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Gauge dependence of calculations in relativistic Coulomb excitation
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Before a quantum-mechanical calculation involving electromagnetic interactions is performed, the gauge to
be used in expressing the potentials must be chosen. If the calculation is done exactly, the observable results it
predicts will be independent of the choice of gauge. However, in most practical calculations, approximations are
made, which can destroy the gauge invariance of the predictions. We compare here the results of coupled-channel
time-dependent relativistic Coulomb excitation calculations as performed in either Lorentz or Coulomb gauges.
We find significant differences when the bombarding energy per nucleon is �2 GeV, which indicates that the
common practice of relying completely on the Lorentz gauge can be dangerous.
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I. INTRODUCTION

Coulomb excitation is a collison process in which the
predominant projectile-target interaction is electromagnetic.
The electromagnetic interaction is expressed in the Hamil-
tonian, and therefore also in the Schrödinger equation, in
terms of the electromagnetic potentials, (ϕ(r, t), A(r, t)). The
potentials are subject to gauge ambiguity, since they are not
uniquely determined by the charge and current distributions
that create the electromagnetic field. Equivalently, if a gauge
transformation generated by �(r, t) is performed, the new
potentials (ϕ′(r, t), A′(r, t)) defined by

ϕ′(r, t) ≡ ϕ(r, t) − 1

c

∂�(r, t)
∂t

(1.1a)

A′(r, t) ≡ A(r, t) + ∇�(r, t) (1.1b)

yield the same (E(r, t), B(r, t)) as did (ϕ(r, t), A(r, t)) [1].
Thus (ϕ(r, t), A(r, t)) and (ϕ′(r, t), A′(r, t)) are both con-
sistent with Maxwell’s equations and the given charge and
current distributions. Since the Schrödinger equation depends
explicitly on the potentials, it is changed by a gauge transfor-
mation, and so is the wave function that is the solution of the
Schrödinger equation. However, when an observable quantity
(such as a transition probability) is calculated from this wave
function, the result is invariant under a gauge transformation,
even though the wave function is not.

The gauge invariance of an observable applies only if the
exact solution of the Schrödinger equation is used in its calcu-
lation. If an approximate solution is used, then the calculated
observable quantity may or may not be gauge invariant. A
non-gauge invariant prediction is a serious drawback for a
theory, since there is generally no a priori reason to choose
one gauge rather than another.

An example of an approximate solution that is gauge
invariant is given by first-order time-dependent perturbation
theory [2]. Suppose we want to estimate transition probabilities
in the target under the influence of a time-dependent external
potential V (r, t) provided by the projectile. If we use first-
order time-dependent perturbation theory, then the predicted

transition probability from target state φα at t = −∞ to target
state φγ at t = ∞ is given by

∣∣∣∣
∫ ∞

−∞

dt

ih̄
eiωγαtVγα(t)

∣∣∣∣
2

,

where

ωγα ≡ (εγ − εα)/h̄ (1.2a)

Vγα(t) ≡ 〈φγ |V (r, t)|φα〉. (1.2b)

Thus the first-order transition probability is proportional to
the square of the modulus of the ω = ωγα (onshell) Fourier
component of Vγα(t). If ργα and Jγα(r, t) are the target
transition charge and current densities associated with the
φα → φγ transition, the electromagnetic interaction Vγα(t) is

Vγα(t) =
∫

d3r

[
ργα(r)ϕ(r, t) − 1

c
Jγα(r) · A(r, t)

]
.

(1.3)

Target charge conservation can be expressed by the relation

∇ · Jγα(r, t) + iωγαργα(r) = 0. (1.4)

This can be used to show that the ω Fourier component of
Vγα(t),

Vγα(ω) ≡
∫ ∞

−∞

dt

ih̄
eiωtVγα(t) (1.5a)

=
∫ ∞

−∞

dt

ih̄
eiωt

∫
d3r

×
[
ργα(r)ϕ(r, t) − 1

c
Jγα(r, t) · A(r, t)

]
,

(1.5b)
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is changed by the gauge transformation1 generated by �(r, t)
by

(ω − ωγα)

h̄c

∫ ∞

−∞
dt

∫
d3reiωtργα(r)�(r, t).

Thus the onshell, ω = ωγα , Fourier component Vγα(ωγα),
which determines the first-order transition probability, is
unchanged by a gauge transformation.

