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Chiral SU(3) dynamics and � hyperons in the nuclear medium
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We present a novel approach to the density-dependent mean field and the spin-orbit interaction of a � hyperon
in a nuclear many-body system, based on flavor-SU(3) in-medium chiral perturbation theory. The leading
long-range �N interaction arises from kaon exchange and from two-pion exchange with a � hyperon in the
intermediate state. The empirical �-nucleus potential depth of about −28 MeV is well reproduced with a single
cutoff scale, �̄ = 0.7 GeV, effectively representing all short-distance (high-momentum) dynamics not resolved
at scales characteristic of the nuclear Fermi momentum. This value of �̄ is remarkably consistent with the one
required to reproduce the empirical saturation point of isospin-symmetric nuclear matter in the same framework.
The smallness of the �-nuclear spin-orbit interaction finds a natural (yet novel) explanation in terms of an almost
complete cancellation between short-range contributions (properly rescaled from the known nucleonic spin-orbit
coupling strength) and long-range terms generated by iterated one pion exchange with intermediate � hyperons.
The small ��-mass difference figures prominently in this context.
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I. INTRODUCTION AND FRAMEWORK

The physics of � hypernuclei has a long and well-
documented history [1–4]. It has at the same time raised
questions of fundamental interest. The empirical single-
particle energies of a � hyperon bound in hypernuclei are
well described in terms of an attractive mean-field about
half as strong as the one for nucleons in nuclei [2]. In
contrast, the extraordinary weakness of the �-nucleus spin-
orbit interaction, as compared to the one in ordinary nuclei,
has always been a puzzle. For example, recent precision
measurements [5] of E1-transitions from p- to s-shell orbitals
of a � hyperon in 13

� C give a p3/2 − p1/2 spin-orbit splitting
of only (152 ± 65) keV to be compared with about 6 MeV
in ordinary p-shell nuclei. Even admitting a large uncertainty
in the hypernuclear case, the �-nuclear spin-orbit interaction
appears to be systematically weaker by at least an order of
magnitude than the N-nucleus spin-orbit force.

Over the years, various attempts have been made to under-
stand this phenomenon [6–8]. So far, standard calculations
using one-boson exchange �N potentials [9–12] tend to
overestimate the �-nucleus spin-orbit splittings significantly.
SU(3) generalizations of standard nuclear relativistic mean-
field models, such as the one reported in Ref. [13], require
extra parameters to deal with the spin-orbit problem. The
importance of �-�0 mixing in the context of SU(3) effective
Lagrangians applied to �-hypernuclei has been emphasized
in Ref. [14]. The small spin-orbit coupling of the � hyperon
emerges naturally in the naive SU(6) quark model with flavor
symmetry breaking. An approach that combines quark model
aspects with scalar and vector meson exchange (the quark-
meson coupling model) has also been applied to hypernuclei
[15], with Pauli blocking in the �N -�N coupled channels
incorporated phenomenologically. Another option that has
been studied at the quark level is the color analog of the
Fermi-Breit interaction within a resonating-group approach
[16], albeit with a large quark-gluon coupling outside the range
of perturbative applicability.

More recently, in-medium effective field theory approaches
have opened new perspectives for dealing with the issues
of single-particle motion and spin-orbit coupling in ordinary
nuclei, both symmetric and asymmetric in isospin. In this
work we take steps toward including strangeness in such a
framework.

Our calculation is based on the leading order chiral meson-
baryon Lagrangian in flavor-SU(3):

LφB = tr(B̄(γµ(i∂µB + [�µ,B]) − MB)B)

+D tr(B̄γµγ5{uµ, B}) + F tr(B̄γµγ5[uµ, B]), (1)

where the traceless hermitian 3 × 3 matrix B of Dirac spinors
represents the octet baryon fields (N,�,�,�) with mass MB .
The chiral connection �µ = i[ξ †, ∂µξ ]/2 and the axial-vector
quantity uµ = i{ξ †, ∂µξ}/2 generate interaction terms with the
Goldstone bosons (π,K, K̄, η) collected in the SU(3) matrix
ξ = exp(iφ/2f ). The parameter f is identified with the weak
pion decay constant fπ = 92.4 MeV and D and F denote
the SU(3) axial-vector coupling constants of the baryons. We
choose as their values D = 0.84 and F = 0.46. This leads
to a KN�-coupling constant of gKN� = (D + 3F )(MN +
M�)/(2

