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New approach for calculating the dressed quark propagator at finite chemical potential
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A new method for obtaining the chemical potential dependence of the dressed quark propagator in the rainbow
approximation of the Dyson-Schwinger equation is developed. In the above approximation we prove that the
dressed quark propagator at finite chemical potential µ can be written as G−1

0 [µ] = iγ · p̃A(p̃2) + B(p̃2) with
p̃µ = ( �p, p4 + iµ). From this the chemical potential dependence of the “effective” two-quark condensate is
evaluated. A comparison with previous results is given.
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The quark propagator at finite chemical potential plays an
essential role in the study of chiral symmetry restoration and
quark deconfinement. Due to the well-known difficulties to
deal directly with finite density QCD, it is interesting to give a
general recipe to study the chemical potential dependence of
the dressed-quark propagator at nonzero chemical potential in
the framework of a suitable nonperturbative QCD model.

Because the global color symmetry model (GCM)
[1–3] provides a nonperturbative framework that admits the
simultaneous study of dynamical chiral symmetry breaking
and confinement, it is expected to be well suited to explore the
transition from hadronic matter to QGP [4]. It is the aim of
this article to study the chemical potential dependence of the
dressed-quark propagator in the framework of GCM, which
provides a means of determining the behavior of the chiral and
deconfinement order parameters. Up to this end let us start
from the Euclidean action of GCM at finite chemical potential
µ (in the case of the chiral limit):

SGCM[q̄, q; µ]

=
∫

d4x {q̄(x)[γ · ∂x − µγ4]q(x)}

+
∫

d4xd4y

[
g2

s

2
ja
µ(x)Dab

µν(x − y)jb
ν (y)

]
, (1)

where ja
µ(x) = q̄(x)γµ

λa
c

2 q(x) denotes the color octet vec-
tor current and g2

s D
ab
µν(x − y) is the dressed model gluon

propagator in GCM. For convenience, we employ a model
ansatz Dab

µν(x − y) = δµνδ
abD(x − y) for the gluon propaga-

tor, which is often referred to as the so-called “Feynman-like”
gauge propagator [1,2]. (It should be noted that the above
ansatz should be regarded merely as a model form for the
gluon two-point function.)

Introducing an auxiliary bilocal field Bθ (x, y) and applying
the standard bosonization procedure the partition function of
GCM [1,2]:

Z[µ] =
∫

Dq̄Dqe−SGCM[q̄,q;µ] (2)

can be rewritten in terms of the bilocal fields Bθ (x, y) as

follows:

Z[µ] =
∫

DBθe−Seff [Bθ ;µ] (3)

with the effective bosonic action as follows:

Seff[B
θ ; µ] = −Tr lnG−1[Bθ ; µ]

+
∫

d4xd4y
Bθ (x, y)Bθ (y, x)

2g2
s D(x − y)

(4)

and the quark operator as follows:

G−1[Bθ ; µ] = [γ · ∂x − µγ4]δ(x − y) + �θBθ (x, y), (5)

where the matrices �θ = Da ⊗ Cb ⊗ Fc are determined by
Fierz transformation in Dirac, color, and flavor spaces of the
current-current interaction in Eq. (1) (more detail can be found
in Refs. [1,2]).

In the mean-field approximation, the fields Bθ (x, y) are
substituted simply by their vacuum value Bθ

0 (x, y), which is
defined as δSeff

δB
|B0

= 0 and is given by the following:

Bθ
0 [µ](x, y) = g2

s D(x − y) tr[�θG0[µ](x, y)], (6)

where the notation tr includes trace over the Dirac, color, and
flavor indices and G−1

0 [µ](x, y) denotes the inverse propagator
with the self-energy �0[µ](x, y) = �θBθ

0 [µ](x, y) at the finite
chemical potential µ. Employing the stationary condition
Eq. (6), and reversing the Fierz transformation, we have the
following:

�0[µ](x, y) = 4

3
g2

s D(x − y)γνG0[µ](x, y)γν. (7)

In this case, Eq. (5) reduces to the following:

G−1
0 [µ](x, y) = [γ · ∂x − µγ4]δ(x − y) + �θBθ

0 [µ](x, y)

= [γ · ∂x − µγ4]δ(x − y)

+ 4

3
g2

s D(x − y)γνG0[µ](x, y)γν. (8)

Fourier transforming Eq. (8) leads to the momentum space
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form of G−1
0 [µ](p) as follows:

G−1
0 [µ](p) = iγ · p − µγ4 + 4

3

∫
d4q

(2π )4
g2

s

×D(p − q)γνG0[µ](q)γν. (9)

Here we want to stress that Eq. (9) (commonly referred to as
the “rainbow” approximation), which employs the bare quark-
gluon vertex and solves the Dyson-Schwinger equation for the
dressed quark propagator G0[µ](p) at finite chemical potential
with a given chemical potential independent gluon propagator
g2

s D(p) as input, is our starting point for studying the dressed
quark propagator at finite chemical potential in the framework
of GCM. Our main conclusion [see Eq. (33) below] derived
form Eq. (9) is valid only for the GCM model.

It should be noted that both Bθ
0 [µ](x, y) and G−1

0 [µ](x, y)
depend on the chemical potential µ. When the chemical
potential µ is switched off, G0[µ] and �0[µ] go into the usual
dressed quark propagator G ≡ G0[µ = 0] and self-energy,
which satisfy the following:

�(p) =
∫

d4xeip·x [
�θBθ

0 (x)
]

= 4

3

∫
d4q

(2π )4
g2

s D(p − q)γνG(q)γν

≡ iγ · p[A(p2) − 1] + B(p2) (10)

and

G−1(p) = iγ · p + 4

3

∫
d4q

(2π )4
g2

s D(p − q)γνG(q)γν,

(11)
where the self-energy functions A(p2) and B(p2) are deter-
mined by the rainbow Dyson-Schwinger equation (DSE) as
follows:

[A(p2) − 1]p2 = 8

3

∫
d4q

(2π )4
g2

s D(p − q)

× A(q2)p · q

q2A2(q2) + B2(q2)
,

B(p2) = 16

3

∫
d4q

(2π )4
g2

s D(p − q)

× B(q2)

q2A2(q2) + B2(q2)
. (12)

Here we want to stress that the B(p2) in Eq. (12) has
two qualitatively distinct solutions. The “Nambu-Goldstone”
solution, for which

B(p2) �= 0, (13)

describes a phase in which (a) chiral symmetry is dynamically
broken, because one has a nonzero quark mass function, and
(b) the dressed quarks are confined, because the propagator
described by these functions does not have a Lehmann
representation. The alternative “Wigner” solution, for which

B(p2) ≡ 0, (14)

describes a phase in which chiral symmetry is not broken and
the dressed quarks are not confined.

Let us now study the chemical potential dependence of the
dressed quark propagator. It is clear that the free inverse quark
propagator at finite chemical potential is obviously analytic in
µ and can be obtained from the free inverse quark propagator
at zero µ by the substitution p4 → p4 + iµ. In the case of
real QCD, we expect that the full inverse quark propagator
at finite chemical potential is also analytic in µ, at least for
small µ. This is supported by lattice study of finite-density
QCD. In fact, in the lattice treatment of finite-density QCD,
it is generally believed that physical quantities are analytic in
the neighborhood of µ = 0 and two kinds of methods, that is,
the Taylor expansion in powers of µ and analytic continuation
from simulations at imaginary µ are adopted [5–7]. Therefore,
we think it is interesting to assume the analyticity property of
the full inverse quark propagator at finite chemical potential in
a continuum nonperturbative QCD model such as GCM and
study its physical consequences. Under this assumption, one
can expand G−1

0 [µ](p) in powers of µ as follows:

G−1
0 [µ] = G−1

0 [µ]
∣∣
µ=0 + ∂G−1

0 [µ]

∂µ

∣∣∣∣∣
µ=0

µ

+ 1

2!

∂2G−1
0 [µ]

∂µ2

∣∣∣∣∣
µ=0

µ2 + · · ·

+ 1

n!

∂nG−1
0 [µ]

∂µn

∣∣∣∣∣
µ=0

µn + · · ·

= G−1 + 
(1)µ + 1

2!

(2)µ2 + · · ·

+ 1

n!

(n)µn + · · · , (15)

with 
(1)(p, 0), 
(2)(p, 0), and 
(n)(p, 0)


(1)(p, 0) = ∂G−1
0 [µ](p)

∂µ

∣∣∣∣∣
µ=0

, (16)


(2)(p, 0) = ∂2G−1
0 [µ](p)

∂µ2

∣∣∣∣∣
µ=0

, (17)


(n)(p, 0) = ∂nG−1
0 [µ](p)

∂µn

∣∣∣∣∣
µ=0

. (18)

It should be noted that Eq. (15) is valid only within the radius
of convergence of µ expansion. In addition, we stress here
that the model gluon propagator [see Eq. (9)] has no explicit
µ dependence, whereas the actual gluon propagator should be
µ dependent due to quark loop insertions. As such it may be
inadequate at large values of µ, particularly near any critical
chemical potential.