There are other approximations that depend only on the
onshell Fourier transform of the interaction. For example,
in the model in which the target is represented by a har-
monic oscillator and the interaction is assumed to be linear
in the oscillating variable or its conjugate momentum, an
exact solution of the time-dependent Schrödinger equation is
available [3]. It depends only on the onshell Fourier transform
of the time-dependence of the interaction. Also, the Fermi-
Weizsacker-Williams (FWW) “method of virtual quanta” (see,
e.g., Ref. [4]) is essentially first-order perturbation theory, in
which the perturbing electromagnetic field is approximated
by a plane wave. For both theories, the gauge independence
of the onshell Fourier transform of the interaction guarantees
that their predictions are gauge invariant.

However, this gauge invariance is not guaranteed if the
full electromagnetic interaction is used, or if one wishes
to go beyond first-order perturbation theory. For example, a
coupled-channel approach to the time-dependent Schrödinger
equation has been used in an attempt to get a better descrip-
tion of Coulomb excitation to multiphonon states of giant
resonances [4–11]. One begins by choosing a set of target
states that can be expected to play a significant role in the
reaction and then solving the Schrödinger equation within the
Hilbert space defined by these states. This coupled-channel
approach depends upon the entire ω-dependence of Vγα(ω),
not only on its value for ω = ωγα . If all the target states
were included in the calculation, then the coupled-channel
solution of the Schrödinger equation would be exact, and
calculated observables would be gauge invariant. However,
if, as is always the case, the set of target states is truncated to
make the calculation feasible, then the result of the coupled-
channel calculation is approximate, and therefore calculated
observables are not gauge invariant. The main concern of this
paper is the lack of gauge invariance of the predictions of
coupled-channel time-dependent solutions of the Schrödinger
equation governing relativistic Coulomb excitation. Some
related discussions of this subject have been given by Baltz,
Rhoades-Brown, and Weneser [12], Rumrich and Greiner [13],
and Kobe and Kennedy [14].

The classic paper on relativistic Coulomb excitation [2] by
A. Winther and K. Alder (WA) described the electromagnetic
influence of the projectile on the target using classical
electromagnetic fields in the Lorentz gauge. Because the main
concern of WA was first-order time-dependent perturbation
theory, their calculated transition probabilities and cross
sections were gauge invariant. Subsequent workers in this field
who used coupled-channel methods continued to use classical

1We restrict our attention to gauge generators that vanish at
t = ±∞.

fields and the Lorentz gauge. However, as explained above,
the extent to which the results of these calculations are gauge
invariant is not certain.

When studies are done in which the electromagnetic field
is quantized, it is common to use the Coulomb (or transverse)
gauge. The reason is that the field quanta (photons) will then
be purely transverse. Table I compares the properties of the
potentials in the Lorentz and Coulomb gauges.

We consider two models for the radial density of the
projectile, as seen in its own rest frame: a finite spherically
symmetric charge distribution, and a point charge. The
expressions for the finite charge distribution are presented as
Fourier transforms, which are convenient for the multipole
expansions needed when the initial and final nuclear states are
angular momentum eigenstates. The point charge expressions
are presented as functions of t , which can be easily interpreted.
Numerical calculations show that there is very little difference
between the predictions of the two models.

In Section II we find the generator �(r, t), which will
take us from the commonly used Lorentz gauge to the
Coulomb gauge in the classical-field approach to relativistic
Coulomb excitation. This generator is already known for a
point projectile [12], but we derive the expression appropriate
to a projectile of finite size. Section III presents the interaction
potentials calculated in these two gauges. In Sec. IV we
compare multipole expansions of these potentials and show
that the Coulomb gauge potential is free of a divergence
that appears in the Lorentz gauge potential at high bom-
barding energy. Sections V and VI apply these formulas
to the excitation of multiphonon states of the giant dipole
resonance in 40Ca, as a result of bombardment by 208Pb nuclei.
Section VII presents our conclusions and some general
observations about gauge invariance.

II. THE GAUGE TRANSFORMATION CONNECTING THE
LORENTZ AND COULOMB GAUGES

We follow the standard approach to relativisitic Coulomb
excitation as proposed by WA. The projectile nucleus is
assumed to travel along a straight-line orbit parallel to the
ẑ axis, with impact parameter b, at constant speed v. The
magnitude of the impact parameter is large enough so that
nuclear interactions between the target and projectile are
negligible. Because of the assumed large projectile mo-
mentum, the electromagnetic impulse the projectile receives
due to its interaction with the target has little effect on its
trajectory, so the projectile maintains its constant speed and
impact parameter throughout the collision. As the projectile
passes, the target nucleus feels the time-dependent projectile
electromagnetic fields, which induce transitions between the
quantum states of the target.