√
3fπ ) = 14.25 and a π��-coupling constant of

gπ�� = D(M� + M�)/(
√

3fπ ) = 12.12, which are both con-
sistent with the empirical values summarized in Tables 6.3 and
6.4 of Ref. [17]. Our KN�-coupling constant is compatible
with the upper range of the interval given for gKN� in
the recent systematic compilation of Ref. [18]. The π��-
coupling constant used in the present work is consistent with
the one extracted from hyperonic atoms [19]. Furthermore,
the pion-nucleon coupling constant has the value gπN =
gAMN/fπ = 13.2 with gA = D + F = 1.3. Apart from these
three pseudovector KN�, π��, and πNN couplings, no
further interaction terms from LφB come into play to the order
we are working here.
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FIG. 1. One-kaon exchange Fock diagram
and two-pion exchange Hartree diagrams with
� hyperons in the intermediate state. The hor-
izontal double lines represent the filled Fermi
sea of nucleons in the in-medium nucleon
propagator, (γ · p − MN )[i(p2 − M2

N + iε)−1 −
2πδ(p2 − M2

N )θ (p0)θ (kf − | �p |)]. The isospin
factors of the kaon- and pion-exchange diagrams
are 2 and 6, respectively.

II. �-NUCLEUS SINGLE-PARTICLE POTENTIAL

Consider first the density-dependent mean-field U�(kf )
for a zero-momentum � hyperon placed as a test par-
ticle in isospin-symmetric nuclear matter. The potential
depth U�(kf 0) at equilibrium density ρ0 = 0.16 fm−3 deter-
mines primarily the spectra of medium heavy and heavy
� hypernuclei. We calculate the long-range contributions
generated by the exchange of light Goldstone bosons between
the � hyperon and the nucleons in the filled Fermi sea. The
only nonvanishing one-meson exchange contribution comes
from the kaon-exchange Fock diagram in Fig. 1, from which
we obtain the following repulsive contribution to the �-nuclear
mean field:

U�(kf )(K) = (D + 3F )2

(6πfπ )2

{
k3
f − 3m2

Kkf + 3m3
K arctan

kf

mK

}

+O
(
M−2

B

)
, (2)

with mK = 496 MeV the average kaon mass. At densities at
and below nuclear matter saturation density ρ � 0.16 fm−3

(corresponding to Fermi momenta kf � 263 MeV) the one-
kaon exchange can already be regarded as being of short range.
The ratio kf /mK � 0.53 is small and the expression in curly
brackets of Eq. (2) is dominated by its leading term 3k5

f /5m2
K

in the kf expansion.
Because one-pion exchange is excluded by isospin in-

variance, the leading long-range interaction between the
�-hyperon and the nucleons arises from two-pion exchange.
The corresponding two-loop diagrams with a � hyperon
in the intermediate state are shown in Fig. 1. The small
��-mass splitting M� − M� = 77.5 MeV that comes into
play here is comparable in magnitude to k2

f 0/MN , twice the
typical kinetic energies of the nucleons. Therefore it has to
be counted accordingly in the energy denominator. Putting all
pieces together we find from the second diagram in Fig. 1 the
following attractive contribution to the �-nuclear mean field:

U�(kf )(2π) = −D2g2
A

f 4
π

∫
| �p1|<kf

d3p1d
3l

(2π )6

× MB
�l 4(

m2
π + �l 2

)2
[�2 + �l 2 − �l · �p1]

+ O
(
M−1

B

)
, (3)

with mπ = 138 MeV the average pion mass. The mean baryon
mass MB = (2MN + M� + M�)/4 = 1047 MeV serves the
purpose of averaging out differences in the kinetic energies

of the various baryons involved. The relation M� − M� =
�2/MB for the ��-mass splitting defines another small mass
scale �. Its magnitude � � 285 MeV is close to the Fermi
momentum kf 0 = 263 MeV at saturation density. As it stands
the d3l-loop integral in Eq. (3) is ultraviolet divergent. By
subtracting MB/�l 2 from the integrand it becomes convergent
and analytically solvable. After regularizing the remaining
(structureless) linear divergence

∫ ∞
0 dl 1 by a momentum

cutoff �̄ we get

U�(kf )(2π) = D2g2
AMB

(2πfπ )4

{
− 4�̄

3
k3
f + πm3

πkf �

(
k2
f

m2
π

,
�2

m2
π

)}

+O
(
M−1

B

)
, (4)

with the function

�(u, δ) = δ − 3 + 1

4
(u − 2δ + 6)