Applying the differential operation ∂/∂µ on both sides of
Eq. (9), we obtain the following:

∂G−1
0 [µ](p)

∂µ
= −γ4 + 4

3

∫
d4q

(2π )4
g2

s D(p − q)γν

×∂G0[µ](q)

∂µ
γν
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= −γ4 − 4

3

∫
d4q

(2π )4
g2

s D(p − q)γνG0[µ](q)

× ∂G−1
0 [µ](q)

∂µ
G0[µ](q)γν, (19)

where we have made use of the following identity:

∂G0[µ](q)

∂µ
= −G0[µ](q)

∂G−1
0 [µ](q)

∂µ
G0[µ](q). (20)

Setting µ = 0 in Eq. (19), we obtain the following integral
equation satisfied by 
(1)


(1)(p, 0) = −γ4 − 4

3

∫
d4q

(2π )4
g2

s D(p − q)

× γνG(q)
(1)(q, 0)G(q)γν. (21)

Similarly, applying the differential operation ∂/∂µ on
both sides of Eq. (19) successively (n-1)(n � 2) times and
subsequently setting µ = 0, we obtain the following:


(n)(p, 0) = ∂nG−1
0 [µ](p)

∂µn

∣∣∣∣∣
µ=0

= −4

3

∫
d4q

(2π )4
g2

s D(p − q)γν

{
∂n−1

∂µn−1

×
[
G0[µ](q)

∂G−1
0 [µ](q)

∂µ
G0[µ](q)

]}∣∣∣∣∣
µ=0

γν.

(22)

To write the integral equation satisfied by 
n(p, 0), one should
perform the differentiation operation in the expression as
follows:

∂n−1

∂µn−1

[
G0[µ](q)

∂G−1
0 [µ](q)

∂µ
G0[µ](q)

]
. (23)

For example, when n = 2, we have the following:

∂

∂µ

[
G0[µ](q)

∂G−1
0 [µ](q)

∂µ
G0[µ](q)

]

= G0[µ](q)

{
∂2G−1

0 [µ](q)

∂µ2
− 2

∂G−1
0 [µ](q)

∂µ
G0[µ](q)

× ∂G−1
0 [µ](q)

∂µ

}
G0[µ](q). (24)

Putting n = 2 in Eq. (22) and substituting Eq. (24) into
Eq. (22), we have the following integral equation for 
(2)(p, 0):


(2)(p, 0) = −4

3

∫
d4q

(2π )4
g2

s D(p − q)γµG(q)
(2)(q, 0)

×G(q)γµ + 8

3

∫
d4q

(2π )4
g2

s D(p − q)γµ

×G(q)
(1)(q, 0)G(q)
(1)(k, 0)G(q)γµ. (25)

Generally speaking there is no definite relation be-
tween 
(n)(p, 0)(n � 1) and the general vertex obtained by
differentiating the fermion propagator (the Ward identity).

However, as shown below, based on the rainbow approxi-
mation of Dyson-Schwinger [Eq. (9)] and the assumption
that the full inverse quark propagator is analytic in the
neighborhood of µ = 0, one can find a simple relation between

(n)(p, 0) and the general vertex. For n = 1 this relation reads

(1)(p, 0) = ∂G−1(p)

∂(−ip4) and we prove this specific case first.
Applying the differential operation ∂/∂(−ip4) on both sides

of Eq. (11), we obtain the following:

∂G−1(p)

∂(−ip4)
= −γ4 + 4

3

∫
d4q

(2π )4

∂

∂(−ip4)

[
g2

s D(p − q)
]

× γνG(q)γν

= −γ4 + 4

3

∫
d4q

(2π )4

{
∂

∂(iq4)

[
g2

s D(p − q)
]}

×γνG(q)γν

= −γ4 + 4

3

∫
d4q

(2π )4
g2

s D(p − q)γν

× ∂G(q)

∂(−iq4)
γν, (26)

where we have made use of integration by parts. By means of
the following identity:

∂G(q)

∂(−iq4)
= −G(q)

∂G−1(q)

∂(−iq4)
G(q),

Eq. (26) can be rewritten as follows:

∂G−1(p)

∂(−ip4)
= −γ4 − 4

3

∫
d4q

(2π )4
g2

s D(p − q)γνG(q)

× ∂G−1(q)

∂(−iq4)
G(q)γν, (27)

Comparing Eq. (21) with Eq. (27), it is easy to see that

(1)(p, 0) and ∂G−1(p)/∂(−ip4) satisfy the same equation.
This shows the following:


(1)(p, 0) ≡ ∂G−1(p)

∂(−ip4)
.

