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Photoproduction of the �+ pentaquark in Feynman and Regge theories
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Photoproduction of the �+ pentaquark on the proton is analyzed by using isobar and Regge models. The
difference in the calculated total cross section is found to be more than two orders of magnitude for a hadronic
form-factor cutoff � > 1 GeV. Comparable results would be obtained for 0.6 � � � 0.8 GeV. The contribution of
the �+ photoproduction to the GDH integral is also calculated. By comparing with the current phenomenological
calculation, it is found that the GDH sum rule favors the result obtained from the Regge approach and isobar
model with small �.
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The observation of a narrow baryon state from the missing
mass spectrum of K+n and K+p with extracted mass M =
1540 MeV [1–5] has led to great excitement in the hadronic
and particle physics communities. This state is identified as
the �+ pentaquark that has been previously predicted in the
chiral soliton model [6]. Since then numerous investigations
on �+ production have been carried out. In general, these
efforts can be divided into two categories: investigations using
hadronic processes and those using electromagnetic processes.
Electromagnetic production (also known as photon-induced
production) is, however, well known as a “cleaner” process,
since the electromagnetic interaction can be easily controlled.
However, the photoproduction process provides an easier way
to “see” the �+, which contains an antiquark, since all required
constituents are already present in the initial state [7]. Other
processes, such as e+e− and p̄p annihilation, would produce
the strangeness-antistrangeness (and baryon-antibaryon in the
case of e+e−) from gluons, a consequence of the suppressed
cross section [8].

Several �+ photoproduction studies have been performed
by using isobar models with the Born approximation [9–16],
with resulting cross sections ranging from several nanobarns
to almost one micro barn, depending on the �+ width,
parity, hadronic form-factor cutoff, and the exchanged particles
used in the process. Those parameters are unfortunately still
uncertain at present. Furthermore, the lack of information
on coupling constants has severely restricted the number
of exchanged particles used in the process, and additional
information is needed on a number of resonances that have
been shown to play important roles at W around 2 GeV and
to determine the shape of cross sections of K� and K�

photoproduction [17].
Therefore, it is important to constrain the proliferation

of models by using all available information to achieve a
reliable cross-section prediction, which is urgently required
by present experiments. For this purpose the isobar and Regge
models are exploited using all available coupling constant
information. The use of the Regge model has a great advantage
since the number of uncertain parameters is much less than
those of the isobar model. From the experience in K� and
K� photoproduction, the Regge model works quite well
at high energies, despite its small number of parameters,

and the discrepancy with experimental data at the resonance
region is found to be less than 50% [18,19]. Given the high
threshold energy of this process (W ≈ 2 GeV) it is naturally
imperative to consider the Regge mechanism in the calculation.
As an example, a reggeized isobar model has been shown
to be quite successful in explaining experimental data of η

and η′ photoproduction up to the photon lab energy Elab
γ =

2 GeV [20].
In this paper I compare the cross sections obtained from

both models and investigate the effect of hadronic form-factor
cutoff (�) variation in the isobar model. To this end, I will
consider the positive parity of �+, since previous calculations
have found the cross section to be one tenth as large if one used
the negative parity state, and so concern with overprediction
of cross sections by isobar models is warranted. The primary
motivation is to investigate the effect of � variation and
compare the varied cross sections with that of the Regge
model. To further support the findings, the contribution of the
�+ photoproduction to the Gerasimov-Drell-Hearn (GDH)
integral from both models will be calculated. Since only the
proton GDH integral is relatively well understood [21], only
photoproduction on the proton,

γ (k) + p(p) −→ K̄0(q) + �+(p′),

will be calculated. In the isobar model the amplitudes are
obtained from a series of tree-level Feynman diagrams,
as shown in Fig. 1. They contain the p,�+,K∗, and K1

intermediate states. The neutral kaon K0 cannot contribute to
this process since a real photon cannot interact with a neutral
meson. The K∗ and K1 intermediate states are considered here,
since previous studies on K� and K� photoproduction have
proven their significant roles. The transition matrix for both
reactions can be decomposed into

Mfi = ū( p′)
4∑

i=1

AiMiu( p), (1)

where the gauge- and Lorentz-invariant matrices Mi are given
in, for example, Ref. [22]. In terms of the Mandelstam variables
s, u, and t, the functions Ai are given by
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where κp and κ� indicate the anomalous magnetic moments
of the proton and �, respectively, and M is taken to be 1 GeV
to make the coupling constants

G
V,T
K∗(K1)�N = g

V,T
K∗(K1)�N gK∗Kγ (6)

dimensionless.
The inclusion of hadronic form factors at hadronic vertices

is performed by utilizing the Haberzettl prescription [23]. The
form factors in this calculation are taken as

Fi(q
2) = �4

�4 + (
q2 − m2

i

)2 (7)

with q2 = s, u, t , and where i = p,�, K̄ , with � the cor-
responding cutoff. The form factor for non-gauge-invariant
terms F̃ (s, u, t) in Eq. (3) is chosen to satisfy crossing
symmetry and to avoid a pole in the amplitude [24].