We seek the gauge function �(r, t) that generates the gauge
transformation

AC(r, t) = AL(r, t) + ∇�(r, t) (2.1a)

ϕC(r, t) = ϕL(r, t) − 1

c

∂

∂t
�(r, t) (2.1b)

between the potentials satisfying the Lorentz and Coulomb
conditions listed in Table I.
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TABLE I. Comparison of the corresponding properties of the potentials in
the Lorentz and Coulomb gauges, due to the projectile charge density ρP (r, t)
and the current density JP (r, t).

Lorentz gauge Coulomb gauge

∇·AL + 1
c

∂

∂t
ϕL = 0 ∇·AC = 0

∇2ϕL − 1
c2

∂2

∂t2 ϕL = −4πρP ∇2ϕC = −4πρP

∇2AL − 1
c2

∂2AL

∂t2 = − 4π

c
JP ∇2AC − 1

c2
∂2AC

∂t2 − 1
c

∂

∂t
∇ϕC = − 4π

c
JP

A. Point projectile of charge ZP e

For a point projectile of charge ZP e, we have a charge
density given by

ρP (r, t) = ZP eδ(r − b − ẑvt) = ZP eδ (ρ − b + ẑ(z − vt)).

(2.2)

If this charge density is used on the right-hand sides of the
equations for ϕ in the second row of Table I, we get the

solutions

ϕL(r, t) = ZP e√
(ρ−b)2

γ 2 + (z − vt)2
(2.3a)

ϕC(r, t) = ZP e√
(ρ − b)2 + (z − vt)2.

(2.3b)

Baltz, Rhoades-Brown, and Weneser [12] used these potentials
and Eq. (2.1b) to obtain

�(r, t) = c

∫ t

−∞
[ϕL(r, t ′) − ϕC(r, t ′)]dt ′

= ZP ec

∫ t

−∞


 1√

(ρ−b)2

γ 2 + (z − vt ′)2
− 1√

(ρ − b)2 + (z − vt ′)2


 dt ′

= ZP e
c

v
log


 (vt − z) +

√
(ρ−b)2

γ 2 + (z − vt)2

(vt − z) +
√

(ρ − b)2 + (z − vt)2


 . (2.4)

Using this �(r, t) and Eq. (2.1a), we can calculate the vector potential in the Coulomb gauge. In contrast to the Lorentz gauge
vector potential, it has a component perpendicular to the ẑ direction,

(AC)z = ZP e
c

v

[
1√

(ρ − b)2 + (vt − z)2
− 1

γ
√

(ρ − b)2 + γ 2(vt − z)2

]
(2.5a)

(AC)⊥ = ZP e
c

v
(ρ − b)

[
1√

(ρ − b)2 + γ 2(vt − z)2
(
γ (vt − z) +

√
(ρ − b)2 + γ 2(vt − z)2

)

− 1√
(ρ − b)2 + (vt − z)2

(
(vt − z) +

√
(ρ − b)2 + (vt − z)2

)
]

, (2.5b)

while

(AL)z = v

c
ϕL(x, y, z, t) = ZP e

v

c

γ√
(ρ − b)2 + γ 2(vt − z)2

(2.5c)

(AL)⊥ = 0. (2.5d)

It can be verified by direct calculation that this AC(r, t) is
solenoidal, with ∇ · AC(r, t) = 0, as specified in Table I for
the Coulomb gauge.

The presence of γ in the Lorentz gauge scalar and vector po-
tentials [Eqs. (2.3a) and (2.5c)] has the effect of decreasing the
effective duration of the time-dependent impulse experienced
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FIG. 1. Plots of matrix elements of V C(ω) (solid lines) and V L(ω) (dashed lines) connecting the 40Ca ground state to the one-phonon giant
dipole resonance states. The projectile is a 208Pb nucleus with bombarding energies per nucleon specified within the figure frames. µ = 0
corresponds to the M = 0 one-phonon state; µ = 1 corresponds to the reflection-symmetric |M| = 1 state.

by the target. Note that the Coulomb gauge potentials
[Eqs. (2.3b), (2.5a), and (2.5b)] have terms that are independent
of γ . As a result, the Coulomb gauge pulse occurs over a longer
time interval than does the Lorentz gauge pulse, and so the
Coulomb gauge pulse is more adiabatic. This is illustrated in
Figs. 1 and 2.

