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Aspects of short-range correlations in a relativistic model
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In the present work short-range correlations are introduced for the first time in a relativistic approach to the
equation of state of the infinite nuclear matter in the framework of the Hartree-Fock approximation using an
effective Hamiltonian derived from the σ -ω Walecka model. The unitary correlation method is used to introduce
short-range correlations. The effect of the correlations in the ground state properties of the nuclear matter is
discussed.
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Nuclear physics is an effective theory of the nucleus
regarded as a system of nucleons. In this theory the essential
degrees of freedom are the center of mass coordinates of the
nucleons as well as their spins and isospins, the interactions
being expressed as nucleon-nucleon forces. It is usually ac-
cepted, however, that the nucleon-nucleon interaction becomes
strongly repulsive at short distances in the relative coordinate
of two nuclear particles. It is seen that the phase shifts for 1S0

and 3S1 are positive at low energies and become negative at
higher energies [1]. This indicates a repulsive core at short
distances and attraction at long distances. There have been
attempts to derive the nucleon-nucleon force using chiral
perturbation theory [2]. In this approach, one- and two-pion
exchange contributions are taken into account up to the third
chiral order. However, to reproduce the nucleon scattering
data and the D-wave phase shifts by this method, an ad hoc
contact interaction (which represents the short-range force)
must also be included. The realistic nucleon-nucleon forces
are basically phenomenological. The Bonn interactions [3] are
based on meson exchange treated in a relativistic nonlocal
manner. The Argonne interactions [4], on the other hand,
describe the pion exchange in a local approximation, the short-
and medium-range nuclear interactions being controlled by
phenomenological parameters.

Nonrelativistic calculations based on realistic NN potentials
predict equilibrium points that are not able to describe
simultaneously the correct binding energy and saturation
density; either the saturation density is correct but the binding
energy is too small, or the correct binding energy is obtained
at a too high density. This behavior is normally referred to
as “Coester line” [5]. This problem is generally circumvented
through the introduction of a three-body repulsive force [6]
or density-dependent repulsive mechanisms. A mechanism of
this kind is already present in relativistic models. Because
of Lorentz covariance and self-consistency, as the nuclear
density increases, the nucleon effective mass decreases. As
a result there is a reduction of the attractive force and a net
increase of the repulsive force. The relativistic mean field
(RMF) theory formulated by Teller and collaborators [7] and
by Walecka [8,9] is successful in describing both infinite
nuclear matter and finite nuclei. In fact, it has been shown
in [9] that important relativistic effects present in RMF theory
are equivalent to the inclusion of three-body or higher-order

repulsive potentials in nonrelativistic calculations. Moreover,
the relativistic Hartree-Fock (HF) approximation [10,11] has
also been used for the description of finite nuclei and infinite
nuclear matter.

In this paper, we focus on the treatment of short-range
correlations in dense nuclear matter using for the first time
relativistic equations of motion. Although there are several
procedures which may be used to introduce short-range
correlations into the model wave function, we preferred
to work with the unitary operator method as proposed by
Villars [12]. There are several advantages in using a unitary
model operator. In particular, one automatically guarantees
that the correlated state is normalized. Further, we shall see
that the calculation of correlation corrections to the matrix
elements of one- and two-body operators is a simple task.
The general idea has existed for a long time [13–15] but
has not been pursued for the relativistic case, because in
nonrelativistic models the interaction arises from the interplay
between a long-range attraction and a very strong short-range
repulsion so that, indeed, it is indispensable to take short-range
correlations into account. In RMF models, the parameters are
phenomenological, fitted to the saturation properties of nuclear
matter. Short-range correlation effects may be included to
some extent in the model parameters. We expect that the values
of these parameters are more fundamental, or less artificial,
when correlations are not neglected.

We start with the effective Hamiltonian as

H =
∫

ψ†
α(�x)(−i �α · �∇ + βM)αβψβ(�x) d �x

+ 1

2

∫
ψ†

α(�x)ψ†
γ (�y)Vαβ,γ δ(|�x − �y|)ψδ(�y)ψβ(�x) d �x d �y,

(1)

with

Vαβ,γ δ(r) = (β)αβ(β)γ δVσ (r) + (δαβδγ δ − �ααβ · �αγδ)Vω(r),

(2)

where

Vσ (r) = − g2
σ

4π

e−mσ r

r
, Vω(r) = g2

ω

4π

e−mωr

r
, (3)
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and �α are the Dirac matrices. In Eq. (1), ψ is the nucleon field
interacting through the scalar and vector potentials. The equal
time quantization condition for the nucleons is given by

