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Unitary model for the γ p → γπ 0 p reaction and the magnetic dipole moment of the �+(1232)
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Radiative pion photoproduction in the �(1232)-resonance region is studied with the aim of accessing the
�+(1232) magnetic dipole moment. We present a unitary model of the γp → γπN (πN = π0p, π+n) reactions,
where the πN rescattering is included in an onshell approximation. In this model, the low-energy theorem which
couples the γp → γπN process in the limit of a soft final photon to the γp → πN process is exactly satisfied.
We study the sensitivity of the γp → γπ 0p process at higher values of the final photon energy to the �+(1232)
magnetic dipole moment. We compare our results with existing data and give predictions for forthcoming
measurements of angular and energy distributions. It is found that the photon asymmetry and a helicity cross
section are particularly sensitive to the �+ magnetic dipole moment.
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I. INTRODUCTION

The �(1232) is the first and most prominent excited state of
the nucleon and the only well isolated nucleon resonance. Its
properties provide an important test for theoretical descriptions
in the nonperturbative domain of Quantum Chromo Dynamics
(QCD). There are two kinds of electromagnetic properties of
the �. The first one involves the N → � transition, described
by the magnetic dipole (µN�) and electric quadrupole (QN�)
transition moments to be determined from pion electromag-
netic production [1,2]. The other properties involve the �

itself, the magnetic dipole moment µ�, the electric quadrupole
moment Q�, and the magnetic octupole moment of the
resonance. They are difficult to measure because of the short
lifetime of the �.

In particular, the magnetic dipole moment (MDM) of the
�(1232) is of considerable theoretical interest. In symmetric
SU(6) quark models, the nucleon and the � resonance are
degenerate and their magnetic moments are related through
µ� = e� µp, where e� is the electric charge of the �, and µp

is the proton magnetic moment. However, different theoretical
models predict considerable deviations from this SU(6) value
[3]. The �(1232) MDM has also been investigated on the
lattice at rather large quark masses [4], and very recently
the chiral extrapolation of the �(1232) MDM, including the
next-to-leading nonanalytic variation with the quark mass, was
also studied [5]. At present, there still is a considerably large
gap in quark mass to bridge between the state-of-the-art lattice
QCD calculations and the chiral limit. Therefore, it would
be extremely helpful to know the resonance MDM for the
physical quark mass values, through experiment. Unfortu-
nately, experimental information on the MDMs beyond the
ground state baryon octet is very scarce. With the notable
exception of the �− baryon, these higher nucleon resonances
decay strongly and thus have lifetimes too short to measure
their MDMs in the conventional way through spin precession
measurements.

The magnetic moment of the �++(1232) has been mea-
sured by the reaction π+p → γπ+p [6,7]. As a result of
these measurements, and using different theoretical analyses,
the PDG [8] quotes the range µ�++ = 3.7 − 7.5 µN (where
µN is the nuclear magneton), while SU(6) symmetry results
in the value µ�++ = 5.58 µN . The large uncertainty in the
extraction of the experimental value is due to large nonreso-
nant contributions to the π+p → γπ+p reaction because of
bremsstrahlung from the charged pion (π+) and proton (p).

For the �+(1232), it has been proposed [9] to deter-
mine its magnetic moment through measurement of the
γp → γπ0p reaction. Due to the small cross sections for
this reaction, which is proportional to α2

em = 1/(137)2, a
first measurement has only recently been reported by the
A2/TAPS collaboration at MAMI [10]. At present, dedicated
experiments are being performed with much higher count rates
by using 4π detectors, such as the Crystal Ball detector at
MAMI [11]. The analysis of this next generation of dedicated
experiments requires a substantial theoretical effort aimed
at minimizing the model dependencies in the extraction of
the �+ MDM from the measurement of the γp → γπ0p

observables.
First estimates for the reaction γp → γπ0p, including only

the �-resonant mechanism, were performed in Refs. [12,13].
An improved calculation which contains both the �-resonant
mechanism and a background of nonresonant contributions
has subsequently been carried out in Ref. [14]. The starting
point of the model is an effective Lagrangian description
of the γp → π0p process. Then an additional photon is
coupled in a gauge-invariant way to describe the γp → γπ0p

reaction. The result is a tree level calculation with part of the
final state interaction effects taken into account by the finite
width of the �. This model was used in the analysis of the
pioneering measurement of the γp → γπ0p cross sections
and an initial value of µ�+ = [2.7+1.0

−1.3 (stat.) ± 1.5(syst.) ±
3(theor.)] µN has been extracted in Ref. [10].
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Although the tree-level model of Ref. [14] gives a quali-
tatively good description of the data of Ref. [10], a detailed
quantitative comparison requires the inclusion of rescattering
effects. Such rescattering effects were found to be important
in the case of pion photoproduction (see, e.g., [15]). Since an
accurate theoretical description of the reaction γp → γπ0p is
essential for extracting a precise value for µ�+ , it is imperative
to obtain an estimate of the effects of the final-state interaction
to the best of our capability. It is therefore the aim of our
present work to describe the radiative pion photoproduction
by a properly unitarized theory.

We start in Sec. II by specifying the kinematics and cross
section of the reaction γp → γπ0p. In Sec. III, we present
a unitary model for the γp → π0p process with a transition
potential that is derived from an effective Lagrangian with
Born terms and vector mesons exchange in addition to the
�-excitation mechanism. Our model is very similar to MAID
[16] in that only the onshell rescattering effects are included in
the nonresonant multipoles. We further show a selection of our
fits to various experimental data, which have been used to fix
all the parameters of the strong interaction. Our model for the
γ p → γ π0 p reaction in the �(1232)-resonance region is
described in Sec. IV. The transition potential for this reaction
is given by all the tree diagrams that can be obtained from the
effective Lagrangian previously adopted for the γp → π0p

process, with the addition of the anomaly terms generated
from the π0 → γ + γ vertex. We then proceed to estimate
the final-state interaction effects by including the onshell
rescattering between pion and nucleon. In Sec. V we compare
our results for the γ p → γ π0 p reaction with the existing
data. We further present our predictions for several angular
and energy distributions as well as polarization observables
that are expected to be measured in forthcoming experiments.
In each case we demonstrate the sensitivity with respect to the
�+(1232) magnetic dipole moment. We close by summarizing
our findings in Sec. VI.

II. KINEMATICS AND CROSS SECTION FOR THE
γ p → γπ 0 p REACTION

In the γp → γπN process, a photon (k, λ) hits a proton
target (p, sN ), leading to a final state with a photon (k′, λ′),
a pion (q), and a proton or neutron (p′, s ′

N ). Here k, k′, p, p′,
and q are the four momenta of the respective particles, λ and
λ′ denote the photon helicities, and sN and s ′

N are the nucleon
spin projections.

Our results for the experimental observables will be
expressed in the center-of-mass (c.m.) frame of the initial
γp system with total c.m. energy squared given by the usual
Mandelstam invariant s = (k + p)2. The kinematics of the
γp → γπN reaction can be described by 5 variables. First,
we choose the energies Eγ and E′

γ of the initial and outgoing
photon, respectively. The other three variables are the polar
(θγ ) and azimuthal (φγ ) angles of the final photon, and θπ , the
polar angle of the pion. These angles are defined with regard
to an x-z plane that contains the initial particles and the final
pion, with the photon momentum k pointing in the z direction
and φπ ≡ 0.

The unpolarized fivefold differential cross section for the
γp → γπN reaction, differential with respect to the outgoing
photon energy and angles as well as the pion angles in the c.m.
system, takes the form(

dσ

dE′
γ d�′

γ d�π

)c.m.

