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Virtual photon asymmetry for confined, interacting Dirac particles with spin symmetry
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We study the Bjorken x dependence of the virtual photon spin asymmetry in polarized deep inelastic scattering
of electrons from hadrons. We use an exactly solved relativistic potential model of the hadron, treating the
constituents as independent massless Dirac particles bound to an infinitely massive force center. The potential is
chosen to have spin symmetry and a linear radial dependence with spherical symmetry. The effect of interactions
of the struck constituent with the remainder of the target on the longitudinal photon asymmetry is demonstrated.
In particular, the small-x suppression of the photon asymmetry observed in polarized deep inelastic scattering
from the proton is shown to be a consequence of these interactions. The effect of p-wave components of the Dirac
wave function, long known to give an important contribution to the spin of hadrons, is explicitly demonstrated
through their interference with the s-wave term.
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I. INTRODUCTION

The spin dependent structure functions measured in deep
inelastic scattering (DIS) of electrons from nucleons have
recently been measured to high precision [1–3]. Calculations
of the polarized structure functions have been performed in an
array of models [4–11].

The spin symmetry [12,13] and the closely related pseu-
dospin symmetry have been exploited to explain approximate
degeneracies in nuclear [14] and hadronic [15] spectroscopy.
In this communication we calculate the virtual photon longitu-
dinal spin asymmetry [16] using a model with spin symmetry
[17]. The present work demonstrates the effect of including
interactions among the constituents of the composite hadronic
target on physical observables. This exact calculation allows
us to make unambiguous statements regarding the effects of
interactions within the model and the validity of commonly
used approximations.

The model of Ref. [17] is a quantum mechanical model for
a single massless Dirac particle confined by a linear potential,
assumed valid for all radii. It neglects the effects of qq̄

pairs. The gluons are imagined to have been integrated out,
resulting in the confining potential via a flux tube. Ignoring
radiative gluon corrections should not be an impediment in
the calculation of the spin asymmetry, observed in polarized
electron scattering experiments to be nearly independent of
Q2. The potential is assumed to be one-half vector plus
one-half scalar and therefore enjoys the spin symmetry [15].
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At small radii the potential is nearly zero and so, for a given
resonance, displays asymptotic freedom.

Previous calculations of inclusive unpolarized and polar-
ized structure functions performed within the cavity approx-
imation to the bag model neglect the role of a confining
interaction. The naive bag model assumes that the constituents
of the hadron are free inside the bag; confinement only restricts
the momentum of the constituents. It is interesting to study
the consequences of a confining interaction which takes the
constituent off the mass-shell in an exactly solvable model.

The present calculation is similar to the bag model cal-
culations in Refs. [6,7,18,19]. These works treat the struck
constituent as a free particle whose state is described by a
plane wave. Here we use an exactly solved single particle
relativistic potential model of the hadron. The eigenstates of
this Hamiltonian, which are four-component Dirac spinors,
describe the state of the struck constituent. Our model
calculation is exact and includes eigenstates with a maximum
excitation energy of about 10 GeV [17].

We compare the exact result to the plane wave impulse
approximation (PWIA) and find good agreement for the
longitudinal photon asymmetry A

q

1(ξ ) to a level of about ten
percent. The qualitative agreement of the exact calculation
with PWIA allows us to compare this calculation to a bag
model PWIA evaluation of the asymmetry. We attribute
differences between the asymmetries calculated in the present
model and the bag model to interactions.

Moreover, the present work shows the effect that interac-
tions have on the spin structure of hadrons within a relativistic
potential formalism. It has long been known that p-wave
components, which are necessary in the Dirac description of
confined particles, reduce the contribution of valence quarks
to the spin of the nucleon [4,18–23]. We emphasize the role
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of the (lower component) p-wave terms of the ground state
Dirac wave function in determining the x dependence of
the A

q

1(ξ ). The interference between the dominant s-wave
and the p-wave parts of the valence quark Dirac wave
function suppresses A

q

1(ξ ) at small values of ξ . This novel
observation demonstrates unambiguously an effect of treating
hadronic constituents as bound Dirac particles. It suggests that
interactions among the constituents reduce the contribution of
valence quarks to the spin of nucleons.