[ψα(�x, t), ψβ(�y, t)†]+ = δαβδ(�x − �y), (4)

where α and β refer to the spin indices. We now also have the
field expansion for the nucleons ψ at time t = 0 given as [16]

ψ(�x) = 1√
V

∑
r,k

[
Ur (�k)cr,�k + Vr (−�k)c̃†

r,−�k
]
ei�k·�x, (5)

where Ur and Vr are given by

Ur (�k) =
(

cos χ (�k)
2

�σ · k̂ sin χ (�k)
2

)
ur ; Vr (−�k) =

(
−�σ · k̂ sin χ(�k)

2

cos χ(�k)
2

)
vr .

(6)
For free spinor fields, we have cos χ (�k) = M/ε(�k), sin χ (�k) =
|�k|/ε(�k) with ε(�k) =

√�k2 + M2. However, we will deal with
interacting fields so that we take the ansatz cos χ (�k) = M∗(�k)/

ε∗(�k), sin χ (�k) = |�k∗|/ε∗(�k), with ε∗(�k) =
√

�k∗2 + M∗2(�k),
where �k∗ and M∗(�k) are the effective momentum and ef-
fective mass respectively and χ (�k) will be determined
variationally. The equal time anticommutation conditions
are [cr,�k, c

†
s,�k′ ]+ = δrsδ�k,�k′ = [c̃r,�k, c̃

†
s,�k′ ]+. The vacuum |0〉 is

defined through cr,�k|0〉 = c̃
†
r,�k|0〉 = 0; one-particle states are

written |�k, r〉 = c
†
r,�k|0〉; two- and three-particle uncorrelated

states are written, respectively, as |�k, r; �k′, r ′〉 = c
†
r,�kc

†
r ′,�k′ |0〉,

and |�k, r; �k′, r ′; �k′′, r ′′〉 = c
†
r,�kc

†
r ′,�k′c

†
r ′′,�k′′ |0〉, and so on.

We now introduce short-range correlations through a
unitary operator method. The correlated wave function [17]
is |�〉 = eiS |�〉, where |�〉 is a Slater determinant and S

is, in general, an n-body Hermitian operator, splitting into
a two-body part, a three-body part, etc. Consider now the
expectation value of H ,

E = 〈�|H |�〉
〈�|�〉 = 〈�|e−iSHeiS |�〉

〈�|�〉 . (7)

We restrict ourselves to the two-body correlation diagrams
shown in Fig. 1. Let us denote the two-body correlated wave
function by

|�k, r; �k′, r ′〉 = eiS |�k, r; �k′, r ′〉 ≈ f12|�k, r; �k′, r ′〉, (8)

where f12 is the short-range correlation factor, the so-
called Jastrow factor [18]. For simplicity, we have written
f12 = f (�r12), �r12 = �r1 − �r2. We make the assumption that
f (r) = 1 − (α + βr)e−γ r where α, β, and γ are parameters.

At this point some remarks on the choice of the
Jastrow factor are appropriate. The important effect of the
short-range correlations is the replacement, in the expres-
sion for the ground state energy, of the interaction matrix

element 〈�k, r; �k′, r ′|V12|�k, r; �k′, r ′〉 by 〈�k, r; �k′, r ′|V12 + t1 +
t2|�k, r; �k′, r ′〉 − 〈�k, r; �k′, r ′|t1 + t2|�k, r; �k′, r ′〉, where ti is the
kinetic energy operator of particle i. As argued by Moszkowski
[19] and Bethe [20], it is expected that the true ground state
wave function of the nucleus containing correlations coincide
with the independent particle, or Hartree-Fock wave function,
for interparticle distances r � rheal, where rheal ≈ 1 fm is the
so-called healing distance. This behavior is a consequence
of the constraints imposed by the Pauli principle. Moreover,
although in general the correlation factor f (r) may depend
on the isospin and spin quantum numbers of the two-body
channel, we assume, for simplicity, that it is a plain, state-
independent, Jastrow factor. In the present calculation, we
are only studying the effect of correlations in the infinite
symmetric nuclear matter and we are not even taking into
account the contributions of the π and ρ mesons. This justifies
the simple form for f (r). A natural consequence of having the
correlations introduced by an unitary operator is the occurrence
of an normalization constraint on f (r),∫

[f 2(r) − 1] d3r = 0. (9)

The correlated ground-state energy becomes

E = ν

π2

∫ kF

0
k2 dk [|k| sin χ (k) + M cos χ (k)] + F̃σ (0)