√
4δ − u

+ 2√
u

(2u + δ2 − 4δ + 3) arctan

√
u

2 + √
4δ − u

,

(5)

emerging from the combined loop and Fermi-sphere
integration, where u = k2

f /m2
π and δ = �2/m2

π . The branch
point of the function �(u, δ) at kf = 2� is related to the
kinematical threshold for the (on-shell) scattering process
�N → �N . This threshold is reached only at very high
densities, ρ � 1.4 fm−3. Note that the decomposition in
Eq. (4) is optimal from the point of view of separating effects
from high and low mass scales. The (high-momentum) cutoff
scale �̄ effectively parameterizes the strength of an attractive
�N -contact interaction. No dependence on the two low-mass
scales, mπ and �, is left over in the corresponding term
linear in the nucleon density ρ = 2k3

f /3π2. The third diagram
in Fig. 1 with crossed pion lines corresponds to irreducible
two-pion exchange between the � hyperon and the nucleons.
At leading order in the small momentum expansion it is
exactly canceled by a MB-independent contribution from the
second diagram in Fig. 1 (with parallel pion lines). Note that
the same exact cancellation between the planar and crossed
box graphs is at work in the isoscalar central channel of
the 2π -exchange NN potential (for details see Sec. 4.2 in
Ref. [20]). Thus we are left with the Pauli-blocking correction
to the iterated pion-exchange diagram with intermediate
� states. From the last diagram in Fig. 1 we find the following
repulsive contribution to the �-nuclear mean field:
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FIG. 2. The mean-field U�(kf ) of a � hyperon in isospin-
symmetric nuclear matter versus the nucleon density ρ = 2k3

f /3π 2.
The cutoff scale �̄ has been adjusted to the value �̄ = 0.70 GeV.

U�(kf )(2π)
med = D2g2

A

f 4
π

∫
| �p1,2|<kf

d3p1d
3p2

(2π )6

× MB ( �p1 − �p2)4[
m2

π + ( �p1 − �p2)2
]2 [

�2 + �p 2
2 − �p1 · �p2

]
+O

(
M−1

B

)
. (6)

After performing the angular integrations this expression
reduces to an easily manageable two-dimensional integral:

U�(kf )(2π)
med = D2g2

AMBm4
π

2(2πfπ )4

∫ u

0
dx

∫ u

0
dy

1

(2δ − 1 − x + y)2

×
{

4(2δ − 1 − x + y)
√

xy

(1 + x + y)2 − 4xy

+ (2x − 2y − 4δ + 1) ln
1 + x + y + 2

√
xy

1 + x + y − 2
√

xy

+ (2δ − x + y)2 ln
δ + y + √

xy

δ + y − √
xy

}
, (7)

with the abbreviations u = k2
f /m2

π and δ = �2/m2
π .

Summing up all terms, Fig. 2 shows the calculated
�-nuclear mean-field U�(kf ) as a function of the nucleon
density ρ = 2k3

f /3π2. The cutoff scale has been adjusted to
the value �̄ = 0.7 GeV. At normal nuclear matter density
ρ0 = 0.16 fm−3 (corresponding to kf 0 = 263 MeV) one
finds U�(kf 0) = (4.17 − 39.77 + 7.46) MeV= −28.15 MeV,
where the individual entries correspond to one-kaon exchange,
iterated one-pion exchange with intermediate �N states,
and the Pauli-blocking correction to the latter. Note that
the physically reasonable cutoff scale �̄ = 0.70 GeV which
reproduces the empirical potential depth U�(kf 0) � −28 MeV
[1] is close to �̄ = 0.65 GeV needed to reproduce the empirical
saturation point of isospin-symmetric nuclear matter in the
same framework [21]. This is a remarkable and nontrivial

feature. At the present stage of our calculation all other
possible contributions to the �-nuclear mean-field U�(kf )
from πK exchange, K̄K exchange, and so on, are hidden in
the adjusted value of the cutoff �̄ = 0.70 GeV, or equivalently,
in the contact term that encodes short-distance dynamics not
resolved at momentum scales around kf 0. At the densities of
interest all those effects can be regarded as being of short range
nature and therefore they are summarized by this single term
linear in the nucleon density ρ = 2k3

f /3π2.