= 1

(2π )5

1

32
√

s

E′
γ

Eγ

|q|2
|q|(E′

N + ωq) + E′
γ ωq cos θγ ′π

×

 1

4

∑
λ

∑
sN

∑
λ′

∑
s ′
N

| εµ(k, λ) ε∗
ν (k′, λ′)Mνµ |2


 .

(1)

Unless otherwise specified, Eγ and E′
γ refer to the initial and

final photon energies in the c.m. system. Furthermore, ωq and q
denote the energy and momentum of the pion; E′

N denotes the
final nucleon energy; θγ ′π denotes the c.m. angle between the
outgoing photon and the pion; and εµ(k, λ) and ε∗

ν (k′, λ′) are
the polarization vectors of the incoming and outgoing photons,
respectively. Furthermore,Mνµ is a tensor for the γp → γπN

process, which is discussed in Sec. IV.
We will also show results for partially integrated cross

sections of the γp → γπ0p reaction, e.g., the cross section
dσ/dE′

γ differential with respect to the outgoing photon c.m.
energy, or the cross section dσ/dE′

γ d�c.m.
π differential with

respect to the outgoing photon c.m. energy and the pion c.m.
solid angle. These cross sections are obtained by integrating the
fully differential cross section of Eq. (1) over the appropriate
part of the phase space.

III. UNITARY MODEL FOR THE γ p → π N REACTION

In the dynamical approach to pion photo- and electropro-
duction [17], where unitarity is built in by explicit inclusion of
the final state πN interaction, the T matrix is expressed as

tγ π = vγπ + vγπg0tπN , (2)

where vγπ is a transition operator for the reaction γN →
πN , and tπN and g0 denote the πN scattering matrix and
the free propagator, respectively. If the onshell or K-matrix
approximation is made, that is, the intermediate particles
(pions and nucleons) are restricted to be on the mass shell,
the magnitudes of the onshell momenta for the intermediate
particles depend only on the total c.m. energy WπN of the
γN → πN process. We therefore obtain, as the expression
for the physical amplitude in the c.m. frame,

tγ π (q, k; WπN ) = vγπ (q, k) − i

32π2

|q|
WπN

×
∑
s ′
N

∫
d�q ′ TπN (q,−q; q ′,−q ′) vγπ (q ′, k),

(3)

where we sum over the final nucleon spins s ′
N and the relevant

πN channels. For example, in the case of γp → π0p we need
to include both π0p and π+n intermediate states. The Lorentz
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FIG. 1. Graphical representation of the pion photoproduction
T matrix.

invariant T matrix is given by [18]

TπN (q ′, p′; q, p) = ū(p′, s ′
N )

[
A + 1

2 (q/ + q/′) B
]
u(p, sN ),

(4)
where A and B are scalar functions of the invariants s = W 2

πN

and t, the square of the four-momentum transfer. We use the
covariant normalization ūu = 2MN (MN denotes the nucleon
mass) for the Dirac spinors, and construct the functions A and
B from the SAID partial wave amplitudes f
±(WπN ).

For pion photoproduction in the �(1232)-resonance region,
the transition potential vγπ consists of two terms

vγπ = vB
γπ + v�

γπ , (5)

where v�
γπ corresponds to the resonance contribution γN →

� → πN , and vB
γπ describes the background to be derived

from an effective Lagrangian. The resulting T matrix can be
decomposed into two terms (as shown in Fig. 1 [19]),

tγ π = tBγπ + t�γπ , (6)

where

tBγπ (WπN ) = vB
γπ + vB

γπ g0(WπN ) tπN (WπN ), (7)

t�γπ (WπN ) = v�
γπ + v�

γπ g0(WπN ) tπN (WπN ). (8)

The solid circles in Fig. 1 indicate that both the intermediate
� states and the πN� vertices are dressed [20,21].

Applying Eq. (3) to the background contribution tBγπ , we
obtain

tBγπ (q, k; WπN ) = vB
γπ (q, k) − i

32 π2

|q|
WπN

×
∑
s ′
N

∫
d�q ′TπN (q,−q; q ′,−q ′) vB

γπ (q ′, k). (9)

Due to the onshell approximation, the multipole amplitudes
tB, α
γπ , for the partial wave α, in Eq. (9), take the form

tB, α
γπ = vB, α

γπ cos δα eiδα , (10)

where δα is the phase shift for πN scattering in the respective
partial wave α.

The resonance structure t�γπ (E), as depicted in Fig. 1, is
approximated by

t�γπ = v�
γπ

(
M� → M� − i

2
��

)
eiφ(WπN ), (11)

with the phase φ(WπN ) adjusted such that the � multipole
amplitudes (M�

1+, E�
1+) carry the phase of the πN scattering

phase δ33(WπN ) to ensure that the Fermi-Watson theorem is
fulfilled. We further adopt the “complex mass scheme” by
substituting M� → M� − i

2�� with an energy independent
width ��, as was suggested by Refs. [14,22,29] in order

FIG. 2. Diagrams for the γp → πN reaction in the �(1232)
region: � resonance excitation (a), vector meson exchange
(b), nucleon pole terms (c1-c2), pion pole term (d), and Kroll-
Rudermann term (e).

to maintain the gauge invariance of the � contribution to
the γN → γπN reaction. Since the background contribution
of Eq. (10) satisfies the Fermi-Watson theorem separately,
the total multipole amplitude will also carry the proper πN

phase.
In this work we focus on the energy region of the

�(1232) resonance and neglect the contribution from the
higher resonances. Although this is an excellent approximation
close to the �(1232) region, it is inevitable that deviations
will occur if we move further away from the �(1232) peak.
The P11(1440) resonance is the nearest nucleon resonance.
Due to its large decay width, it is the most likely candidate
to contribute to pion photoproduction on the high-energy tail
of the �(1232). Since the P11(1440) contributes to the M

(1/2)
1−

multipole, we indeed find deviations for this multipole between
our calculation and the data if we approach the P11(1440)
energy region.

As has been outlined in Ref. [16], we describe the
nonresonant transition operator vB

γπ by the tree diagrams of
Fig. 2(b–e), as prescribed by an effective Lagrangian. The
electromagnetic γNN and γππ vertices are well known
as

LγNN = −e ψ̄N

[
êNγµAµ − κN

2MN

σµν ∂νAµ

]
ψN,

Lγππ = e[(∂µπ )† × π ]3A
µ, (12)

where Aµ is the electromagnetic vector potential, and ψN

and π are the nucleon and pion field operators, respectively.
Furthermore, κN is the nucleon anomalous magnetic moment
(κp = 1.79, κn = −1.91).
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In the low-energy regime addressed in this work, we use
the πNN interaction Lagrangian with pseudovector coupling
(PV),

LPV
πNN = fπNN

mπ

ψ̄N γµγ5 τ ψN · ∂µπ , (13)

which is consistent with the leading order of chiral perturbation
theory. In Eq. (13), τ are the Pauli (isospin) matrices, and the
coupling constant is taken as f 2

πNN/4π = 0.081. At higher
energies, an improvement of the nonresonant multipoles can
be obtained by a mixed pseudoscalar (PS)-pseudovector (PV)
πNN coupling as, e.g., in the MAID analysis [16]. In the
�(1232)-resonance region considered in this work, we prefer
to stay consistent with the leading order chiral perturbation
theory and will use the PV coupling in the description of both
the γp → πN and γp → γπN reaction.