2
ρ2

s + F̃ω(0)

2
ρ2

B + C0ρB

ν

π2

∫ kF

0
k2 dk [|k| sin χ (k) + M cos χ (k)]

− 4

(2π )4

∫ kf

0
k2 dk k′2 dk′{[|k| sin χ (k) + 2M cos χ (k)]I (k, k′) + |k| sin χ (k′)J (k, k′)}

+ 1

(2π )4

∫ kf

0
k dk k′dk′

[ ∑
i=σ,ω

Ai(k, k′) + cos χ (k) cos χ (k′)
∑

i=σ,ω

Bi(k, k′) + sin χ (k) sin χ (k′)
∑

i=σ,ω

Ci(k, k′)

]
, (10)

where C0 = ∫
[f 2(r) − 1] d3r so that, according to (9), C0 =

0, and Ai , Bi , Ci , I , and J are exchange integrals and ν is
the spin degeneracy factor. In the equation (10) for the energy
density, the first term results from the kinetic contributions,
the second and third terms come respectively from the σ and
ω direct contributions from the potential energy with correla-
tions, the fourth and fifth ones from the direct and exchange

correlation contributions from the kinetic energy, and the last
one from the σ + ω exchange contributions from the potential
energy with correlations. The angular integrals are given by

Ai(k, k′) = Bi(k, k′) = 2π
g2

i

4π

∫ π

0
d(cos θ )F̃i(k, k′, cos θ ),

Ci(k, k′) = 2π
g2

i

4π

∫ π

0
cos θ d(cos θ )F̃i(k, k′, cos θ ),
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FIG. 1. The kinetic and potential contributions to the two-body
cluster diagrams. Double lines represent two-body correlations.

I (k, k′) = 2π

∫ π

0
d(cos θ )C̃1(k, k′, cos θ ),

and

J (k, k′) = 2π

∫ π

0
cos θ d(cos θ )C̃1(k, k′, cos θ ),

where

F̃i(�k, �k′) = ∫
[f (r)Vi(r)f (r)]ei(�k−�k′)·�r d�r

and
C̃1(�k, �k′) = ∫

[f 2(r) − 1] ei(�k−�k′)·�r d�r.
(11)

More explicitly, the first terms of the above angle integrals
read for f (r) = 1

Aσ = g2
σ θσ , Bσ = g2

σ θσ , Cσ = −2g2
σφσ ,

Aω = 2g2
ωθω, Bω = −4g2

ωθω, Cω = −4g2
ωφω,

θi(p, p′) = log

(
(k + k′)2 + m2

i

(k − k′)2 + m2
i

)
,

φi(p, p′) = k2 + k′2 + m2
i

4kk′ θi(p, p′) − 1.

The baryon density and the scalar density are

ρB = 2ν

(2π )3

∫ kf

0
d�k = 2νk3

f

6π2
, ρs = 2ν

(2π )3

∫ kf

0
cos χ (�k) d�k.

(12)

The effective mass is given by

M∗ = M + F̃σ (0)ρs − 2 × 2M

(4π )2

∫
k′2 dk′I (k, k′)

+ 1

(4π )2k

∫
k′ dk′ cos χ (k′)

∑
i

Bi . (13)

The parameters of the model have to be fixed. They
are the couplings gσ , gω, the meson masses mσ and mω,
and three more parameters from the short-range correlation
function, α, β, and γ . The couplings are chosen to satisfy the
ground-state properties of the nuclear matter and are given in
Table I. We choose mσ = 550 MeV and take mω = 783 MeV.
The normalization condition (9) determines β. We fix α either
by imposing the condition f (0) = 0, which appears to be a
natural choice from our experience with the nonrelativistic
case, or by minimizing the energy. We choose γ so that the
correct healing distance [19] is reproduced. If α is chosen
to be 1, we assume a density-independent parameter γ equal
to 750 MeV (HF+corr-IV in Table I). On the other hand, if
we choose to determine α variationally, we assume that the
parameter γ increases linearly with the Fermi momentum.
The last choice is consistent with the idea that the healing
distance decreases as kF increases. Of course there are other
possible choices for these parameters. The parameters we
have used are tabulated in Table I together with the
compressibility K , the relative effective mass M∗/M , the
kinetic energy T /ρB − M , the direct and exchange parts
of the potential energy (Vd/ρB and Ve/ρB repectively)
with correlation, and the correlation contribution to the
kinetic energy T C/ρB , all computed at the saturation
point. We next compute the range of the correlations, ob-
viously related to the healing distance, also included in
Table I and defined as [20]