B. Finite spherically symmetric projectile of charge ZP e

The method used in Section II A does not work for a finite-
sized projectile. Whereas ϕL(r, t) is still given by Eq. (2.3a)

(outside the projectile), the expression for ϕC(r, t) is more
complicated than Eq. (2.3b). This is because the projectile,
which is spherical in its own rest frame, appears flattened to
an observer at the target, and Eq. (2.3b) is not a solution of
Poisson’s equation (second row and second column of
Table I) for a flattened charge distribution.

The conditions in the first column of Table I are Lorentz
covariant. Thus if (ϕL, AL) satisfy the Lorentz gauge condi-
tions in one Lorentz frame and they are subjected to a Lorentz
transformation, then the transformed potentials will still satisfy
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FIG. 2. Comparison of V C(t) (solid line) and V L(t) (dashed line),
corresponding to the E/A = 10 GeV, µ = 1 example of Fig. 1.

the Lorentz gauge conditions. This is not true for potentials
satisfying the Coulomb gauge conditions given in the second
column of Table I. If these potentials are subjected to a Lorentz
transformation, the transformed potentials will generally not
satisfy the Coulomb gauge conditions. In the calculation that
follows, we begin with a static projectile charge distribution,
viewed in the projectile rest frame. In this case, the ordinary
Coulomb potential satisfies both the Lorentz and Coulomb
gauge conditions. However, when we transform this potential
to the target rest frame, the resulting potentials satisfy only the
Lorentz conditions. If we want projectile potentials that satisfy
the Coulomb conditions in the target frame, we must find a
gauge transformation to take us to the Coulomb gauge from the
potentials that have been obtained by Lorentz transformation
from the projectile frame.

A necessary and sufficient condition for Eqs. (2.1a) and
(2.1b) and Table I to be compatible is

∇2�(r, t) = 1

c

∂

∂t
ϕL(r, t). (2.6)

To find a convenient expression for the right-hand side of
Eq. (2.6), we start in the rest frame of the spherically symmetric
projectile. Let x̃, ỹ, z̃(= r̃) be position coordinates measured
relative to the projectile center-of-mass. Then the scalar
potential ϕ̃(r̃) satisfies

∇2ϕ̃(r̃) = −4πρP (r̃),

whose solution can be expressed2 as

ϕ̃(r̃) = 1

2π2

∫
d3r ′

∫
d3q

eiq·(r̃−r′)

q2
ρP (r′)

= 2

π

∫
d3q

eiq·r̃

q2

∫ RP

0
r ′2dr ′j0(qr ′)ρP (r ′). (2.7)

It is assumed that all the projectile charge is contained within a
sphere of radius RP . The corresponding vector potential Ã(r̃)
is zero.

2To ensure convergence, it may be necessary to replace 1/q2 by
limη→0(1/(q2 + η2)).

If the projectile moves so that its center is located relative
to the target by

r = bŷ + vt ẑ = ρ + vt ẑ,

an observer at the target center will measure the scalar potential
ϕL(r, t) to be

ϕL(x, y, z, t) = γ ϕ̃(x̃, ỹ, z̃) (2.8)

with

x̃ = x (2.9a)

ỹ = y − b (2.9b)

z̃ = γ (z − vt) (2.9c)

γ =
(

1 − v2

c2

)−1/2

. (2.9d)

Thus we can write

ϕL(x, y, z, t) = 2γ

π

∫
d3q

eiq·(xx̂+(y−b)ŷ+γ (z−vt)ẑ)

q2

×
∫ RP

0
r ′2dr ′j0(qr ′)ρP (r ′)

= 2γ

π

∫ ∞

−∞
dqze

iqzγ (z−vt)
∫

d2q⊥
eiq⊥·(ρ−b)

q2
⊥ + q2

z

×
∫ RP

0
r ′2dr ′j0(qr ′)ρP (r ′)

= 2

π

∫ ∞

−∞
dqze

iqz(z−vt)
∫

d2q⊥
eiq⊥·(ρ−b)

q2
⊥ + (

qz

γ

)2

×
∫ RP

0
r ′2dr ′j0




√
q2

⊥ +
(

qz

γ

)2

r ′


 ρP (r ′).