The relevant effective Lagrangians for the vector meson
(ρ and ω) exchanges are shown in Fig. 2(b) and given by

LV πγ = egV πγ

mπ

εµνρσ (∂µAν) πi ∂
ρ(ωσδi3 + ρσ

i ),

LV NN = gV NNψ̄N

(
γµV µ − κV

2MN

σµν∂
νV µ

)
ψN, (14)

where V denotes the ρ and ω vector meson fields. The photon
couplings gρπγ and gωπγ can be obtained from the radiative
decays ρ → γπ and ω → γπ , which lead to the values
gρ+πγ = 0.103, gρ0πγ = 0.131, and gωπγ = 0.314. For the
hadronic couplings gV NN and κV NN , we use the values gρNN =
2.63, κρ = 6.1, gω = 20, and κω = 0. With these effective
Lagrangians, it is straightforward to derive the amplitude
shown in Fig. 2(b).

To calculate the �(1232) resonance contribution to v�
γπ of

Fig. 2(a), we use a form of the Rarita-Schwinger propagator
[22],

G̃αβ(p�) = p/� + M�

p2
� − M2

�

{
− gαβ + 1

3
γαγβ + 1

3M�

(γα(p�)β

− γβ(p�)α) + 2

3M2
�

(p�)α (p�)β

}
− 2

3M2
�

×{γα(p�)β + γβ(p�)α − γα (p/� − M�) γβ},
(15)

where p� is the four-momentum, and M� is the mass of the
�(1232). The interaction Lagrangians for the vertices πN�

and γN� are

LπN� = fπN�

mπ

ψ̄
µ
� T † ψN · ∂µπ + h.c., (16)

LγN� = i e ψ̄
µ
� T

†
3 �µν ψN Aν + h.c., (17)

where ψ
µ
� is the Rarita-Schwinger � field operator, and T is

the N ↔ � isospin transition operator. The πN� coupling
constant fπN� in Eq. (16) is taken from the decay � → πN ,
which yields fπN� ≈ 1.95. In Eq. (17), the γN� coupling
�µν has the form

�µν = GM �
µν

M + GE �
µν

E , (18)

where �
µν

M and �
µν

E denote the magnetic and electric γN�

vertices, respectively,

�
µν

M = − 3

4MN

1

(M� + MN )
εµνκλ(p� + p)κ kλ, (19)

�
µν

E = −�
µν

M − 3iγ5

(M� + MN ) (M� − MN )2 MN

× (εµσκ (p� + p)κ kλ)
(
εν

σ
ρτ (p�)ρkτ

)
. (20)

The magnetic and electric γN� couplings GM and GE at the
real photon point will be adjusted in the following.

Using the effective Lagrangians of Eqs. (16) and (17), we
can write the � resonance contribution of Fig. 2(a) as

v�
γπ = −e CπN

fπN�

mπ

qαεµ(k, λ) ū(p′, s ′
N ) G̃αβ(p�)

× [
GM �

βµ

M + GE �
βµ

E

]
u(p, sN ), (21)

where CπN = 2/3 for γp → π0p and −√
2/3 for γp → π+n,

and G̃αβ is the � propagator given by Eq. (15).
To take account of the finite width of the �(1232)

resonance, we follow the procedure of Refs. [14,22,29] by
using a complex pole description for the resonance excitation.
This amounts to the replacement

M� −→ M� − i

2
��, (22)

in the propagator of Eq. (15). This “complex mass scheme”
guarantees electromagnetic gauge invariance. In contrast, the
use of a Breit-Wigner propagator with an energy dependent
width will violate gauge invariance when applied to the
� contribution for the γp → γπN reaction. For mass and
width we take the complex pole values given by the PDG
[8]: (M�,��) = (1210,100) MeV, which provides a good
description of the photoproduction data.

Since our main goal is to explore the role of the �+(1232)
MDM in the γp → γπN reaction, it is not our purpose
to precisely reproduce the pion photoproduction data over
a large energy range. For example, the inclusion of an
energy-dependence for the PS-PV mixing parameter and the
use of a Breit-Wigner distribution with an energy dependent
� decay width instead of the energy independent complex
pole description can improve the description of the pion
photoproduction data. However, these improvements would
create problems in maintaining gauge invariance in the γp →
γπN reaction, as discussed in detail in Sec. IV. Rather, our
strategy is to determine the very small set of parameters within
the model outlined above, which gives a reasonable description
of the pion photoproduction in the �(1232) region, and then
apply the same model to the γp → γπN reaction.

In Fig. 3, we show our results for the total γp → π0p cross
section with the parameters GM = 3.00 and GE = 0.065, and
compare them with the data from Refs. [23–26]. The solid
curve denotes the results obtained with our full unitary model,
and the dotted curve indicates the unitarized � resonance
contributions of Eq. (11). If we approximate the t-matrix by the
transition potential of Eq. (5) and replace M� → M� − i

2��,
we obtain the tree-level result represented by the dashed
curve. This corresponds to the previous results of Ref. [14],
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FIG. 3. (Color online) Total cross section for γp → π0p (left panel) and γp → π+n (right panel). The solid curve is the full result of
the unitary model; the dashed curve indicates the result of the tree-level calculation; and the dotted curve shows the unitarized �(1232)
contribution. The data for γp → π 0p are from MacCormick [23] and Ahrens [24]. The data for γp → π+n are from MacCormick [23],
Ahrens [24], McPherson [25], and Fissum [26].

except that we use the above values of GM and GE . We
find that the fully unitary model describes the total cross
sections for both the γp → π0p and γp → π+n reactions
very well from threshold to Elab

γ = 450 MeV, as is shown
in Fig. 3. The difference between the unitarized result and
the tree-level calculation indicates the size of the rescattering
effects, which turns out to be relatively large for the γp → π0p

reaction. We find that even though one can improve the

description of the total cross sections within the tree-level
approximation by adjusting the model parameters GM and GE ,
it is not possible to achieve a satisfactory tree-level description
for the differential and polarization cross sections discussed
next.

The results for the differential cross sections for γp → π0p

are shown in Fig. 4 (left panel). They agree well with
the data from Refs. [27,28] except for the highest energy
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FIG. 4. (Color online) Differential cross section for the γp → π0p reaction (left panel) and γp → π+n reaction (right panel) at different
photon lab energies Eγ as a function of the c.m. angle θ . The data are from Bonn [27] and MAMI [28]. See Fig. 3 for further notation.
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FIG. 5. (Color online) Beam asymmetry for γp → π0p (left panel) and γp → π+n (right panel) at different photon lab energies Eγ as a
function of the c.m. angle θ . The data are from MAMI [28]. See Fig. 3 for further notation.

Elab
γ = 420 MeV. The deviation may be traced back to the

fact that the � propagator of Eq. (15) contains an additional
spin-1/2 component. In the case of charged pion photoproduc-
tion, the angular distribution shows an interference pattern
between background and resonance contributions, which
leads to an enhancement of backward production below the
resonance and a sharp rise in the forward direction above the
resonance.

The beam asymmetries for neutral and charged pion
production are shown in Fig. 5. While we observe some
deviations between the model and the neutral pion data at the
highest energy, the process γp → π+n is well described over
the full energy range. In particular we note a considerable im-
provement of the angular distribution due to the unitarization
effects.

Recently, the helicity dependent total cross sections σ3/2

(σ1/2) for the absorption of circularly polarized photons on
nucleons in total helicity states of 3/2 (1/2) have been measured
for the γp → π0p and γp → π+n reactions [24]. We show
the comparison between our unitary model and these data in
Fig. 6. For the γp → π0p reaction the σ3/2 cross section is
dominated by the �(1232) resonance, which yields positive
values of σ3/2 − σ1/2 over the full energy region. For the
γp → π+n channel, however, the strong nonresonant pion
production leads to a large σ1/2 cross section near threshold
followed by σ3/2 dominance in the �(1232) region. Altogether
we obtain a qualitatively good description of the helicity
dependent cross sections for both γp → π0p and γp → π+n,

with some deviations appearing on the high-energy side of the
�(1232) region.