R2 =
∫
r2[f (r) − 1]2 d3r∫
[f (r) − 1]2 d3r

. (14)

In Fig. 2 we plot the binding energies as functions of the
density for the Hartree, HF, quark-meson-coupling (QMC)
model [21], a nonlinear Walecka model NL3 [22], and the
four choices of parameters in our calculation, as given in
Table I. From this figure one can see that in all cases the
inclusion of correlations makes the equation of state (EOS)

TABLE I. Model parameters and ground state properties of nuclear matter at saturation density. These results were obtained with fixed
M = 939 MeV, mσ = 550 MeV, and mω = 783 MeV at kF0 = 1.3 fm−1 with binding energy EB = ε/ρ − M = −15.75 MeV. We used
four choices of the parameters for the correlation: HF+corr-I corresponds to γ = 700 + 200kF /kF0 MeV; HF+corr-II to γ = 600 + 300kF /

kF0 MeV; HF+corr-III to γ = 600 + 400kF /kF0 MeV; and HF+corr-IV to α = 1 and γ = 750 MeV (fixed).

gσ gω α β γ R K M∗/M T /ρB − M Vd/ρB Ve/ρB T C/ρB

(MeV) (MeV) fm (MeV) (MeV) (MeV) (MeV) (MeV)

Hartree 11.079 13.806 540 0.540 8.11 −23.86
HF 10.432 12.223 585 0.515 5.87 −37.45 15.83
HF+corr-I 4.3852 2.5157 13.656 −2068.381 900 0.303 475. 0.602 15.58 −82.75 23.53 27.89
HF+corr-II 4.3852 2.5157 13.656 −2068.381 900 0.303 463. 0.602 15.58 −82.75 23.53 27.89
HF+corr-III 4.4559 2.6098 13.855 −2252.448 1000 0.275 429. 0.625 15.95 −73.12 20.46 19.96
HF+corr-IV 11.836 13.608 1.0 −244.678 750 0.318 573. 0.515 7.16 −45.17 17.94 4.31
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FIG. 2. EOS for different parametrizations as defined in Table I.

softer than the Hartree or HF calculations. NL3 and QMC also
provide softer EOS around nuclear matter saturation density,
but around two times saturation density, some of the EOS with
correlations are softer than NL3. Correlations always tend to
soften the EOS, except when α = 1 is fixed. In this case, the
EOS almost coincides with the curve obtained with the Hartree
calculation.

In Fig. 3 we plot the individual contributions to the energy
density as functions of density for the Hartree, HF, and
HF+correlations (set II). Notice that the correlation contribu-
tion is of the same order as the exchange contribution. Hence,
it cannot be disregarded. In fact if we compare the coupling
constants gσ and gω obtained for the different calculations,
we conclude that the introduction of the correlations reduces
the coupling constants. Correlation effects in the Hartree and
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FIG. 3. Individual contributions for the energy density.
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FIG. 4. Effective mass for different parametrizations as defined
in Table I.

HF calculations may be taken partially into account by a
correct choice of the coupling constants. However, the explicit
introduction of correlations has other effects such as softening
the EOS.

The effective mass as defined by Eq. (13) for k = kF

is plotted as a function of density in Fig. 4. While HF
reduces the Hartree effective mass for a given density, HF
with correlations gives higher values of the effective mass.
The parametrization chosen for γ determines the behavior: a
higher value of γ at densities ρ � ρ0 gives a softer EOS (Fig. 2)
and a larger effective mass. Mean field theory approaches with
low effective masses at saturation density have proved to be
inadequate if one wants to extend the model for high densities
with the inclusion of hyperons [23]. These extensions are
very important in nuclear astrophysics. Hence, approximations
that provide higher values of the effective mass at saturation
density can be very convenient in describing compact stellar
objects. Notice also that higher values of γ mean smaller
healing distances. In fact, at higher densities, the correlated
two-particle wave-function will not mix with Pauli blocked
states (below the Fermi level) only if γ is large enough.

In conclusion, we have included two-body correlations
in the σ -ω relativistic model. In the present approach, we
have negelected retardation effects, since we are just dealing
with a description of nuclear matter in equilibrium. We have
verified numerically that the contribution of retardation terms
in HF is negligible. The two-body correlation contribution
corresponds to an important amount of the energy density and
provides a softer EOS as compared with the HF approximation.
Furthermore, the effect of the correlations is similar to the
role played by the nonlinear terms in relativistic models
or the three-body forces in nonrelativistic potential models.
The inclusion of three-body correlations is currently under
investigation.
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