II. MODEL CALCULATION

We consider the calculation of the virtual photon spin
asymmetry in DIS of a charged leptonic probe from a hadronic
target within the model of Ref. [17]. The model Hamiltonian
is chosen as

H = α · p + 1 + β

2

√
σr, (1)

where α and β are Dirac matrices in the standard representation
[24]. It describes a massless Dirac particle in a linear
confining well. The half-vector plus half-scalar structure of
the confining potential is chosen for its spin symmetry [15]
wherein spin-orbit doublets are degenerate. Relatively small
spin-orbit splittings seen in meson spectra motivate this choice.
Computations are simple with this choice since the lower
components of the wave function are not coupled by the
potential. The value of the string tension

√
σ is assumed to

be 1 GeV/fm, as indicated by the slopes of baryon Regge
trajectories. In Ref. [17] all the eigenstates of this model
were obtained exactly for excitation energies up to ∼12 GeV.
The ground-state energy E0 for this string tension is 840 MeV.
The model may be viewed as a heavy-light meson, such as t̄u,
in the limit that the antiquark mass goes to infinity. However,
it retains only the confining part of the t̄u interaction modeled
by a flux tube.

The model neglects gluon and sea-quark contributions
to DIS as well as the quantum chromodynamics evolution.
However, the observed ratio of the spin structure function
g1(x) to F1(x), the unpolarized structure function, is relatively
independent of Q2 [16]. Our objective is to calculate the x
dependence of this ratio for the contribution of valence quarks
to DIS, and we hope that the model is useful in this context.
The utility of our potential model is limited, however, and we
note that it has known shortcomings. It cannot, for example,
reproduce the observed ratio of g

p

1 /gA [25].
The virtual photon asymmetry is defined as [16]

A1 =
σ 1

2
− σ 3

2

σ 1
2
+ σ 3

2

, (2)

with σ1/2 and σ3/2 the helicity cross sections for the target
angular momentum antiparallel and parallel to the photon
helicity, respectively. We may calculate the inclusive virtual
photon helicity cross sections in the rest frame of the target as

σ 1
2

= σM

∑
I

∣∣〈I |α+ei|q|z∣∣0,− 1
2

〉∣∣2
δ(EI − E0 − ν) (3)
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FIG. 1. Virtual photon helicity cross section of a confined
massless quark, modulo twice the Mott cross section, as a function
of ỹ. The dashed (σ1/2) and dashed-dotted (σ3/2) curves sum to the
unpolarized structure function (solid curve).

σ 3
2

= σM

∑
I

∣∣〈I |α+ei|q|z∣∣0,+ 1
2

〉∣∣2
δ(EI − E0 − ν), (4)

where |q| and ν are the momentum and energy transferred to
the target, σM is the Mott cross section; and we assume that the
virtual photon is in the ẑ direction. The ground states |0, jz =
±1/2〉 have the total angular momentum projection jz =
±1/2. The operator α+ corresponds to a virtual photon with
positive helicity, and |I 〉 are eigenstates of the Hamiltonian H
[Eq. (1)] with energies EI .

The calculation of the virtual photon helicity cross sections
proceeds in this model, without approximations, exactly as the
calculation of the unpolarized structure functions described
in Ref. [17]. When |q| is large, the σ/σM depend only on
ỹ = |q| − ν. Figure 1 shows the calculated σ1/2/(2σM ) and
σ3/2/(2σM ) plotted as a function of the scaling variable ỹ, and
their sum

F
q

1 (ỹ) = 1

2σM

(σ1/2 + σ3/2), (5)

the unpolarized structure function. The conventionally defined
Bjorken and Nachtmann scaling variables are related to ỹ by
[26]

x(Q2 → ∞) = ξ = − ỹ

MT

, (6)

where MT is the target mass. Thus small (large) negative ỹ

correspond to small (large) x. We note that the σ1/2(ỹ) and
σ3/2(ỹ) are not proportional, which implies that the A

q

1 of
a confined relativistic quark has a large ỹ or equivalently x

dependence.