Figure 7 shows the multipole amplitudes in the � channel,
M1+ and E1+, obtained with our best fit values GM = 3.0
and GE = 0.065. These results are compared with the SM02
solution of the SAID partial wave analysis [30]. The unitarized
model reproduces the dominant M

(3/2)
1+ multipoles from SAID

quite well, whereas the agreement is less perfect for the
E

(3/2)
1+ multipole. However, since the latter multipole is small

(GE/GM ∼ 2%), these deviations are of little importance for
our conclusions. As stated above, the inclusion of higher reso-
nances such as the P11(1440) could improve our calculation at
the larger energies. However, a consistent description of these
higher resonances is outside the scope of our current study and
we therefore leave it for a future work.

IV. UNITARY MODEL FOR THE γ p → γπ N REACTION

In this section we extend the previously constructed model
for pion photoproduction to the reaction γp → γπN in the
�(1232)-resonance region, which will then be used as a tool
to investigate the size of the �(1232) MDM. After discussing
the tree-level processes for the γp → γπN reaction, we
subsequently extend this description and present a unitary
model for the γp → γπ0p reaction in the �(1232) region.

We start from the tree diagrams in Fig. 2 as prescribed
by the effective Lagrangian for γp → πN and couple a
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FIG. 6. (Color online) Helicity cross-section difference σ3/2 − σ1/2 for the γp → π 0p reaction (left panel) and the γp → π+n reaction
(right panel). The data are from MAMI [24]: inner error bars correspond with statistical errors; outer error bars include systematical errors. See
Fig. 3 for further notation.

photon to all the charged particles. The resulting diagrams
are shown in in Fig. 8. The diagrams in Fig. 8(b–e) referring
to vector-meson exchanges, nucleon and pion pole, as well as
Kroll-Ruderman terms can be evaluated with the interaction
Lagrangians given in Sec. III or by minimal substitution of
pion-nucleon Lagrangians given in that section. For example,
the γπNN and γ γππ vertices can be obtained by replacing
the derivative ∂µ inLπNN andLγππ by the covariant derivative
∂µ + iQAµ, where Q is the charge of the respective pion.
By design, this set of diagrams is therefore gauge invariant
by itself with respect to both initial and final photons. In
Fig. 8, we display the diagrams for both the γp → γπ0p

and the γp → γπ+n reaction. When omitting the coupling

to the pion lines and the contact diagrams, diagrams (a–c)
yield the tree diagrams considered in Ref. [14]. In addition to
Ref. [14], we include the diagrams in Fig. 8(f) resulting from
the π0 → γ γ anomaly as given by the Wess-Zumino-Witten
Lagrangian [31],

LWZW = αem

8πFπ

εµναβFµνF αβπ0, (23)

with Fµν = ∂µAν − ∂νAµ, and Fπ = 92.4 MeV the pion
decay constant. Note that in the soft photon limit for the final
photon, i.e., k′ → 0, the anomaly diagrams vanish as they are
linear in the final photon momentum k′.
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lab energyEγ . The data are taken from the SAID analysis [30]. See Fig. 3 for further notation.
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FIG. 8. Tree diagrams considered in the calculation of the γp → γπN reaction in the �(1232) region: � resonance (a1–a5), vector-meson
exchange (b1–b6), nucleon-pole (c1–c10), pion-pole (d1–d6), Kroll-Rudermann (e1–e3), and anomaly (f1–f2) diagrams.

The � resonance diagrams of Fig. 8(a) can be similarly
evaluated by use of the previously described Lagrangians
except for diagram 8(a2). The latter diagram contains the
interaction Lagrangian

Lγ�� = e�ψ̄
β ′
�

{
gβ ′β

(
γνA

ν − κ�

2M�

σνλ ∂λAν

)

+ 1

3
(γβγνγβ ′ − γβgνβ ′ − γβ ′gνβ)Aν

}
ψ

β

�, (24)

which contains the information on κ�, the anomalous magnetic
moment (a.m.m.) of the �(1232) resonance.

The magnetic moment µ of a particle of mass M, charge
e, and spin S can in general be expressed in terms of the
gyromagnetic ratio g as

µ = g · S · e

2M
. (25)

It was argued in Refs. [32,33] that g = 2 corresponds with
the the universal value for the gyromagnetic ratio for a point
particle with arbitrary spin. The minimal electromagnetic
coupling in Eq. (24) corresponds with g = 1/S [where S =
3/2 in Eq. (24)]. The deviation from this value corresponds
with the term in Eq. (24) proportional to κ�, defined as

κ� = g� · 3

2
− 1. (26)

Note that with this definition the value g� = 2 corresponds
with κ� = 2.

In comparison with the γp → πN process, the only new
parameter entering into the description of the γp → γπN

process is the �+(1232) anomalous magnetic moment κ�+ .

The γ�� vertex of Eq. (24) satisfies the electromagnetic Ward
identity with the � propagator of Eq. (15). Gauge invariance
is preserved when using the complex pole description of
Eq. (22).

In principle, the γ�� vertex and hence κ� is a function
of k′2, p2

�, p′ 2
� , the four-momentum squared of the emitted

photon, and the initial and final �, respectively. As we are
studying the transition induced by real photons, k′2 = 0. If
we restrict ourself to the �(1232)-resonance region, then we
can choose p2

� = M2
�, and κ� will depend only on p′2

�. In the
soft-photon limit, we will further have p′2

� = M2
�. By assuming

that κ� is a slowly varying function of p′2
�, we can then treat

κ� as a constant in the soft-photon region. We confines our-
selves to this kinematical region in our current investigation.

We next turn to the rescattering contribution for the γp →
γπ0p reaction. In this work, we estimate this rescattering
in the K-matrix approximation, i.e., considering only onshell
rescattering. Furthermore, in the soft-photon limit for the final
photon, the T matrix for the γp → γπ0p reaction has to be
directly proportional to the full T matrix for the γp → π0p

reaction as previously constructed (see Fig. 1). We construct
the full T matrix for γp → γπ0p as shown in Fig. 9 by the
expression

tγ,γ π (k′q,WπN ; k,
√

s) ≈ vγ,γπ (k′q; k) + e ε∗
ν (k′, λ′)

×
(

p′ν

p′ · k′ − pν

p · k′

)
[tγ π (q, k;

√
s) − vγπ (q, k)]. (27)

The first term in Eq. (27), denoted by the transition potential
vγ,γπ , is the sum of all tree diagrams shown in Fig. 8. As
discussed above, this term is gauge invariant by itself with
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FIG. 9. Model for the T matrix for the γp → γπ0p reaction used in this work. The transition potential vγ,γπ (diagram a) corresponds with
the diagrams of Fig. 8. The rescattering contributions (diagrams b and c) are evaluated in the soft-photon approximation for the final photon,
i.e., k′ → 0. The transition potential vγπ corresponds with the diagrams of Fig. 2. The black circle corresponds with the full T-matrix tπN for
πN scattering. The vertical dotted lines indicate that the πN intermediate state is taken onshell (K-matrix approximation).

respect to both intial and final photons. In the soft-photon
limit (i.e., k′ → 0), it reduces to

vγ,γπ (k′q; k)
k′→0−→ e ε∗

ν (k′, λ′)
(

p′ν

p′ · k′ − pν

p · k′

)
vγπ (q, k),

(28)

where vγπ is the transition potential for the γp → π0p

reaction as shown in Fig. 2. The second term in Eq. (27) is
the rescattering contribution. Since we only keep the leading
term in the outgoing photon energy for the rescattering term
(k′ → 0), this amounts to evaluating the T-matrix tγ π in the
second term of Eq. (27) in soft-photon kinematics, i.e., with
nucleon momenta p = −k, p′ = −q, and at total energy