The coupling constant gK�N is calculated from the decay
width of the �+ → K+n by using

� = g2
K−�+n

4π

En − mn

m�

p, (8)

with

p =
[{

m2
� − (mK + mn)2

} {
m2

� − (mn − mK )2
}]1/2

2m�

.

(9)
The precise measurement of the decay width is still lacking
because of the experimental resolution. The reported width is
in the range of 6–25 MeV [1–5,25,26]. Theoretical analyses
of K+N data result in � � 1 MeV [27], whereas the Particle
Data Group [28,29] finds � = 0.9 ± 0.3 MeV. Based on this
information, a width of 1 MeV is used in the calculations that
follow. The isobar model is found to become insensitive to
the value of gK�N coupling constant, once the K∗ and K1

exchanges are included. Explicitly,

gK�N√
4π

= 0.39. (10)

The magnetic moment of �+ is also not well known. A recent
chiral soliton calculation [30] yields a value of µ� = 0.82µN ,
from which we obtain κ� = 0.35. As with the gK�N coupling
constant, the calculation is also insensitive to the numerical
value of the �+ magnetic moment, so that it is safe to use
this value. Note that the Regge model does not depend on this
coupling constant nor on the �+ magnetic moment.

The transition moment is related to the radiative decay
width by

�K∗→Kγ = α

24

(gK∗Kγ

M

)2
[
mK∗

(
1 − m2

K

m2
K∗

)]3

. (11)

The decay width for K∗0(892) is well known, that is [28],

�K∗0→K0γ = 116 ± 10 keV. (12)

Thus, we obtain gK∗0K0γ = −1.27, where we have used the
quark model prediction of Singer and Miller [31] to constrain
the relative sign.

The coupling constants gV
K∗�N and gT

K∗�N are also not
well known. Therefore, following Refs. [14,15] one can use
gV

K∗�N = 1.32 and neglect gT
K∗�N owing to lack of information

on this coupling. Combining the electromagnetic and hadronic
coupling constants gives

GV
K∗�N

4π
= 8.72 × 10−2. (13)
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Most previous calculations excluded the K1 exchange,
mainly because of the lack of information on the corresponding
coupling constants. Reference [15] used the vector dominance
relation gK1Kγ = egK1Kρ/fρ to determine the electromagnetic
coupling gK1Kγ , where f 2

ρ /4π = 2.9 and gK1Kρ = 12 is taken
from the effective Lagrangian calculation of Ref. [32]. As
in the case of K∗, the K1 hadronic tensor coupling will be
neglected in this calculation for the same reason. Following
Ref. [15], the K1 axial vector coupling gV

K1�N is estimated
from an isobar model for K+� photoproduction by using
the extracted GV

K∗�N/GV
K1�N ratio. However, instead of using

the result of the WJC model [33], the extracted ratio found
in Ref. [17] can be exploited. There are two models given
in Ref. [17], that is, a model with and a model without the
missing resonance D13(1895), which give a ratio of −0.24
and −8.25, respectively. Incidentally, Ref. [33] gives a ratio of
−8.26, that is, similar to the model without missing resonance.
The calculation here will use this ratio and exclude the result
from the model with missing resonance, since the latter leads
to a divergence contribution to the GDH sum rule, as will be
described later. In summary, the calculation uses

GV
K1�N

4π
= −7.64 × 10−3. (14)

The cross section can be easily calculated from the functions
Ai given by Eqs. (2)–(5) [34].

For the Regge model one should only use the last two
diagrams in Fig. 1. Hence, the result from the Regge model
will not depend on the value of gK�N or on the �+ magnetic
moment. The procedure is adopted from Ref. [18]; that is, one
replaces the Feynman propagator with the Regge propagator

PRegge = sαKi (t)−1

sin[παKi (t)]
e−iπαKi (t) πα′

Ki

�[παKi (t)]
, (15)

where Ki refers to K∗ and K1, and αKi (t) = α0 + α′ t denotes
the corresponding trajectory [18]. Note that Ref. [18] used
form factors for extending the model to larger momentum
transfer (“hard” process region). Here these form factors
are not used since the corresponding cross sections at this
region are already quite small and, therefore, will not strongly
influence the result of our calculation. We also note that
systematic analyses of experimental data on ρ, ω, and J/�

photoproduction explicitly require hadronic form factors [35].
In both models, however, one can also calculate the spin-

dependent total cross sections

σT = σ3/2 + σ1/2

2
and σTT′ = σ3/2 − σ1/2

2
, (16)

where the latter is of special interest since it can be related
to the proton anomalous magnetic moment κp using the GDH
sum rule

−2π2ακ2
p

m2
p

=
∫ ∞

0

dν

ν
[σ1/2(ν) − σ3/2(ν)] ≡ IGDH, (17)

with ν = Elab
γ and where σ1/2 (σ3/2) represents the cross

section for possible proton and photon spin combinations
with a total spin of 1/2 (3/2). Thus, one can calculate the
contribution of the �+ photoproduction to the GDH integral
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FIG. 2. Total cross sections σT and −σTT′ of the isobar and Regge
models. In the isobar model, variation of the total cross section for
different hadronic form-factor cutoffs is shown.

