two
neutrons caused by their different masses corresponds to n = 3
in power counting. In the trinucleon systems this mechanism
leads to a robust 14-keV contribution [17–22] to the binding-
energy difference of 3He and 3H.

The Coulomb potential between two protons is the dom-
inant CSB interaction in nuclei. According to the way we
bookkeep EM interactions, this is an effect one order down
compared to the leading, isospin-conserving nucleon-nucleon
force, so it is effectively an n = 1, or � = 2, term. This
contribution has a nominal size in terms of scales given
by EC ∼ αQ ∼ 1 MeV, where α is the fine-structure con-
stant. In the trinucleon systems it has been well studied
over several decades and leads to a robust and dominant
648-keV contribution to the 764-keV trinucleon binding-
energy difference [23].

Small EM contributions of relativistic order contained in
the Breit interaction (viz., the interaction between nucleon
magnetic moments and between the currents associated with
moving protons) plus a smaller vacuum-polarization force
appear two orders down (n = 3 or � = 4 in our power
counting). In terms of scales, the relativistic contributions
behave like EB ∼ αQ3/�2 ∼ 25 keV. Indeed, they lead to
a robust [17–21] 28 keV.

The effect of CSB on two-nucleon potentials is subsumed
by the next four mechanisms on the list above, of which three
are Class III and one is Class IV. We discuss them separately.

Charge-symmetry breaking in the pion-nucleon coupling
constants can lead to a CSB OPEP that has nominal size
n = 2, which corresponds to � = 3. Only an upper limit of
size 50 keV (with unknown sign) constrains this mechanism
[10]. A conventional short-range interaction of undetermined
strength corresponding to size � = 3 (and a nominal size of
roughly 50 keV) is also present [7]. The last of the three
Class III mechanisms is the recently calculated two-pion-
exchange potential that incorporates various aspects of the
nucleon-mass difference. It is of nominal order n = 3 or
� = 4 [10]. Each of these three mechanisms contributes to
the difference between the pp force (with the EM interaction
removed) and the nn force. At present the only experimental
information on this difference is contained in the scattering-
length difference. The resulting ann − app scattering-length
difference [2,3,7] of −1.5(5) fm is then attributed to CSB
in the three forces discussed above, which cannot be further
disentangled at the present time. (Of course, in principle these
mechanisms could be separated thanks to their different ranges,
provided that the nucleon-nucleon data are accurate enough.)
This difference then produces a contribution to the 3He-3H
binding-energy difference of approximately 65(22) keV, a
number that also appears to be robust [20,21,24].

The Class IV two-nucleon CSB OPEP [2,3,11] has a
nominal n = 2 or � = 3 size, which is suppressed by nearly
an order of magnitude by nature’s fine tuning of δMN to its
physical value [11]. This type of force is further suppressed in
the trinucleon bound states because S-wave components of the
wave function do not contribute to a spin-orbit force. Although
this force and a short-range force of order n = 4 are formally
part of the CSB two-nucleon potential, they make a negligible
contribution to the trinucleon binding-energy difference.
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The last two mechanisms are three-body effects.
The recent study [11] of Class IV CSB forces found a

peculiar two-body force that vanishes in the center-of-mass of
two nucleons, but does not vanish in a system of more than
two nucleons. Although nominally of order n = 2 (or � = 3),
this force should be much smaller than that for three reasons.
The first reason is that this two-body force is constrained
by kinematics to vanish in the center-of-mass of those two
nucleons. In addition, this force is proportional to δMN , which
results from the cancellation of the separate quark-mass and
EM contributions and has been fine-tuned by nature to a rather
small value (a factor of 5 smaller than the nominal value of
the power-counting estimate for the quark-mass part δM

qm
N of

that mass difference, viz., −7 MeV). The final suppression
is caused by approximate SU(4) symmetry in the few-
nucleon systems. The spin-isospin dependence of the force
is antisymmetric under the interchange of those coordinates
for the two nucleons, caused by a (τ i × τ j )z type of isospin
dependence. The dominant component of the trinucleon wave
function (∼90%) is the S-state [an SU(4) classification],
which is completely antisymmetric under that interchange.
These symmetry considerations cause the diagonal S-state
matrix element of the force to vanish. The net result of these
suppressions is that this force should be much smaller than
its nominal order indicates (i.e., � = 3) and is therefore very
unlikely to be significant. For these reasons we will ignore this
contribution in this work.