III. �-NUCLEUS SPIN-ORBIT INTERACTION

The empirical finding that the �-nucleus spin-orbit cou-
pling is negligibly small in comparison to the strong spin-
orbit interaction of nucleons in ordinary nuclei presents
an outstanding problem in low-energy hadron physics. In
relativistic scalar-vector mean-field models a strong tensor
coupling of the ω meson to the � hyperon, equal and of
opposite sign to the vector-coupling, has been proposed as a
possible solution [8]. We demonstrate here that there is a more
natural source of cancellation in the hypernuclear many-body
problem.

The pertinent quantity to extract the �-nuclear spin-orbit
coupling is the spin-dependent part of the self-energy of a
� hyperon interacting with weakly inhomogeneous isospin-
symmetric nuclear matter. Let the �-hyperon scatter from
initial momentum �p − �q/2 to final momentum �p + �q/2. The
spin-orbit part of the self-energy in the weakly inhomogeneous
medium is then [22]

�spin = i

2
�σ · (�q × �p ) U�ls(kf ) , (8)

where the density-dependent spin-orbit coupling strength
U�ls(kf ) is taken in the limit of homogeneous nuclear matter
(characterized by its Fermi momentum kf ) and zero external
�-momenta: �p = �q = 0. The more familiar spin-orbit Hamil-
tonian of the shell model follows from Eq. (8) by multiplication
with a density form factor and Fourier transformation:

H�ls = U�ls(kf 0)
1

2r

df (r)

dr
�σ · �L. (9)

Here f (r) is the normalized nuclear density profile with
f (0) = 1, and �L = �r × �p is the orbital angular momentum.
For reference and orientation, consider first the frequently used
simple model of isoscalar vector boson (ω-meson) exchange
between the � hyperon and the nucleon. The nonrelativistic
expansion of the vector (and tensor) coupling vertex between
Dirac spinors of the � hyperon gives rise to a spin-orbit term
proportional to i �σ · (�q × �p )/4M2

�. Next one takes the limit
of homogeneous nuclear matter (i.e. �q = 0), performs the
remaining integral over the nuclear Fermi sphere and arrives
at the familiar result:

U�ls(kf )(ω) = GV

2M2
�

ρ, (10)

linear in the nucleon density ρ. Here, GV = gω�(1 +
2κω�)gωN/m2

ω is a coupling strength of dimension (length)2,
which includes the ω-baryon coupling constants, a possible
tensor coupling of the ω meson to the � hyperon with κω�
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the tensor-to-vector coupling ratio, and the ω-meson mass mω.
In the absence of κω� and assuming that the ω meson does
not couple to the strange quark in the � hyperon, one would
naively expect GV to be 2/3 of the corresponding piece of the
NN interaction for which GV � 12 fm2. Evidently, an almost
vanishing �-nuclear spin-orbit force would be difficult to
understand at this stage unless one postulates a much reduced
coupling gω� or a sizeable and negative tensor-to-vector
coupling ratio κω� [8].

The important observation is now that iterated one-pion
exchange with an intermediate � hyperon also generates
a sizeable spin-orbit coupling, with a sign opposite to that
expected from the short-range interactions. The prefactor
i �σ × �q is immediately identified by rewriting the product
of π��-interaction vertices �σ · (�l − �q/2) �σ · (�l + �q/2) at the
open baryon line in the 2π -exchange process shown by
the second diagram in Fig. 1. For all remaining parts of
the iterated pion-exchange diagram one can then take the
limit of homogeneous nuclear matter (i.e., �q = 0). The other
essential factor �p emerges from the energy denominator
�2 + �l · (�l − �p1 + �p). Keeping only the term linear in the
external momentum �p one finds from the second diagram in
Fig. 1 the following contribution to the �-nuclear spin-orbit
coupling strength:

U�ls(kf )(2π) = −2D2g2
A

3f 4
π

∫
| �p1|<kf

d3p1d
3l

(2π )6

× MB
�l 4(

m2
π + �l 2

)2
[�2 + �l 2 − �l · �p1]2

.