IGDH defined by Eq. (17). Note that in deriving Eq. (17) it has
been assumed that the scattering amplitude goes to zero in the
limit of |ν| → ∞ [36].

The result of this calculation is depicted in Fig. 2, where
the total cross section obtained from the isobar model with
different hadronic cutoffs and that from the Regge model are
compared. Obviously, the hadronic cutoff strongly controls the
magnitude of the cross section in the isobar model. By varying
� from 0.6 to 1.2, both total cross sections increase by two
orders of magnitude, whereas their shapes remain stable and
tend to saturate at high energies. In the Regge model, both
σT and −σTT′ steeply rise to maximum at W around 2.2 GeV
and monotonically decrease after that. Regge cross sections
are clearly more convergent than isobar ones. From threshold
up to W = 3 GeV, the cross-section magnitude of the Regge
model falls between the results obtained from the isobar model
with � = 0.6 and 0.8 GeV. Starting from W = 3 GeV, the
magnitude becomes smaller than the result from the isobar
model with � = 0.6 GeV. Thus, future calculation should
consider the hadronic cutoff in the range of 0.6–0.8 GeV.

The contribution from the pentaquark photoproduction
to the GDH integral is shown in Fig. 3, where the result
from isobar and Regge models is compared as in Fig. 2.
Clearly, the contribution is positive and small [note that direct
calculation of the left-hand side of Eq. (17) gives −205µb].
Nevertheless, the positive contribution to IGDH invites an
interesting discussion if we consider the current knowledge of
the GDH individual contribution on the proton. By summing
up contributions from π, η, ππ , and K photoproduction,
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FIG. 3. Contribution of the �+ photoproduction to the GDH
integral of the proton for isobar (with different hadronic form-factor
cutoffs) and Regge models.

including the contribution from the higher energy part,
Ref. [21] found IGDH = −202 µb. Recent calculations of
vector meson (ω, ρ0, and ρ+) contributions [16] indicate that
their total contribution is also small (+0.26 µb). From this
point of view, a negative (or positive but small) contribution
is more likely. In other words, the prediction from the Regge
model is more desired than those of the isobar model with
� � 0.8 GeV.

As previously mentioned, the isobar model that includes
the missing resonance [17] yields a ratio of GV

K∗�N/GV
K1�N =

−0.24. Using this ratio, the predicted −σTT′ flips to negative
values at W around 3 GeV and starts to diverge from that point.
This behavior merely emphasizes that certain mechanisms
(such as resonance exchange) are missing in the process.
Therefore, the calculation here does not use this ratio.

A recent isobar calculation for K+� photoproduction [37]
claimed that a soft hadronic form factor (small �) is not
desired by field theory. A harder form factor is achieved by
including some u-channel resonances in the model. However,
the authors do not build an explicit relation of this statement
with the field theory. At tree level the extracted coupling
constants are assumed to effectively absorb some important
ingredients in the process, such as rescattering terms and higher
order corrections, which are clearly beyond the scope of an
isobar model. Therefore, the constants cannot be separated
from the form factors. Together, they define the effective
coupling constants. Hence, it is hard to say whether at tree
level an isobar model should simultaneously produce SU(3)
coupling constants and large cutoffs, that is, weak suppression
on the divergent Born terms. A careful examination of the
u-channel resonance coupling constants reveals relatively large
corresponding error bars, which indicates that the inclusion of
these resonances is trivial [38].

The predicted differential cross sections are shown in
Figs. 4 and 5. The result shown in Fig. 4 is obtained by using
� = 1 GeV. By varying the � value, only the magnitude of the
cross section changes, whereas its shape with respect to W and
cos θ remains stable. Thus, the difference between isobar and
Regge models is quite apparent in these figures. The isobar
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FIG. 4. Differential cross section for �+ photoproduction on the
proton as functions of cos θ and W from the isobar model obtained
with � = 1 GeV. The same pattern, but with a magnitude 20 times
smaller, would be obtained if one used � = 0.6 GeV.

model limits measurements only at 0 � cos θ � 0.5, whereas
the Regge model allows for a complete angular distribution
of differential cross section at energies between threshold and
2.5 GeV. At smaller cos θ the cross section increases with W
and becomes constant for W > 3.5 GeV, in contrast to the
prediction from the isobar model, in which the cross section
sharply increases as a function of W. Future experimental
measurements at JLab, SPRING-8, or ELSA will certainly
be able to settle this problem.

In conclusion, �+ photoproduction has been simultane-
ously investigated by using isobar and Regge models. A
comparable result is achieved if one uses a hadronic cutoff
between 0.6 and 0.8 GeV. This result indicates that previous
calculations that used a harder hadronic form factor are
probably overestimates. By calculating the contribution to the
GDH integral it is found that the Regge model and isobar
model with � � 0.6 GeV are favorable.

This work has been supported in part by the QUE (Quality
for Undergraduate Education) project.
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