√
s,

with s = (k + p)2, as we work in the c.m. system of the γp →
γπN reaction. For the t-matrix tγ π , we adopt the unitary model
as discussed in Sec. III. Evaluating the rescattering term for
the γp → γπN process in the soft-photon limit, as done in
Eq. (27), ensures us that the full amplitude tγ,γ π satisfies the
low-energy theorem. Indeed, using Eq. (28), we immediately
verify from Eq. (27) that

tγ,γ π (k′q,WπN ; k,
√

s)
k′→0−→ e ε∗

ν (k′, λ′)

×
(

p′ν

p′ · k′ − pν

p · k′

)
tγ π (q, k;

√
s), (29)

as required by the low-energy theorem.
Furthermore, both terms in our model for the full T-matrix

tγ,γ π in Eq. (27) satisfy gauge invariance with respect to both
intial and final photons. One notices in particular that the
rescattering contribution [the second term in Eq. (27)] is by
construction gauge invariant with respect to the final photon
[as is evident when replacing ε∗(k′, λ′) by k′]. We further point
out that the rescattering contributions of Fig. 9(b) and (c) are
obtained by summing over both π+n and π0p intermediate
states in the loop.

To evaluate the rescattering contribution beyond the soft-
photon limit is much more complicated and requires a coupled
channel calculation for both the γN → γπN and πN →
γπN processes, because the outgoing photon can be produced
not only in the initial step but also by a pion while rescattering
off the nucleon. Furthermore, the exact conservation of gauge
invariance in such an approach requires the introduction of
vertex corrections wherever the photon is emitted between two
different pion rescatterings. We leave such a description for a
future work, because our evaluation of the rescattering effects

for the γp → γπ0p process is motivated by the experimental
situation where one stays relatively close to the soft-photon
limit, i.e., at outgoing photon energies up to about 100 MeV.
Furthermore, for the tree-level contribution vγ,γπ in Eq. (27),
we do not make a soft-photon approximation but calculate the
full outgoing photon energy dependence. Because the effect
of the rescattering turns out to be modest in all the following
calculations, it is a reasonable approximation to evaluate the
rescattering contribution in the soft-photon limit for those
kinematics.

V. RESULTS AND DISCUSSION FOR γ p → γπ N
OBSERVABLES

In Fig. 10, we show the outgoing photon energy dependence
of the cross-section dσ/dE′

γ for the γp → γπ0p reaction
integrated over the photon and pion angles for three incoming
photon energies through the �(1232) region. Because the cross
sections exhibit the characteristic bremsstrahlung behavior,
i.e., dropping as 1/E′

γ at low energies E′
γ , we display the

cross sections in the left panel of Fig. 10 multiplied by E′
γ .

In the soft-photon limit (E′
γ → 0), gauge invariance pro-

vides a model-independent relation between the cross sections
for the γp → γπN and γp → πN reactions. This low-energy
theorem was derived in Ref. [34] for radiative photoproduction
of a neutral meson. In the Appendix, we first apply this theorem
to the γp → γπ0p reaction and then extend it to the γp →
γπ+n process. Its derivation is based on the observation that
in the soft-photon limit the γp → γπN reaction is completely
determined by the bremsstrahlung process from the initial
and final protons. In this limit, when integrating the fivefold
differential cross section of Eq. (1) over the outgoing photon
angles, we obtain the threefold differential cross section for the
γp → γπN process, which reduces in the soft-photon limit
to (

dσ

dE′
γ d�π

)c.m.
E′

γ →0−→ 1

E′
γ

· e2

2π2
· W (v)

(
dσ

d�π

)c.m.

,

(30)
where (dσ/d�π )c.m. is the differential cross section for the
γp → πN process. The form of the angular weight-function
W (v) is derived in the Appendix, Sec. A, as

W (v) = −1 +
(

v2 + 1

2v

)
· ln

(
v + 1

v − 1

)
, (31)
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FIG. 10. (Color online) Left panel: outgoing photon energy dependence of the cross-section dσ/dE′c.m.
γ multiplied by E′c.m.

γ for the
γp → γπ 0p reaction. A comparison is shown between the tree-level calculation (dashed curves) and the result of the unitary model (solid
curves). All results are obtained with κ�+ = 3. The horizontal curves at small values of E′c.m.

γ are obtained using the low-energy theorem for the
tree-level model (thin dashed curves) and the unitary model (thin solid curves). Right panel: ratio R, as defined in Eq. (34), for the γp → γπ0p

reaction and with the same conventions as in the left panel. The data in both panels are from MAMI [10]: inner error bars correspond to
statistical errors; outer error bars include systematical errors.

with v ≡
√

1 + 4M2
N/(−t) and t = (p′ − p)2. When integrat-

ing the fivefold differential cross section of Eq. (1) over both
the outgoing photon and the meson angles, we obtain the
energy distribution for the γp → γπN process as(

dσ

dE′
γ

)c.m.

≡
∫

d�c.m.
π

(
dσ

dE′
γ d�π

)c.m.
E′

γ →0−→ 1

E′
γ

· σπ,

(32)
with a “weight-averaged” total cross-section σπ for the γp →
πN reaction,

σπ ≡ e2

2π2

∫
d�c.m.

π W (v)

(
dσ

d�π

)c.m.

. (33)

The low-energy theorem of Eq. (32) provides a check for
both theoretical model calculations and experimental mea-
surements, because

R ≡ 1

σπ

· E′
γ

dσ

dE′
γ

→ 1 for E′
γ → 0. (34)

At small values of E′
γ , one readily observes from Fig. 10

(left panel) that our theoretical calculation for the product
E′

γ · dσ/dE′
γ approaches a constant. Because we model

the γp → π0p and γp → γπ0p reactions within the same

framework, the low-energy theorem is exactly satisfied, as
follows from Eq. (28) for the tree-level model and Eq. (29)
for the unitary model. In the right panel of Fig. 10, we show
the ratio R constructed from our theoretical calculations of the
γp → γπ0p and γp → π0p reactions and compare it with
the data of Ref. [10] for this same ratio, where σπ is evaluated
from the γp → π0p data using Eq. (34). The first data for the
γp → γπ0p process of Ref. [10] show a clear deviation from
the soft-photon limit value R = 1 with increasing values of
E′

γ . One sees from Fig. 10 that our unitary model gives a good
overall description of the E′

γ dependence of the γp → γπ0p

reaction throughout the �-region. Compared with the tree-
level model developed in Ref. [14], our unitary model reduces
the cross section at larger values of E′

γ and thus provides an
improved description of the data.

In Fig. 11, we show the outgoing photon angular depen-
dence of the c.m. cross section dσ/d�′

γ for the γp → γπ0p

reaction, which has also been measured in Ref. [10]. To
compare with these data, the cross section is integrated
over the pion angles and over the outgoing photon energy
range E′c.m.

γ > 30 MeV. Our model reproduces the angular
dependence of the existing data, within their accuracy range,
rather well. We see that the model gives a rather flat angular
distribution at Elab

γ = 350 MeV. At higher incident photon
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FIG. 11. (Color online) The angular distribution of the emitted
photons for the γp → γπ 0p c.m. cross-section dσ/d�c.m.

γ . The cross
section is integrated over the pion angles and over the outgoing photon
energy range E′c.m.