(11)

This loop integral is convergent as it stands. It can be solved
together with the Fermi sphere integral in closed form:

U�ls(kf )(2π) = D2g2
AMBmπkf

24π3f 4
π

�

(
k2
f

m2
π

,
�2

m2
π

)
, (12)

with the function:

�(u, δ) = 1

u + (δ − 1)2
[6δ − 2δ2 − 4 − 3u

+ (δ2 − 3δ + 2 + u)
√

4δ − u]

+ 4√
u

(2 − δ) arctan

√
u

2 + √
4δ − u

. (13)

The Pauli-blocking correction to the �-nuclear spin-orbit
coupling strength generated by iterated pion exchange is
calculated in the same way:

U�ls(kf )(2π)
med = 2D2g2

A

3f 4
π

∫
| �p1,2|<kf

d3p1d
3p2

(2π )6

× MB ( �p1 − �p2)4[
m2

π + ( �p1 − �p2)2
]2 [

�2 + �p2
2 − �p1 · �p2

]2 ,

(14)

and after performing the angular integrations it turns into the
numerically easily manageable form:
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FIG. 3. The spin-orbit coupling strength U�ls(kf ) of a � hyperon
in isospin-symmetric nuclear matter versus the nucleon density ρ =
2k3

f /3π 2. The lower curve shows the long-range contribution from
iterated 1π exchange with � hyperons in the intermediate state. The
two upper curves include in addition the short-range contribution,
U�ls(kf )(sh) = 24.8 Cls MeV fm2 · ρ/ρ0, with Cls = 2/3 and 1/2.

U�ls(kf )(2π)
med = D2g2

AMBm2
π

12(πfπ )4

∫ u

0
dx

∫ u

0
dy

× 1

(2δ − 1 − x + y)2

{
2
√

xy

(1 + x + y)2 − 4xy

+ (2δ − x + y)2√xy

2(δ + y)2 − 2xy
+ 2δ − x + y

2δ − 1 − x + y

× ln
(δ + y + √

xy)(1 + x + y − 2
√

xy)

(δ + y − √
xy)(1 + x + y + 2

√
xy)

}
.

(15)

The two terms, Eqs. (12) and (15), are model independent
in the sense that they require no regularization. Their input
parameters (couplings constants and masses) are physical
quantities and thus uniquely fixed. Note that these spin-orbit
couplings are not relativistic effects: they are even proportional
to the baryon mass MB . This large scale enhancement factor
originates from the energy denominator of the iterated pion-
exchange diagram. The expressions in Eqs. (12) and (15)
constitute the unique long-range �-nuclear spin-orbit inter-
action. The summed contributions from these 2π -exchange
processes are shown by the lower solid line in Fig. 3. They are
of comparable magnitude but of opposite sign with respect to
the short-range pieces mentioned earlier. The short-range part
of the �-nuclear spin-orbit interaction results from a variety
of processes, one of them being the isoscalar-vector exchange
piece discussed previously. We relate the short-distance spin-
orbit coupling of the � hyperon to the corresponding one of
the nucleon as follows:

U�ls(kf )(sh) = Cls

M2
N

M2
�

UNls(kf )(sh). (16)
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The factor (MN/M�)2 results from the replacement of the
nucleon by a �-hyperon in these relativistic spin-orbit terms.
The coefficient Cls parameterizes the ratio of the relevant
coupling strengths. The upper limit expected from naive quark
model considerations is Cls = 2/3. Estimates from a QCD
sum rule analysis of the Lorentz scalar and vector mean fields
of a � hyperon in a nuclear medium [23] indicate that Cls is
smaller than its naive quark model value, partly as consequence
of flavor-SU(3) breaking. For nucleons in nuclei, large Lorentz
scalar and vector mean fields with their in-medium behavior
governed by QCD sum rules can explain the strong spin-
orbit coupling in calculations that combine these mean-fields
with the long- and intermediate-range attraction provided by
perturbative chiral pion-nucleon dynamics [24]. Consider now
the leading terms of the vector self-energies �V , linear in the
quark density 〈u†u〉 = 〈d†d〉 = 3ρ/2, in a nuclear medium
with only u and d quarks. From Ref. [23] one estimates
roughly �V (�)/�V (N ) � 1/2 for the ratio of vector mean
fields experienced by a � hyperon and a nucleon. Corrections
from in-medium condensates of higher dimension tend to
reduce this ratio further. For the Lorentz scalar mean fields, the
QCD sum rule results are subject to larger uncertainties due
to the unknown contributions from four-quark condensates.
Conversely, at least some of these contributions are accounted
for by our explicit treatment of two-pion exchange processes.
We therefore assume as a reasonable estimate, guided by
[23], a factor Cls � 0.4–0.5 for both the scalar and vector
self-energies that act coherently to produce the short-range
spin-orbit force and cancel in the spin-averaged single-particle
potential U�(kf ). In practice, we shall vary Cls between 1/2
and 2/3.