We recognize that this relation is the so-called vector “Ward
identity” [8,9].

Applying the differential operation ∂/∂(−ip4) on both sides
of Eq. (27) successively (n-1)(n � 2) times, we obtain the
following:

∂nG−1(p)

∂(−ip4)n
= −4

3

∫
d4q

(2π )4
g2

s D(p − q)γν

∂n−1

∂(−iq4)n−1

×
[
G(q)

∂G−1(q)

∂(−iq4)
G(q)

]
γν. (28)

Similarly, to get the integral equation satisfied by
∂nG−1(p)/∂(−ip4)n, one should perform the differentiation
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operation in the following expression:

∂n−1

∂(−iq4)n−1

[
G(q)

∂G−1(q)

∂(−iq4)
G(q)

]
. (29)

For example, when n = 2, we have the following:

∂

∂(−iq4)

[
G(q)

∂G−1(q)

∂(−iq4)
G(q)

]

= G(q)

{
∂2G−1(q)

∂(−iq4)2
− 2

∂G−1(q)

∂(−iq4)
G(q)

∂G−1(q)

∂(−iq4)

}
G(q).

(30)

Putting n = 2 in Eq. (28) and substituting Eq. (30) into
Eq. (28), we have the following:

∂2G−1(p)

∂(−ip4)2
= −4

3

∫
d4q

(2π )4
g2

s D(p − q)γνG(q)
∂2G−1(q)

∂(−iq4)2

×G(q)γν + 8

3

∫
d4q

(2π )4
g2

s D(p − q)γν

×G(q)
∂G−1(q)

∂(−iq4)
G(q)

∂G−1(q)

∂(−iq4)
G(q)γν. (31)

Comparing Eq. (31) with Eq. (25), it is easy to see that

(2)(p, 0) and ∂2G−1(p)/∂(−ip4)2 satisfy the same integral
equation [we have already proved 
(1)(p, 0) = ∂G(−1)(p)/
∂(−ip4)]. This shows the following:


(2)(p, 0) ≡ ∂2G−1(p)

∂(−ip4)2
.

Here the key point is that with the differentiation operations
being explicitly performed using the Leibniz rule Eq. (23) and
Eq. (29) have identical structures. Using this one can prove
inductively the following:


(n)(p, 0) ≡ ∂nG−1(p)

∂(−ip4)n
, n � 1. (32)

In fact, if it is proven that 
(m)(p, 0) = ∂mG(−1)(p)/∂(−ip4)m

for m � n − 1, then Eq. (22) and Eq. (28) tell us that

(n)(p, 0) and ∂nG(−1)(p)/∂(−ip4)n satisfy the same inte-
gral equation. From this one concludes that 
(n)(p, 0) =
∂nG(−1)(p)/∂(−ip4)n.

Based on Eq. (32) we can obtain the main conclusion in the
present work

G−1
0 [µ](p) = G−1(p) + 
(1)(p, 0)µ + 1

2!

(2)(p, 0)µ2 + · · ·

= G−1(p) + ∂G−1(p)

∂(−ip4)
µ + 1

2!

∂2G−1(p)

∂(−ip4)2
µ2 + · · ·

= G−1(p) + ∂G−1(p)

∂(p4)
iµ + 1

2!

∂2G−1(p)

∂(p4)2

× (iµ)2 + · · ·
= G−1( �p, p4 + iµ) ≡ G−1(p̃) = iγ · p̃A(p̃2)

+B(p̃2), (33)

where p̃ = ( �p, p4 + iµ). This shows that under the rainbow
approximation of the DS equation there are only two indepen-
dent Lorentz structures in the dressed quark propagator at a

finite chemical potential. This feature facilitates the numerical
calculations considerably.

