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Screening of a moving parton in the quark-gluon plasma
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The screening potential of a parton moving through a quark-gluon plasma is calculated using semiclassical
transport theory. An anisotropic potential showing a minimum in the direction of the parton velocity is found. As
consequences possible new bound states in the quark-gluon plasma and J/ψ dissociation are discussed.
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Screening of charges in a plasma is one of the most
important collective effects in plasma physics. In the classical
limit in an isotropic and homogeneous plasma the screening
potential of a pointlike test charge Q at rest can be derived from
the linearized Poisson equation, resulting in Debye screening.
In this way the Coulomb potential of a charge in the plasma is
modified into a Debye-Hückel or Yukawa potential [1]

φ(r) = Q

r
exp(−mDr) (1)

with the Debye mass (inverse screening length) mD (h̄ = c =
kB = 1).

A special kind of plasma is the so-called quark-gluon
plasma (QGP), where the electric charges in a plasma are
replaced by the color charges of quarks and gluons, mediating
the strong interactions among them. Such a state of matter is
expected to exist at extreme temperatures, above 150 MeV,
or densities, above about 10 times nuclear density. These
conditions could be fulfilled in the early universe for the first
few microseconds or in the interior of neutron stars. In ac-
celerator experiments high-energy nucleus-nucleus collisions
are used to search for the QGP. These collisions create a
hot and dense fireball, which might consist of a QGP in an
early stage (less than about 10 fm/c) [2]. Since the masses
of the lightest quarks and of the actually massless gluons are
much less than the temperature of the system, the QGP is an
ultrarelativistic plasma. To achieve a theoretical understanding
of the QGP, methods from quantum field theory (QCD) at
finite temperature are adopted [3]. Perturbative QCD should
work at high temperatures far above the phase transition
where the interaction between the quarks and gluons becomes
weak owing to a specific property of QCD called asymptotic
freedom. An important quantity that can be derived in this way
is the polarization tensor describing the behavior of interacting
gluons in the QGP. From the polarization tensor important
properties of the QGP such as the dispersion relation and
damping of the plasma modes or the Debye screening of color
charges in the QGP can be derived [4].

In the QGP the Debye mass of a chromoelectric charge
follows from the static limit of the longitudinal polarization
tensor in the high-temperature limit [4],

�00(ω = 0, k) = −m2
D = −g2T 2

(
1 + nf

6

)
, (2)

where g is the strong coupling constant and nf is the number
of light quark flavors in the QGP with mq � T .

The high-temperature limit of the polarization tensor
corresponds to the classical approximation. For instance, it
is closely related to the dielectric function following from
the semiclassical Vlasov equation describing a collisionless
plasma: The longitudinal dielectric function following from
the Vlasov equation is given by [5–7]

εl(ω, k) = 1 − �00(ω, k)

k2

= 1 + m2
D

k2

(
1 − ω

2k
ln

ω + k

ω − k

)
(3)

(where the only nonclassical inputs are Fermi and Bose
distributions instead of the Boltzmann distribution). Quantum
effects in the Debye mass have been considered using the hard-
thermal-loop resummation scheme [8], dimensional reduction
[9], and QCD lattice simulations [10]. The Debye mass and
polarization tensor have also been computed in the case of an
anisotropic QGP [11–13].

The modification of the confinement potential below the
critical temperature into a Yukawa potential above the critical
temperature might have important consequences for the dis-
covery of the QGP in relativistic heavy-ion collisions. Bound
states of heavy quarks, in particular the J/ψ meson, which
are produced in the initial hard scattering processes of the
collision, will be dissociated in the QGP due to screening of the
quark potential and breakup by energetic gluons [14]. Hence,
the suppression of J/ψ mesons has been proposed as one of
the most promising signatures for QGP formation [15]. Indeed,
a suppression of J/ψ mesons has been observed experimen-
tally [16] and can be interpreted as a strong indication for QGP
formation in relativistic heavy-ion collisions [17].

In most calculations of the screening potential in the QGP
so far, it was assumed that the test charge is at rest. However,
quarks and gluons coming from initial hard processes receive
a transverse momentum that causes them to propagate through
the QGP [18]. In addition, hydrodynamical models predict a
radial outward flow in the fireball [19]. Hence, it is of great
interest to estimate the screening potential of a parton moving
relatively to the QGP. Chu and Matsui [20] have used the
Vlasov equation to investigate dynamic Debye screening for a
heavy quark-antiquark pair traversing a quark-gluon plasma.
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They found that the screening potential becomes strongly
anisotropic.