The remaining force is a three-nucleon force of nominal
order n = 1 or � = 3 that originates in the chiral-symmetry-
breaking properties of the quark-mass difference. It has never
before been calculated, and we turn to it in Sec. III.

III. CSB THREE-NUCLEON FORCES

In this section we examine isospin-violating three-nucleon
forces within heavy-baryon chiral perturbation theory. Isospin-
conserving three-nucleon forces have been derived within this
approach in Refs. [25,26]. We follow the same method here.
In particular, we ignore terms that cancel against recoil in the
iteration of the two-nucleon potential.

The field redefinition that we employed in Ref. [11]
eliminated the nucleon-mass difference in the free Lagrangian
at the cost of additional effective interactions proportional
to powers of that mass difference. Only Lagrangian terms
that had explicit time derivatives generated additional terms.
Incorporating the results of that field redefinition through
orders n = 0 and n = 1 in the Lagrangian (including short-
range two- and three-body terms) plus several other terms
from Ref. [6] leads to the following terms that contribute to
isospin-violating three-nucleon forces at orders n = 1 (CSB)
and n = 2 (CIB), plus omitted terms that would contribute
only to higher orders:

Liv = δM
qm
N

4f 2
π

N † [τ · ππ3 + ((τ × π ) × π )3] N

− 1

2

(
δm2

π − δM2
N

) (
π2 − π2

3

)

+ c̃2δM
2
N + β̄1/4

f 2
π

N †(π2 − π2
3

)
N + · · · . (1)

ik j

FIG. 1. Leading isospin-violating three-nucleon force Wi , which
is charge-symmetry breaking. A solid (dashed) line represents a
nucleon (pion), and the cross represents the interaction generated by
the quark-mass difference component of the nucleon-mass difference
[first term in Eq. (1)].

All these terms originate in the interactions that break
isospin in QCD. The quark-mass-difference term in the
QCD Lagrangian and short-distance photon exchange between
quarks both have definite transformation properties under
chiral symmetry. They generate effective hadronic interactions
that break isospin in the same way. These include pion-
nucleon interactions that are fixed by the quark-mass (δMqm

N )
and electromagnetic (δMem

N � δMN − δM
qm
N ) contributions to

the nucleon-mass difference. Details can be found in Refs.
[6,7,10]. After a field redefinition [11], we arrive at Eq. (1). The
first of these terms breaks charge symmetry, and the remaining
two break charge independence. We focus here on the first
term, which is the largest of all (n = 1). We discuss corrections
at the end of this section.

Using the lowest-order isospin-conserving Lagrangian

L(0) = 1

2

[
π̇2 − ( �∇π )2 − m2

ππ2
]+N †

[
i∂0 − 1

4f 2
π

τ · (π × π̇ )

]
N

+ gA

2fπ

N † �σ · �∇(τ · π )N + · · · , (2)

a simple calculation along the lines of Ref. [26] leads to the
following three-nucleon force corresponding to � = 3. We
define the total three-nucleon force W as

W = W1 + W2 + W3, (3)

where the subscript refers to the number of the nucleon that
emits both pions (the other two nucleons each absorbs one
of those pions), as shown in Fig. 1. The expressions Wi are
symmetric under the interchange of nucleons j and k. We then
find that

WCSB
1 = −δM

qm
N g2

A m2
π

8 f 4
π (4π )2

(�σ2 · x̂12 Y ′(|�x12|) �σ3 · x̂13 Y ′(|�x13|))

×(
τ 1 · τ 2 τ

(3)
3 + τ 1 · τ 3 τ

(3)
2 − τ 2 · τ 3 τ

(3)
1

)
, (4)

where τ
(k)
i is the kth component of the isospin operator for

nucleon i, �σi is the spin operator for nucleon i, �xij is the vector
from nucleon j to nucleon i,

Y (x) = exp (−mπx)/(mπx),

gA
∼= 1.25 is the axial-vector constant, and δM

qm
N is the

currently unknown quark-mass portion of the nucleon-mass
difference.