γ > 30 MeV. The results of the unitary model are
shown with κ�+ = 3. The data are from MAMI [10]: inner error bars
correspond tostatistical errors; outer error bars include systematical
errors.

energies, it displays a broad peak around photon c.m. angles
of 110◦. Such a structure is due to the interference between
the bremsstrahlung and �-resonant mechanisms. Note that a
pure �-resonant mechanism would yield a photon angular
distribution peaked around a c.m. angle of 90◦. Comparing
the unitary model with the data presented in Figs. 10 and 11,
we conclude that both the outgoing photon energy and angular
distributions of the γp → γπ0p reaction through the �-region
show clear deviations from a pure bremsstrahlung-dominated
process as obtained in the soft-photon limit.

We next study how to extract new resonance information
from the deviations from the soft-photon limit in the γp →
γπ0p cross sections at the larger values of E′

γ . In Fig. 12 we
show the sensitivity of the threefold differential cross sections
and the photon asymmetry, for linearly polarized incident
photons, to the �+(1232) MDM. We present both cross
section and photon asymmetry at an incident photon energy of
400 MeV, for which our model yields a good description of the
γp → π0p observables. This serves as a reliable baseline to
study the dependence of the γp → γπ0p process on κ�+ at the
larger values of E′

γ . It can be seen from Fig. 12 that an outgoing
photon energy E′

γ of around 100 MeV is a good compromise to
enhance the sensitivity to κ�+ while still staying in the region
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FIG. 12. (Color online) Top: the outgoing photon energy depen-
dence of the γp → γπ 0p threefold differential c.m. cross-section
dσ/dE′

γ d�π , divided by its value in the soft-photon limit, as a
function of the outgoing photon energy E′c.m.

γ , at incident photon
lab energy Elab

γ = 400 MeV and pion emission angle θ c.m.
π = 90◦.

Predictions of the unitary model for κ�+ = 0 (dotted curve) and
κ�+ = 3 (full curve). Bottom: same for the photon asymmetry �. The
horizontally dashed curve at small values of E′c.m.

γ is obtained using
the low-energy theorem and corresponds to the photon asymmetry
for the γp → π 0p reaction.

of validity of the present calculation, which treats the radiation
due to rescattering effects in the soft-photon approximation.

In Fig. 13 we therefore investigate the sensitivity of the
pion angular distribution at Elab

γ = 400 MeV and E′c.m.
γ =

100 MeV with regard to the value of κ�+ . The upper part of
Fig. 13 shows a considerable change in the angular distribution
of the differential cross section when varying κ�+ between 0
and 6. However, it is also obvious that extracting a value of
κ�+ from a fit to the angular distribution would require very
accurate data over the whole angular range. The reason is that
the differential cross section first decreases when increasing
κ�+ from the value κ�+ = 0, then reaches a minimum
around a value κ�+ = 3, and increases subsequently when
increasing κ�+ further. This behavior is due to interference and
evidently complicates an accurate extraction of κ�+ from the
differential cross section. However, we found that the photon
asymmetry, for linearly polarized incident photons, decreases
monotonically when increasing κ�+ , as is displayed in the
lower part of Fig. 13. In particular, the photon asymmetry
varies between +0.35 and −0.15 when varying κ�+ from
0 to 6.

Besides the photon asymmetry, for linearly polarized
incident photons, we have also studied the single asymmetry
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FIG. 13. (Color online) Top: the angular distribution of the
emitted pions for the γp → γπ 0p threefold differential c.m. cross
section dσ/dE′

γ d�π at incident photon lab energy Elab
γ = 400 MeV

and fixed outgoing photon energy E′c.m.
γ = 100 MeV. The sensitivity

of the unitary model to different values of κ�+ is shown. Bottom:
same for the photon asymmetry �.

for a circularly polarized incident photon, which we denote as
�circ. For a two-body reaction, such as γN → πN , parity
conservation forces �circ to vanish exactly because of the
reflection symmetry with respect to the reaction plane. For
a three-body process, such as γN → γπN , this reflection
symmetry is broken due to the emission of the second particle,
and one can define a single spin asymmetry for circularly
polarized photons as

�circ ≡ dσ (λ = +1) − dσ (λ = −1)

dσ (λ = +1) + dσ (λ = −1)
, (35)

where dσ in Eq. (35) stands for
(
dσ/dE′

γ d�γ d�π

)c.m.
, and

λ = ±1 are the two circular polarization states of the incident
photon. In Fig. 14, we show �circ for the γp → γπ0p reaction
as a function of the outgoing photon energy when the pion is
emitted at an angle θ c.m.

π = 90◦, which fixes the reaction plane.
One may then study the dependence of �circ when integrating
dσ over the angles of the outgoing photon. In Fig. 14,
we separated the phase space for the outgoing photon into
4 quadrants, as the photon can be emitted in the forward
or backward (with regard to the direction of the incident
photon) hemispheres, and either above or below (with regard
to the direction of 
k × 
q) the reaction plane. One immediately
observes from Fig. 14 that the sign of �circ differs for photons
emitted above and below the reaction plane. As a result, the
integral of �circ over the full solid angle of the final photon
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FIG. 14. (Color online) The outgoing photon energy dependence
of the γp → γπ 0p single spin asymmetry �circ for a circularly
polarized incident photon at incident photon lab energy Elab

γ =
400 MeV and pion emission angle θ c.m.

π = 90◦, when integrating over
the outgoing photon angles as indicated on the figure. Predictions of
the unitary model are shown for κ�+ = 0 (dotted curves), κ�+ = 3
(solid curves), and κ�+ = 6 (dashed-dotted curves).

vanishes, because this way one effectively obtains the result
of a two-body reaction. A further interesting feature of Fig. 14
is that �circ vanishes exactly in the soft-photon limit. This can
also be easily understood from the fact that in the soft-photon
limit the LET relates the γN → γπN process to the two-body
reaction γN → πN for which �circ vanishes. Since the soft-
photon emission from the external charged particles does not
contribute to �circ, this observable acts as a filter to enhance the
�-resonant process. Indeed, one observes from Fig. 14 that in
the forward and upper quadrant (for �γ > 0) and at an energy
E′

γ = 100 MeV, �circ changes from 0 to −0.3 when κ�+ is
varied between 0 and 6. Furthermore, in the backward and
upper quadrant and at an energy E′

γ = 100 MeV, �circ changes
between +0.15 and −0.05 when varying κ�+ between 0 and
6. Since circularly polarized photons are readily available at
MAMI, a measurement of �circ for the γp → γπ0p reaction in
the �(1232) region provides a unique opportunity to enhance
the �-resonant process and access κ�+ .

We next investigate double spin observables where both
the incident photon and the target proton are polarized.
In Figs. 15 and 16 we display the sensitivity of the total
helicity cross sections for the γp → γπ0p reaction to the
value of κ�+ . Figure 15 shows the dependence of these cross
sections on the outgoing photon energy, and Fig. 16 shows
the pion angular distributions. These helicity cross sections
are accessible experimentally by measuring the γp → γπ0p

reaction with a circularly polarized photon beam and a
longitudinally polarized proton target, for the cases of parallel
(σ3/2) or antiparallel (σ1/2) spins. It can be seen from Fig. 15
that in the low-energy limit (E′

γ → 0), one exactly recovers
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FIG. 15. (Color online) The helicity dependence of the γp →
γπ 0p c.m. cross-section dσ/dE′

γ d�π , divided by its soft-photon
value, as a function of the outgoing photon energy E′c.m.