III. RESULTS

The ground state |0, jz〉 of the confined quark has wave
function

�0,jz
(r) =

(
f0(r)Y0

1/2,jz
(r̂)

ig0(r)Y1
1/2,jz

(r̂)

)
, (7)
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FIG. 2. Interference effects in jz = − 1
2 (σ1/2) structure function.

The dashed lines give the contributions of the s and p waves alone;
the dotted line shows their incoherent sum; and the solid line is the
exact result.

where f0(r) and g0(r) are the radial functions for the s and
p waves, respectively, and Y�

j,jz are the spin-angle functions
obtained by coupling spin-1/2 and orbital angular
momentum � to j = 1/2.

The interference in the DIS between the s and p waves
contributes significantly to the ỹ dependence of the σ1/2

helicity cross section, A
q

1 and F
q

1 . The effect of interference
is shown in Fig. 2, where we compare the polarized cross
section σ1/2 including interference terms (solid curve) with the
polarized cross section neglecting interference terms (dotted
curve). Also shown are the polarized cross sections obtained
after keeping only the s or p waves in the jz = −1/2 target.
We note that the interference shifts σ1/2 to more negative
ỹ corresponding to larger values of ξ . Only the p waves
contribute to σ3/2, shown in Fig.1.

The virtual photon asymmetry is given in terms of the spin
dependent structure functions g1 and g2 [16] by

A1 = g1 − γ 2g2

F1
≈ g1

F1
, (8)

where γ 2 = 4M2
T x2/Q2, in the scaling regime Q2 → ∞. As

mentioned above, the observed A1 of the proton, Ap

1 , is nearly
independent of Q2 and is used to extract values of g

p

1 /F
p

1 [16].
Using the structure functions given in Fig. 1 we can easily

calculate the virtual photon asymmetry A
q

1 , or equivalently the
ratio g

q

1 /F
q

1 , for a single confined quark, as a function of ỹ.
In order to compare it with the data on protons, we have to
convert it to a function of ξ by providing a mass scale MT (see
Eq. (6)). Our model target has infinite mass associated with
the center of the confining potential. However, that mass is
not relevant since only the confined quark contributes to DIS.
We use MT = 2.5 GeV ∼ 3E0, where E0 is the energy of a
single confined quark in the ground state. With this choice the
F

q

1 (ξ ) becomes small at ξ ∼ 0.8 as in the proton. The fact that
the model target has infinite mass means that response can be
nonzero, in principle, at arbitrarily large values of ξ > 0. In
fact, the calculated structure functions shown in Figs.1 and 2
are very close to zero at ỹ = −2000 MeV corresponding to
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FIG. 3. The g
q

1 /F
q

1 for a single massless quark confined by a flux
tube, as a function of the Nachtmann ξ = (|q| − ν)/MT with and
without interference terms (see text) and compared to PWIA. The
curves are valid for ξ <∼ 0.8.

ξ ≈ 0.8. Nevertheless, the present model should not be used
for values of ξ >∼ 0.8.

The solid curve in Fig. 3 shows the A
q

1(ξ ), or equivalently,
g

q

1 (ξ )/F q

1 (ξ ) of a confined quark. The calculated ratio goes to
zero at small ξ , and this behavior is independent of the chosen
value of MT . The dip at ξ = 0 is due to the shift of σ1/2 to
larger values of ξ , produced by the interference effect shown
in Fig. 2. When the interference terms are omitted we obtain
the dashed curve in Fig. 3, which has g

q

1 /F
q

1 ∼ 0.6 at ξ = 0.
Alternatively, we could have chosen the string tension

√
σ

such that 3E0 = MN , the nucleon mass. However, since
√

σ

provides the only mass scale in the Hamiltonian H [Eq. (1)],
A

q

1(ξ ) is independent of this choice.
Let us compare the exact calculation of A

q

1(ξ ) to that
obtained in the plane wave impulse approximation (PWIA).
We replace the final state 〈I | in Eqs. (3) and (4) with a positive
energy plane wave 〈uk+q,s | with momentum k + q and spin
projection s and replace the energy of the struck constituent
by that of a free particle: EI → |k + q| + 〈V 〉0; here 〈V 〉0