The three-nucleon force in Eqs. (3) and (4) is charge-
symmetry breaking. It is remarkable that this force appears
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TABLE I. Contributions to the 3He-3H binding-energy difference in keV. The
Coulomb interaction and associated (relativistic) Breit-interaction corrections dominate,
and the CSB kinetic-energy difference (EK ), the sum of the short-range two-body CSB
force mechanisms, and the three-nucleon CSB force (calculated here for the first time)
all make significant contributions. (In the three-nucleon force, we used δM

qm
N = −

2.5 MeV for illustration.) “Theory” labels the sum of these mechanisms.

Coulomb Breit (Ek) Two-body Three-body Theory Experiment

648 28 14 65(22) 5 760(22) 764

formally at the same order as the leading isospin-conserving
three-nucleon force [25,26] in the theory without an explicit
� isobar. That is, the factors of Q and � are the same
in both isospin-conserving and CSB three-nucleon forces,
although, of course, the CSB force is smaller by a factor of
ε = (md − mu)/(md + mu) ∼ 1/3.

CSB is thus relatively large among three-nucleon effects,
an unusual phenomenon. It is agreed that three-nucleon effects
(those not fixed by two-nucleon data) provide about 1 MeV of
the three-nucleon binding energies. The leading three-nucleon
forces contain relatively large subleading interactions (due
to effects of the � isobar), perhaps by a factor of 3 or so.
Combining this with a factor of ε, we could expect the CSB
force to contribute as much as 100 keV to the three-nucleon
binding-energy difference. Indeed, using the replacement
f 2

0 = (gA mπ/2fπ )2/4π ∼= 0.075 (which is strictly valid only
if the Goldberger-Treiman [28] relation is exact; that is, to
lowest order), Eq. (4) can be written as −2δM

qm
N f 4

0 /g2
A times

a dimensionless function of coordinates (in units of 1/mπ ),
spins, and isospins. Assuming that the matrix elements of
this function give numbers of order 1 and that δM

qm
N has its

naive-dimensional-analysis value of −7 MeV, we arrive at
50 keV as an estimate for the size of the CSB three-nucleon
force. This is significant, but obviously it could differ from
the actual value by a factor of a few. The two sources of
uncertainty in the size of this force are the values of δM

qm
N and

of the dimensionless function above.
In order to better estimate the size of this CSB three-nucleon

force, we have implemented it in our Faddeev codes. The
cutoff parameter in the TM′ force [26,27] was adjusted slightly
to produce the correct binding energy for 3H when used in
conjunction with the AV18 two-nucleon force [18]. In any
numerical calculation it is necessary to regulate the Yukawa
function, Y (x) in Eq. (4), and this was done in a way that is
consistent with the Tucson-Melbourne force [27]. Perturbation
theory was then used to calculate the binding-energy difference
of 3He and 3H. We find

ECSB
3NF = 2 ×

[
−δMqm

MeV

]
keV, (5)

which is about a factor of 3 smaller than our estimate. Any
other set of realistic two- and three-nucleon forces should give
similar results.

As mentioned above, the actual value of δM
qm
N is uncertain.

It has been suggested [29,30] that it could be extracted from
pion-production experiments [31,32], but it is unclear if this

can be achieved in the near future. It is likely to be smaller
by a factor of a few than the naive estimate, so −7 MeV
is to be viewed as an overestimate. Using −2.5 MeV for
δM

qm
N , the contribution of our three-nucleon force is listed in

Table I together with all the other significant contributions to
the 3He-3H binding-energy difference that we have discussed.

The three-nucleon results are in agreement with experiment
when the error bar associated with the strong-interaction
CSB strength is taken into account. This conclusion is also
consistent with the CSB results extracted in Ref. [33] for
A = 6–10.

There are, of course, other isospin-violating three-nucleon
forces, but they are higher order in our power counting and
thus should be smaller. Some are generated by subleading
interactions, such as those depicted in Fig. 2. The second
term in Eq. (1) reflects the additional amount that should
be added to the charged-pion mass (squared) in all pion
propagators in isospin-conserving three-nucleon forces, such
as the TM′ force [26], which comes from the subleading
isospin-conserving Lagrangian L(1). The third term in Eq. (1)
is an isospin-violating contribution to the nucleon σ -term,
often called c1. It modifies the three-nucleon force that is
generated by charged-pion exchanges in that interaction. Both
of these modifications break, of course, charge independence,
but not charge symmetry. These forces are transparently easy
to implement, and we refrain from writing explicit forms. They
correspond to n = 2 or � = 4.