γ , at incident
photon lab energy Elab

γ = 400 MeV and pion emission angle θ c.m.
π =

90◦. Upper (lower) panel shows the cross sections for total helicity
3/2 (1/2). The curves correspond with the predictions of the unitary
model for different values of κ�+ as indicated on the figure.

the helicity cross sections of the γp → π0p reaction, for
which we obtained a good description (see Fig. 6). At the
higher values of E′

γ , one notices an interference pattern in
the σ3/2 cross section that strongly reduces the dependence
on κ�+ in the range from 0 to 3. The σ1/2 cross section,
on the other hand, decreases monotonically with increasing
κ�+ , thus indicating a very strong sensitivity to the �+ MDM
in the range 70 MeV � E′

γ �120 MeV (see Fig. 15, bottom).
Also, the angular distribution of σ1/2 is very sensitive to the
value of κ�+ , showing a rather flat distribution for κ�+ = 0
and a distinct minimum for κ�+ = 6 (see Fig. 16, bottom). A
measurement of these helicity cross sections will be feasible
in the near future at MAMI.

Although the main focus of our work is a unitary model for
the γp → γπ0p reaction in the �(1232)-resonance region,
we also obtain, within the same framework, a description
of the γp → γπ+n reaction. The tree-level part will now
contain additional terms where the soft-photon couples to the
charged pion as shown in Fig. 8. The rescattering terms in
the soft-photon limit for γp → γπ+n are obtained by the
replacement p′ → q in the second term of Eq. (27). As we
have seen from the results in Sec. III, the γp → π+n reaction
has a much larger nonresonant contribution compared with
the γp → π0p reaction. For extracting information on the
�+ MDM, the γp → γπ0p reaction is therefore clearly
the favorite channel. However, the present experiments of
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FIG. 16. (Color online) The angular dependence of the emitted
pions for the γp → γπ 0p c.m. helicity cross-section dσ/dE′

γ d�π ,
at incident photon lab energy Elab

γ = 400 MeV and fixed outgoing
photon energy E′c.m.

γ = 100 MeV. Upper (lower) panel shows the
cross sections for total helicity 3/2 (1/2). The curves correspond with
the predictions of the unitary model for different values of κ�+ as
indicated on the figure.

Ref. [11] will simultaneously measure both γp → γπ0p and
γp → γπ+n reactions. Therefore, the γp → γπ+n data may
provide a useful additional cross-check for our theoretical
description. In Fig. 17, we show the outgoing photon energy
dependence of the cross-section dσ/dE′

γ for the γp → γπ+n

reaction, integrated over the photon and pion angles for three
incoming photon energies through the �(1232) region. By
comparing the left panels of Figs. 10 and 17, we observe
that at small outgoing photon energies, the γp → γπ+n cross
sections are about a factor of 10 larger than the corresponding
γp → γπ0p cross sections. This is readily understood by the
fact that in the soft-photon limit there is a large contribution
due to radiation from the charged pion for the γp → γπ+n

process. On the other hand, for the γp → γπ0p process only
bremsstrahlung contributions arise from the emission of soft
photons from the (much heavier) protons.

Similar to what we did in Fig. 10, we can also construct
the ratio R between the γp → γπ+n process and its soft-
photon limit as given by the LET, which is derived in the
Appendix, Sec. B [see Eq. (A16)]. In contrast to the γp →
γπ0p process, where this ratio shows clear resonance structure
when increasing the final photon energy, the corresponding
ratio for the γp → γπ+n process drops monotonously with
increasing E′

γ .
In Fig. 18, we show the pion angular dependence of the

threefold differential cross section and photon asymmetry
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FIG. 17. (Color online) Left panel: outgoing photon energy dependence of the γp → γπ+n cross-section dσ/dE′c.m.
γ multiplied by E′c.m.

γ .
Right panel: ratio R of the γp → γπ+n process, as defined in Eq. (A16). Notation as in Fig. 10.

for the γp → γπ+n reaction at Eγ = 400 MeV and E′
γ =

100 MeV. It can be seen from Fig. 18 that for an energy above
the �(1232)-resonance position, the γp → γπ+n differential
cross section exhibits a forward peaking analogous to the
γp → π+n process. Furthermore, it can be seen that both
the differential cross section and the photon asymmetry
for the γp → γπ+n reaction only display a rather modest
change when varying κ�+ between 0 and 6. Therefore, the
measurement of the γp → γπ+n process can put stringent
constraints on our theoretical description of the nonresonant
contributions, making it a useful tool to minimize model
dependencies when extracting information on the �+ MDM
from the γp → γπ0p process.

VI. CONCLUSIONS AND OUTLOOK

In this work, we provided a unitary model for the γp →
γπN reaction in the �(1232) region. Our starting point
is a unitary model for the γp → πN (πN = π0p, π+n)
reaction based on a transition potential consisting of Born
diagrams, vector meson exchanges, and �-resonant process.
The rescattering effects are included in an onshell (K-matrix)
approximation. Besides the vector meson coupling constants,
the only free parameters in this model are the γN� electric and
magnetic couplings. With this model we find a very reasonable
description of both total unpolarized and helicity cross sections
as well as differential cross sections and photon asymmetries
for both the γp → π0p and γp → π+n processes through the
�(1232)-resonance region.

The model for the γp → πN processes was then extended
to describe the γp → γπN reactions. Our model for these
reactions is gauge invariant with respect to both initial and final
photons. In particular, it is constructed such that in the limit of
small outgoing photon energy, it exactly reproduces the low-
energy theorem that relates the γp → γπN and γp → πN

processes. For the γp → γπN reactions, the tree-level terms
include Born diagrams, vector meson exchanges, the π0 →
γ γ anomaly contribution, and the �(1232) contribution.
The rescattering effects are calculated in the soft-photon
approximation using the previously described model for γp →
πN . In this framework, the only new parameter entering in to
the description of the γp → γπN process is the �+(1232)
magnetic dipole moment (MDM).

Using this unitary model, we investigated several γp →
γπN observables. We found good agreement for the existing
experimental data of the γp → γπ0p reaction. In particular,
the rescattering effects were found to slightly reduce the
cross sections at the larger outgoing photon energies, which
improved the agreement with the data. We then studied
the sensitivity of the γp → γπ0p observables to the �+
MDM. The unpolarized differential cross section displays an
interference structure which reduces the sensitivity to values
of κ�+ in the range between 0 and 3. However, the photon
asymmetry for linearly polarized incident photons is strongly
dependent on κ�+ , and it changes between 0.35 and 0.15 when
κ�+ is varied between 0 and 6. The dedicated measurements
of the photon asymmetry that are currently underway at
MAMI are therefore highly promising for a more quantitative
extraction of the �+ MDM.
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FIG. 18. (Color online) Top: the angular distribution of the
emitted pions for the γp → γπ+p threefold differential c.m. cross-
section dσ/dE′

γ d�π at incident photon lab energy Elab
γ = 400 MeV

and fixed outgoing photon energy E′c.m.
γ = 100 MeV. The sensitivity

of the unitary model to different values of κ�+ is shown. Bottom:
same for the photon asymmetry �.

The single asymmetry for circularly polarized incident
photons provides a new observable for a three-body reaction
such as γp → γπN if the photon is emitted out of the
plane defined by the incident photon and the final pion. This
asymmetry has the interesting feature that it vanishes exactly
in the soft-photon limit, where the γp → γπ0p process
effectively reduces to a two-body reaction, for which the
asymmetry vanishes. Since the pure bremsstrahlung due to
soft-photon emission from the external charged particles does
not contribute, the single asymmetry for circularly polarized
incident photons therefore acts as a filter to enhance the
�-resonant process, and indeed our results display a strong
sensitivity to the �+ MDM.