is the expectation value of the potential in the ground state,
chosen to reproduce the first moment of the exact result. We
may simplify the resulting expression for 
σ = σ1/2 − σ3/2

in PWIA using the Dirac equation,

f ′
0(r) = E0g0(r) (9)

g′
0(r) + 2

r
g0(r) = −[E0 − √

σr]f0(r), (10)

for the ground state. Note the simplicity of Eq. (9) owing to the
form of the Dirac structure of the potential in Eq. (1) required
by spin symmetry. In PWIA we obtain


σ = σM

2

{[
1

2

(
1 + 4ỹ2

E2
0

)] ∫ ∞

0
dk⊥k⊥|f̃0(k̄)|2

− 1

E2
0

∫ ∞

0
dk⊥k⊥k̄2|f̃0(k̄)|2

}
, (11)
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FIG. 4. The A
q

1 in the linear confinement model (solid curve) and
in the cavity approximation to the bag model (dashed curve) versus
the dimensionless variable ξ described in the text.

where k̄ =
√

k2
⊥ + (E0/2 + ỹ)2 and we have used the fact that

〈V 〉0 = E0/2 [17]. The PWIA for A
q

1(ξ ) is shown as a dot-
dash curve in Fig. 3. The final state interactions (FSI) do not
change the qualitative behavior of A

q

1(ξ ) in the present model;
however, they contribute to its suppression at small ξ .

We also compare the results of the present model with
those of the cavity approximation to the bag model [23,27].
We neglect FSI in the bag model and compare the results for
A

q

1 within PWIA. The bag model wave function has the same
form as Eq. (7) with the radial functions f0(r) = n0j0(pr)
and g0(r) =−n0j1(pr), where n0 is a normalization factor
and j� are the spherical Bessel functions. The value of p, the
momentum of the confined constituent in a cavity of radius R,
is fixed by a boundary condition and has the numerical value
pR ≈ 2.04. We choose the cavity radius R = 0.65 fm, the rms
radius of the ground state in the present model. The results are
shown in Fig. 4, where the asymmetries for the linear confining
model and the bag model are plotted versus ξ = −ỹ/E0, where
E0 is the ground state energy of the constituent and takes
on the value 0.84 GeV in the linear confinement model and

0.62 GeV in the bag model. The photon point ξ = 0 is, of
course, scale invariant and independent of whatever mass scale
one uses to obtain a dimensionless ξ .

The experimentally observed suppression of the spin
asymmetry in the proton at small values of Bjorken x (or ξ ) is
seen in the linear confinement model but not in the bag model.
Note that although the bag model has similar interference terms
of the upper (s-wave) and lower ( p-wave) terms of the wave
function, these terms do not lead to a suppression at small
values of ξ of A

q

1(ξ ). The present model demonstrates that the
p waves give rise to a dynamical suppression of the helicity
distribution at small x when interactions are taken into account.
It is, of course, possible to obtain the suppression at small ξ in
the bag model by taking into account spin and flavor dependent
quark interactions [28]. We obtain this suppression naturally
as a consequence of the Dirac character of the interacting
constituent.

IV. CONCLUSION

In conclusion, the present work suggests that the ξ depen-
dence of A

p

1 (ξ ) is a consequence of the interactions among the
relativistic fermionic constituents. The p waves in bound quark
wave functions interfere with the dominant s waves to suppress
A

q

1(ξ ) at small ξ when the flux tube model for confinement is
used. Although these interference terms are also present in the
bag model they do not lead to a suppression of A

q

1 at small ξ .
Our model is certainly too simple; it approximates the

problem of three interacting quarks by a relativistic one-quark
problem. Nevertheless p waves occur very naturally in the
wave functions of spin-half relativistic particles, and their
effect will presumably exist in more refined treatments of spin
asymmetries.
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