Here we want to stressed that Eq. (33) only holds for the
GCM model and within the radius of convergence of the µ

expansion. In the case of real QCD, it should be noted that
both the dressed quark gluon vertex and the dressed gluon
propagator are chemical potential dependent. In this case,
Eq. (33) would fail. Nevertheless, due to the well-known
difficulties to deal directly with finite density QCD, we expect
that Eq. (33) derived from GCM model is a useful relation
for studying the dressed quark propagator at a finite chemical
potential.

To avoid the need for a numerical solution of Eq. (12), the
author in Ref. [10] provides the following algebraic forms as a
better approximation to the realistic numerical solutions of the
rainbow DS equation (more detail can be found in Ref. [10]):

σv(p2) = 1

2D


 − m̄Ce− p2

D

+
2D2

[
p2

D
+ 2m̄2 − 1 + e− p2+2Dm̄2

D

]
(p2 + 2Dm̄2)2


 ,

σs(p
2) = 1

(2D)
1
2


Ce− p2

D + 4D2

(
1 − e− b1p2

2D

)(
1 − e− b3p2

2D

)
b1b3p4

×
(

b0 + 2Db2
1 − e− �p2

2D

�p2

)
+ 2Dm̄2

p2 + 2Dm̄2

×
(

1 − e− p2+2Dm̄2

D

)
 , (34)

where

C = 0.0422, m̄ = 0.0111, � = 10−4,

b0 = 0.135, b1 = 2.48, b2 = 0.502, b3 = 0.168,

with

σv(p2) = A(p2)

p2A2(p2) + B2(p2)
,

σs(p
2) = B(p2)

p2A2(p2) + B2(p2)
.

Based on Eqs. (33) and (34), it is easy to obtain the self-energy
function of the dressed quark propagator at a finite chemical
potential.

Now let us turn to the study of the measure of the dynamical
chiral symmetry breaking in the case of nonzero chemical
potential. To get a reasonable result for the mixed quark-
gluon condensate and vacuum susceptibilities in an effective
quark-quark interaction model, the authors in Refs. [11,12]
defined the “effective” two-quark condensate as the difference
between the “exact” quark propagator (quark propagator in
the “Nambu-Goldstone” phase, in which chiral symmetry is
dynamically broken and the dressed quarks are confined) and
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µ

µ

FIG. 1. The ratio 〈0̃|q̄q|0̃〉µ/〈0̃|q̄q|0̃〉µ=0 as a function of µ.

the “perturbative” quark propagator (quark propagator in the
“Wigner” phase, in which chiral symmetry is not dynamically
broken and the dressed quarks are not confined). It can be
written as (in the chiral limit and at zero chemical potential):

〈0̃|q̄q|0̃〉µ=0

≡ −trDC

{
G(NG)

0 [µ = 0] − G(W )
0 [µ = 0]

}
. (35)

It should be noted that Eq. (35) is only valid in an effective
quark-quark interaction model (more details can be found in
Ref. [13]).

Here we extend the above concept to get a measure of
dynamical chiral symmetry breaking in the case of finite µ and
obtain the “effective” two-quark condensate with the nonzero

µ as follows:

〈0̃|q̄q|0̃〉µ ≡ −trDC

{
ReG(NG)

0 [µ] − ReG(W )
0 [µ]

}
= −12

∫
dp4

(2π )4
Re {σs(p̃)} . (36)

Substituting µ = 0 into Eq. (36), we have the usual
“effective” two-quark condensate in the chiral limit. The
calculated ratio 〈0̃|q̄q|0̃〉µ/〈0̃|q̄q|0̃〉µ=0 is plotted in Fig. 1.
In Fig. 1, we see that 〈0̃|q̄q|0̃〉µ/〈0̃|q̄q|0̃〉µ=0 increases with
increasing chemical potential µ. This result is a consequence
of the necessary momentum dependence of the dressed quark
self-energy [4,14–15].

To summarize, based on the rainbow approximation of
the Dyson-Schwinger equation and the assumption that the
full inverse quark propagator at finite chemical potential is
analytic in the neighborhood of µ = 0, we can prove that there
are only two independent Lorentz structures (instead of four,
which comes from general Lorentz structure analysis) in the
dressed-quark propagator at nonzero chemical potential and
the inverse dressed quark propagator at finite µ can be obtained
by making the substitution p4 → p4 + iµ in the dressed quark
propagator at µ = 0. This feature will considerably facilitate
the numerical calculations of the dressed quark propagator at
a finite chemical potential. From this the “effective” quark
condensates at nonzero chemical potential is analyzed.
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