In the case of a nonrelativistic plasma the screening
potential of a moving charge Q with velocity v follows from
the linearized Vlasov and Poisson equations as [21,22]

φ(�r, t ; �v) = Q

2π2

∫
d3k

exp[−i�k · (�r − �vt)]

k2 Re[εl(ω = �k · �v, k)]
. (4)

It is easy to show that this expression reduces to the Yukawa
potential in the case of small velocities, v = |�v | � vth, where
vth is the thermal velocity of the plasma particles. In the
opposite case, v � vth, the Coulomb potential is recovered
since a screening charge cloud cannot be formed for fast
particles.

Equation (4) also holds in the case of a relativistic plasma.
We only have to use the relativistic expression (3) for the
longitudinal dielectric function. For small velocities (v → 0,
i.e., ω � k) we obtain

εl(ω � k) = 1 + m2
D

k2
, (5)

from which again the (shifted) Yukawa potential results [22]:

φ(�r, t ; �v) = Q

|�r − �vt | exp(−mD|�r − �vt |). (6)

It should be noted that the opposite limit, v � vth, leading
to a Coulomb potential in the nonrelativistic case, cannot
be realized in an ultrarelativistic plasma because the thermal
velocity of the plasma particles is given by the speed of light,
vth = c = 1.

In the general case, for parton velocities v between 0 and 1,
we have to solve (4) together with (3) numerically. Since the
potential is no longer isotropic because of the velocity vector �v,
we will restrict ourselves only to two cases, �r parallel to �v and
�r perpendicular to �v; that is, for illustration we consider the
screening potential only in the direction of the moving parton
or perpendicular to it.

In Fig. 1 the screening potential φ/Q in the �v-direction is
shown as a function of r ′ = r − vt , where r = |�r|, between
0 and 6 fm for various velocities. For illustration we have
chosen a strong fine structure constant αs = g2/(4π ) = 0.3, a
temperature T = 0.25 GeV, and the number of quark flavors
nf = 2. The shifted potentials depend only on v and not on t ,
as should be the case in a homogeneous and isotropic plasma.
For r ′ < 1 fm one observes that the falloff of the potential
is stronger than for a parton at rest. This behavior is due to
the stronger screening in the direction of the moving parton
caused by an enhancement of the particle density in the rest
frame of the moving parton.

In addition, a minimum in the screening potential at r ′ >

1 fm shows up. For example, for v = 0.8 this minimum is at
about 1.5 fm with a depth of about 8 MeV. The occurrence of a
minimum in the potential in the direction of the velocity is also
observed in so-called complex plasmas. Complex plasmas are
classical, low-temperature plasmas containing particles with a
diameter of a few microns [23]. These particles are charged
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FIG. 1. Screening potential parallel to the velocity of the moving
parton in a QGP as a function of r − vt (0 to 6 fm) for v = 0, 0.5,
and 0.8.

in the plasma by collecting electrons on their surface. In the
presence of an ion flow the positively charged ions are deflected
by the microparticles, leading to an anisotropic distortion of
the Debye sphere by an enhancement of the ion density in
front of the microparticles. This positive charge cloud leads to
an attraction between microparticles in the direction of the ion
flow and the formation of stringlike structures [24], which are
observed in experiments.

A minimum in the screening potential is also known from
nonrelativistic, complex plasmas, where an attractive potential
even between equal charges can be found if the finite extension
of the charges is considered [25]. A similar screening potential
was found for a color charge at rest in Ref. [26], where a
polarization tensor beyond the high-temperature limit was
used. However, this approach has its limitation because a
gauge-dependent and incomplete (within the order of the
coupling constant) approximation for the polarization tensor
was used [27]. Obviously, a minimum in the interparticle
potential in a relativistic or nonrelativistic plasma is a general
feature if one goes beyond the Debye-Hückel approximation
by taking quantum effects, finite velocities, or finite sizes of
the particles into account.

Note that Chu and Matsui [20] did not report the existence
of a minimum in the potential of a quark traversing the QGP.
However, in their Fig. 1(d) a negative value of the potential
of a fast quark (v = 0.9) in the direction of the quark velocity
is shown. Since the potential has to tend to zero for large
distances, this implies a minimum in the screening potential.
This minimum was not found because the potential was plotted
only for the limited range 0 < r < 1/md � 0.35 fm for our
choice of the parameters.