For the further discussion we take the value UNls(kf 0)(sh) =
35 MeV fm2 of the nucleonic spin-orbit coupling strength
from shell model calculations [25]. Phenomenological Skyrme
forces [26] give approximately the same value UNls(kf 0)(sh) =
3ρ0W0/2 � 30 MeV fm2 (with W0 = 124 MeV fm5 the spin-
orbit parameter in the Skyrme phenomenology). The lower
curve in Fig. 3 shows the �-nuclear spin-orbit coupling
strength generated by iterated pion exchange with � hyperons
in the intermediate state as a function of the nucleon density
ρ = 2k3

f /3π2. The upper curves include in addition the short-
range contribution U�ls(kf )(sh) = 24.8 Cls MeV fm2 · ρ/ρ0,
which is obtained via Eq. (16) from the empirical nucleonic
spin-orbit coupling strength with Cls taken at the values 2/3
and 1/2. At nuclear matter saturation density ρ0 = 0.16 fm−3

one finds U�ls(kf 0) = (24.8 Cls − 16.70 + 1.64) MeV fm2,
where the individual entries correspond to the short-range
term, the contribution from iterated 1π -exchange and the
Pauli-blocking correction to the latter. One observes a strong
cancellation between the short- and long-range contributions.
This so-far unnoticed balance between sizeable “correct-
sign” and “wrong-sign” spin-orbit terms for the � hyperon
offers a novel and natural explanation for the empirically
observed small spin-orbit splittings in � hypernuclei, al-
though with still persisting uncertainties in the short-range
contribution.

It is important to note that such a “wrong-sign” spin-orbit
interaction from iterated one-pion exchange (entirely through

FIG. 4. Three-body diagram of two-pion exchange with virtual
�(1232)-isobar excitation. For a nucleon it generates a sizeable three-
body spin-orbit force of the “right sign.” The horizontal double lines
symbolize the filled Fermi sea of nucleons. The analogous diagram
does not exist for a � hyperon.

the second-order tensor force) exists indeed also for nucleons
(see Fig. 4 in Ref. [27]).* It has, however, been found
recently that three-body spin-orbit forces generated by 2π -
exchange with virtual �(1232)-isobar excitation compensate
this contribution to a large extent [28] (see Fig. 2 therein),
leaving all room for additional short-distance contributions. In
the case of the �-hyperon the analogous three-body effects
with virtual �(1232)-isobar excitation are not possible and
therefore the sizeable “wrong-sign” spin-orbit interaction
generated by iterated pion-exchange becomes visible. The
absence of analogous three-body mechanisms for the �-
hyperon becomes immediately clear by inspection of the
relevant 2π -exchange diagram in Fig. 4. Replacing the external
nucleon by a � hyperon introduces as the intermediate state
on the open baryon line a � hyperon for which there exists
no filled Fermi sea. The so-far emerging picture of the nuclear
spin-orbit interaction is a rather intriguing one. The spin-orbit
coupling of nucleons in nuclei is predominantly of short-
range origin because the long-range 2π -exchange components
find a mechanism of self-cancellation. The smallness of
the �-nuclear spin-orbit coupling, conversely, reveals the
existence of a long-range 2π -exchange component of the
“wrong sign.”

IV. CONCLUDING REMARKS

In summary we have calculated the density-dependent
�-nuclear mean-field U�(kf ) in the framework of SU(3)
chiral perturbation theory. The leading order contributions
emerge from kaon-exchange and iterated pion exchange with
� hyperons in the intermediate state. The empirical potential
depth U�(kf 0) � −28 MeV is well reproduced with a cutoff

*One should note, however, that the one-pion exchange tensor force
is too strong at intermediate and short distances, so that its effect
on the spin-orbit coupling, as calculated in this work, represents an
upper limit in magnitude.
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scale �̄ = 0.70 GeV, equivalent to a contact interaction, which
represents effectively all short-range dynamics not “resolved”
at scales characteristic of the nuclear Fermi momentum. The
anomalously small �-nuclear spin-orbit interaction finds a
novel and natural explanation in terms of the strong cancel-
lation between short-range contributions (roughly estimated
from the empirical nucleonic spin-orbit coupling strength,
admittedly with large uncertainties) and long-range contri-
butions generated by iterated pion-exchange with � hyperons
in the intermediate state. The exceptionally small ��-mass

splitting M� − M� = 77.5 MeV prominently influences the
long-range iterated 1π -exchange effects.
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