Yet another sensitive observable with regard to the �+
MDM is the helicity cross section σ1/2. In particular, this
differential cross section changes by about a factor of 2 when
κ�+ is varied between 0 and 6.

Besides a prediction for the γp → γπ0p observables, our
unitary model also provides a description of the γp → γπ+n

reaction. However, the γp → γπ+n process is dominated
by nonresonant processes and bremsstrahlung contributions
originating from radiation off the charged pion line. Therefore,
the measurement of the γp → γπ+n process will put stringent
constraints on our theoretical description of the nonresonant
contributions and can be useful in minimizing model depen-

dencies when extracting information on the �+ MDM from
the γp → γπ0p process.

To improve on the accuracy in the extraction of the �+
MDM, the present framework may be extended to include the
rescattering corrections at finite final photon energies. At such
energies the final photon can be emitted not only from the
external charged lines, as in Figs. 9(b) and (c), but also from
an intermediate line. A particularly important contribution in
the � region is expected to come from the � → πN → �

self-energy where the photon is emitted from the light pion
in the loop. The Ward identity then requires that the energy
dependence of this vertex correction be consistent with the
energy dependence of the � self-energy. Such a calculation,
which will provide an imaginary part to the γ�� vertex, is
beyond the scope of the present work (see, e.g., Ref. [35]
where it has been evaluated for the πN → πNγ reaction).
Its evaluation for the γN → γπN reaction is left for a future
work [36] and will serve as an input in the present framework
in order to extend its range of applicability.

The upcoming dedicated measurements of the γp → γπN

reaction will certainly trigger new theoretical efforts with
the aim to further minimize the model dependencies in the
extraction of the �+ MDM.
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APPENDIX: DERIVATION OF THE LOW-
ENERGY THEOREMS

A. Low-energy theorem relating the γ p → γπ0 p and
γ p → π 0 p processes

In the soft-photon limit the γp → γπ0p reaction is exactly
described by the bremsstrahlung process from the initial and
final protons. This yields the fivefold differential c.m. cross
section in the limit k′ → 0 of(

dσ

dE′
γ d�πd�γ

)c.m.

−→ e2

16π3
E′

γ

∑
λ′

×
∣∣∣∣p′ · ε(k′, λ′)

p′ · k′ − p · ε(k′, λ′)
p · k′

∣∣∣∣
2 (

dσ

d�π

)c.m.

, (A1)

where (dσ/d�π )c.m. is the c.m. cross section for the γp →
π0p process, λ′ = ±1 the photon polarization, and ε its polar-
ization vector. We calculate the rhs of Eq. (A1) by performing
the sum over the photon polarizations and integrating over the
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photon angles. This gives(
dσ

dE′
γ d�π

)c.m.

−→ e2

16π3
E′

γ I
(

dσ

d�π

)c.m.

, (A2)

where we introduced the photon angular integral I as

I ≡
∫

d�c.m.
γ

[
2p · p′

(p · k′) (p′ · k′)
− M2

N

(p · k′)2
− M2

N

(p′ · k′)2

]
.

(A3)

In Eq. (A3), the second and third terms arise from the
contribution of bremsstrahlung from the initial and final
proton, respectively, whereas the first term stems from the
interference between the bremsstrahlung amplitudes from the
initial and final protons.

We next work out the photon angular integral of Eq. (A3).
It is convenient to introduce the initial and final nucleon
velocities βN ≡ p/EN and β ′

N ≡ p′/E′
N , and a Feynman

parametrization of the first term of Eq. (A3), which brings
the propagators to the same denominator. The result is

I = 2π

(E′
γ )2

{
(1 − βN · β ′

N )
∫ +1

−1
dy

∫ +1

−1
dx

1

(1 − βy x)2

− (
1 − β2

N

) ∫ +1

−1
dx

1

(1 − βN x)2

− (
1 − β ′2

N

) ∫ +1

−1
dx

1

(1 − β ′
N x)2

}
, (A4)

where βN, β ′
N , and βy are the magnitudes of βN ,β ′

N , and β y,
which are related by

β y ≡ βN
1

2
(1 + y) + β ′

N
1

2
(1 − y). (A5)

By use of the identity∫ +1

−1
dx

1

(1 − β x)2
= 2

1 − β2
, (A6)

Eq. (A4) can be cast into the form

I = 2π

(E′
γ )2

{
−4 + 2 (1 − βN · β ′

N )
∫ +1

−1
dy

1(
1 − β2

y

)
}

.

(A7)
We next define the variable

v ≡
√

1 + 4M2
N

−t
, (A8)

with t = (p′ − p)2. This allows us to derive the relations

(1 − βN · β ′
N ) = (

1 − β2
N

)1/2(
1 − β ′

N

2)1/2
(

v2 + 1

v2 − 1

)
(A9)

and∫ +1

−1
dy

1(
1 − β2

y

) = 1(
1 − β2

N

)1/2 (
1 − β ′2

N

)1/2

·
(

v2 − 1

2v

)
ln

(
v + 1

v − 1

)2

. (A10)

Combining Eqs. (A6–A10), we finally obtain

I = 8π

(E′
γ )2

[
−1 +

(
v2 + 1

2v

)
· ln

(
v + 1

v − 1

)]
. (A11)

If we insert this expression into the soft-photon limit for the
cross section of Eq. (A2), Eq. (32) follows immediately.

B. Low-energy theorem relating the γ p → γπ+n and
γ p → π+n processes

The low-energy limit of π+ production may be derived
from the previous results by a simple consideration. Whereas
in the case of π0 production all final-state radiation comes from
the protons, in the case of π+ production the charged pion in
the final state will radiate. Hence we obtain the relevant photon
angular integral from I of Eq. (A3) by replacing p′ → q and,
in the third term, M2

N → m2
π . The result is(

dσ

dE′
γ d�π

)c.m.

−→ e2

16π3
E′

γ Ĩ
(

dσ

d�π

)c.m.

, (A12)

with

Ĩ ≡
∫

d�c.m.
γ

[
2p · q

(p · k′) (q · k′)
− M2

N

(p · k′)2
− m2

π

(q · k′)2

]
,

(A13)

where the second and third terms arise from the contribution
of bremsstrahlung from the initial proton and final pion alone,
whereas the first term stems from the interference between the
bremsstrahlung amplitudes from the initial proton and the final
pion.

We next work out the photon angular integral of
Eq. (A13) along the same lines as in the case of a neutral
pion. We introduce the initial nucleon velocity βN ≡ p/EN

and the final pion velocity βπ ≡ q/ωπ , define an appropriate
variable ṽ as

ṽ ≡
√

1 + 4MNmπ

(MN − mπ )2 − u
, (A14)

where u ≡ (p − q)2. The bremsstrahlung integral of Eq. (A13)
can then be worked out analogously as in Eq. (A11) and yields

Ĩ = 8π

(E′
γ )2

[
−1 +

(
ṽ2 + 1

2ṽ

)
ln

(
ṽ + 1

ṽ − 1

)]
. (A15)

We note as an additional check that the new variable ṽ turns into
the previous variable v if we replace mπ → MN and q → p′.

Finally, we can also introduce the ratio R between the γp →
γπ+p process in the limit of a soft outgoing photon and the
γp → π+n process as

R ≡ 1

σπ+
· E′

γ

dσ

dE′
γ

→ 1 for E′
γ → 0, (A16)

with σπ+ defined as

σπ+ ≡ e2

2π2

∫
d�c.m.

π W (ṽ)

(
dσ

d�π

)c.m.

. (A17)

In Eq. (A17), W (ṽ) is obtained from Eq. (31) by making
the replacement v → ṽ.
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