017901-2



BRIEF REPORTS PHYSICAL REVIEW C 71, 017901 (2005)

The minimum could give rise to bound states (e.g., of
diquarks) if thermal fluctuations do not destroy them. The
two-body potential, associated with the dipole fields created
by two test charges Q1 and Q2 at �r1 and �r2 with velocities �v1

and �v2 can be written as

�(�r1 − �r2, �v1 − �v2, t)

= Q1Q2

4π2

∫
d3k

{
exp[i�k · (−(�r1 − �r2) − (�v1 − �v2)t)]

k2 Re[εl(ω = �k · �v1, k)]

+exp [i�k · ((�r1 − �r2) − (�v1 − �v2)t)]

k2Re[εl(ω = �k · �v2, k)]

}
. (7)

For comoving quarks (�v1 = �v2), this two-body potential
reduces to the one-body potential (4), showing the attraction
between the quarks that could give rise to a bound state.
Colored bound states (e.g., diquarks) of partons at rest have
also been claimed by analyzing lattice data [28]. For a quark-
antiquark system, where Q1Q2 < 0, the two-body potential is
inverted, showing a maximum. This may lead to short-lived
mesonic resonances and an enhancement of the attraction
between quarks and antiquarks of mesonic states moving
through the QGP.

The details of the potential (e.g., the depth of the minimum)
depend on the choice of the parameters, such as the coupling
constant. For a value αs = 0.3, as is typical for the tem-
perature reachable in heavy-ion collisions, the semiclassical
approach corresponding to the weak coupling limit might not
be reliable. Quantum effects and collisions among plasma
particles are important at those temperatures and will change
the dielectric functions and dispersion relations. Within the
transport theoretical approach collisions can be considered,
for example by using the relaxation-time approximation
[29].

Nonabelian effects (beyond color factors, e.g., in the
Debye mass) will be important at realistic temperatures.
Unfortunately they cannot be treated by the methods used here
and are therefore beyond the scope of this work. However,
as we have already discussed, in a complexplasma that is
also strongly coupled, as is also the case for the QGP close
to the critical temperature, there is an attraction among the
microparticles in the presence of an ion flow. This appears to
be a general feature of weakly as well as strongly coupled
plasmas. Therefore we do not expect a qualitative change
of the screening potential resulting from nonperturbative and
nonabelian effects.

The results for �r perpendicular to �v are shown in Fig. 2,
where the potential is shown as a function of |�r − �vt | =√

r2 + v2t2 between 0.1 and 1 fm. Here we consider only
the case t = 0 since at t > 0 and v > 0 there is no singularity
in the potential because

√
r2 + v2t2 > 0 for all r . Hence, the

potential is cut off artificially at small distances if plotted as a
function of

√
r2 + v2t2. In contrast to the parallel case (Fig. 1)

the fall off of the potential at larger values of v is not as steep;
that is, the screening is reduced as expected since the formation
of the screening cloud is suppressed at large velocities. Also
no minimum in the potential is found.

0

2

4

6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

φ(
r,

v,
t)

/Q
 [f

m
-1

]
(r2+v2t2)1/2  [fm]

v ⊥ r

FIG. 2. Screening potential perpendicular to the velocity of the
moving parton in a QGP as a function of |�r − �vt | (0.1 to 1 fm) for
v = 0, 0.5, and 0.8.

Summarizing, we have calculated the screening potential
of a color charge moving through the QGP from semiclassical
transport theory corresponding to the high-temperature limit.
As in Ref. [20] we obtained a strongly anisotropic screening
potential. The screening is reduced in the direction perpendic-
ular of the moving parton but increased in the direction of the
moving parton, which may lead to a modification of the J/ψ

suppression. In addition, we have found a new feature of the
screening potential of a fast parton in a QGP: the presence
of a minimum in the potential, which could give rise to
bound states of, for example, diquarks if it is not destroyed by
thermal fluctuations. For a quark-antiquark pair this minimum
turns into a maximum, which could cause short-lived mesonic
resonances. Combining the effect of reduced screening in the
perpendicular direction and the presence of a maximum in
the parallel direction we expect a stronger binding of moving
J/ψ mesons than of J/ψ mesons at rest with respect to the
QGP. The consequences, for example, for the J/ψ yield,
should be investigated in more detail using hydrodynamical
models or event generators for the space-time evolution of
the fireball. Finally, let us note that our results also apply
to other ultrarelativistic plasmas such as an electron-positron
plasma in supernova explosions. In this case one simply has
to replace the Debye mass mD by eT , where e is the electron
charge.
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