At the same subleading order there are also soft-EM forces,
where a pion and a photon are in the air at the same time, as
in Fig. 3. While in flight between two nucleons, a charged
pion can exchange a photon with the third nucleon. The
photon couples either (i) to the charge of the nucleon and
the energy of the pion, which in the nuclear environment is
Q2/MN or (ii) through the momentum of the pion and the

FIG. 2. Subleading isospin-violating three-nucleon forces from
subleading interactions. The cross represents the pion-mass difference
[second term in Eq. (1)], and the circled cross stands for the subleading
isospin-violating seagull [third term in Eq. (1)]; a circle represents an
interaction from the subleading isospin-conserving Lagrangian.
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FIG. 3. Subleading isospin-violating
three-nucleon forces from pion-photon ex-
change. A wavy line represents a photon,
and a circle represents an interaction from
the gauging of the subleading isospin-
conserving Lagrangian.

magnetic moment of the nucleon, which is a 1/MN effect
contained in the subleading Lagrangian L(1). In addition, there
can be simultaneous emission of a photon and a charged pion
by one nucleon followed by their absorption on two other
nucleons. This can happen when the photon couples (i) to the
pion-nucleon vertex through the gauging of the axial-vector
coupling [third term in Eq. (2)], and to the nucleon magnetic
moment or (ii) to the nucleon charge, and to the pion-nucleon
vertex through the gauging of the relativistic correction to the
pion-nucleon coupling contained in the subleading Lagrangian
L(1). These mechanisms are formally n = 2 in power counting
(i.e., −1 + 3) and are suppressed by one power of Q/MN

compared to the CSB three-nucleon force we calculated above.
These three-nucleon forces therefore also correspond to � =
4. They break both charge independence and charge symmetry.
Notice that they are entirely determined by gauge and Galilean
invariance in terms of known parameters (the axial-vector
coupling of the pion, the pion charge, the nucleon charge
and magnetic moment, and the pion and nucleon masses).
Effects from integrated-out resonances (most importantly the
� isobar) only appear one order further up. A subset of these
EM effects has been calculated before [34–36].

We expect that these uncalculated parts of the CSB
force corresponding to higher orders in the power counting
contribute only a few keV or less, which is roughly the level
of uncertainty in the EM corrections discussed above.

IV. CONCLUSION

After discussing various charge-symmetry breaking mech-
anisms in nuclei, we derived the leading isospin-breaking

three-nucleon force in chiral perturbation theory without an
explicit � isobar, given by Eqs. (3) and (4). This force is
charge-symmetry breaking and appears formally at the same
order as the leading isospin-conserving three-nucleon force.
CSB could thus be a relatively large three-nucleon effect.
Its strength depends on δM

qm
N , the contribution from the

quark-mass difference to the nucleon-mass difference. We
therefore can directly tie QCD to a three-nucleon effect.
Unfortunately, the actual value of δM

qm
N has not yet been

determined in a model-independent way from low-energy data,
nor from lattice QCD.

We have also, for the first time, calculated the contribution
of this force to the 3He-3H binding-energy difference, given by
Eq. (5). Taking δM

qm
N = –2.5 MeV for illustration, we find that

5 keV can be attributed to this force. This value has the same
sign as the observed difference and is somewhat smaller in
magnitude than expected from naive dimensional analysis. As
a consequence, it does not upset the agreement between theory
and experiment when the uncertainty in two-body effects is
accounted for.
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Marcucci, S. Rosati, and M. Viviani, Phys. Rev. C 67, 034004
(2003).

[22] J. L. Friar, B. F. Gibson, and G. L. Payne, Phys. Rev. C 42, 1211
(1990).

[23] J. L. Friar, B. F. Gibson, and G. L. Payne, Phys. Rev. C 35,
1502 (1987). The finite size of the protons reduces the Coulomb
energy by about 30 keV, and this size was not accurately known
in 1987. Modification of the finite size would lead to a small
change in the Coulomb energy, but this would have to be
compensated by a corresponding change in the short-range pp
force in order to maintain the fit to the pp scattering data. It
is believed that such modifications would lead to no significant
problems in our understanding of CSB.
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