(2.10)

If Eq. (2.10) is used in Eq. (2.6), we get

∇2�(r, t) = −2iv

πc

∫
dqzqze

iqz(z−vt)
∫

d2q⊥
eiq⊥·(ρ−b)

q2
⊥ + (

qz

γ

)2

×
∫ Rp

0
r ′2dr ′j0




√
q2

⊥ +
(

qz

γ

)2

r ′


 ρP (r ′),

whose solution can be written

�(r, t) = 2iv

πc

∫ ∞

−∞
dqzqze

iqz(z−vt)
∫

d2q⊥
eiq⊥·(ρ−b)

q2
((
q2

⊥ + (
qz

γ

)2))

×
∫ Rp

0
r ′2dr ′j0




√
q2

⊥ +
(

qz

γ

)2

r ′


 ρP (r ′)

= 2i

πvc

∫ ∞

−∞
dωe−iωtωei ω

v
z
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×
∫

d2q⊥
eiq⊥·(ρ−b)((

q2
⊥ + (

ω
v

)2))((
q2

⊥ + (
ω
γ v

)2))

×
∫ Rp

0
r ′2dr ′j0




√
q2

⊥ +
(

ω

γ v

)2

r ′


 ρP (r ′),

(2.11)

in which we have replaced the integration variable qz by ω ≡
qzv.

We can perform the d2q⊥ integration in (2.11) by using the
relations

1

q2
⊥ + (

ω
v

)2 · 1

q2
⊥ + (

ω
γ v

)2 = c2

ω2


 1

q2
⊥ + (

ω
γ v

)2 − 1

q2
⊥ + (

ω
v

)2


,

(2.12a)

∫
d2q⊥

eiq⊥·(ρ−b)

q2
⊥ + (

ω
γ v

)2 j0




√
q2

⊥ +
(

ω

γ v

)2

r ′




= 2πK0

( |ω||ρ − b|
γ v

)
, (2.12b)

∫
d2q⊥

eiq⊥·(ρ−b)

q2
⊥ + (

ω
v

)2 j0




√
q2

⊥ +
(

ω

γ v

)2

r ′




= 2πK0

( |ω||ρ − b|
v

)
j0

(
i
|ω|
c

r ′
)

. (2.12c)

Equations (2.12b) and (2.12c), which are proven in the
Appendix, are valid when r ′ < |ρ − b|. This condition is
satisfied because of our assumption that b is large enough
so that the projectile and target never overlap. Substituting
Eqs. (2.12a)–(2.12c) into Eq. (2.11) leads to

�(r, t) = 4i
c

v

∫ ∞

−∞

dω

ω
e−iωt ei ω

v
z

[
ZP e

4π
K0

( |ω||ρ − b|
γ v

)

−K0

(|ω||ρ − b|
v

) ∫ Rp

0
r ′2dr ′j0

(
i
|ω|
c

r ′
)

ρP (r ′)
]

.

This �(r, t) will generate the transformation (2.1a,b) between
the Lorentz and the Coulomb gauges.

III. INTERACTION MATRIX ELEMENTS

The matrix elements of the projectile-charge interaction in
the two gauges are given by

[V L(t)]γα =
∫

d3r

[
[ρT (r)]γαϕL(r, t)

− 1

c
[JT (r)]γα · AL(r, t)

]
(3.1a)

[V C(t)]γα =
∫

d3r

[
[ρT (r)]γαϕC(r, t)

− 1

c
[JT (r)]γα · AC(r, t)

]
. (3.1b)

If we use Eqs. (2.1a) and (2.1b) to express the differences
between the potentials, we get

[V C(t)]γα − [V L(t)]γα =
∫

d3r

[
[ρT (r)]γα

(
−1

c

∂�(r, t)
∂t

)

− 1

c
[JT (r)]γα · ∇�(r, t)

]
. (3.2)

Target charge conservation [Eq. (1.4)] plus Gauss’s theorem,
applied to the localized target charge density, imply that∫

[JT (r)]γα · ∇�(r, t)d3r = −
∫

(∇ · [JT (r)]γα)�(r, t)d3r

= iωγα

∫
[ρT (r)]γα�(r, t)d3r.

(3.3)

Thus

[V C(t)]γα − [V L(t)]γα = −1

c

∫
d3r[ρT (r)]γα

×
(

∂�(r, t)
∂t

+ iωγα�(r, t)
)

.

(3.4)

A. Point projectile of charge ZP e

If Eqs. (2.3a), (2.5c), and (1.4) are used in the expression
(3.1a) for [V L(t)]γα , the result can be written in the form

[V L(t)]γα = ZP e

∫
d3r Jγα ·

[
ẑ

(
− (v/c2)√(ρ−b

γ

)2 + (vt − z)2

+ 1

iωγα

(vt − z)[(ρ−b
γ

)2 + (vt − z)2
]3/2

)

− 1

iωγαγ 2

ρ − b[(ρ−b
γ

)2+(vt − z)2]3/2

]
. (3.5)

Similarly, [V C(t)]γα can be obtained by using Eqs. (2.3b),
(2.5a), (2.5b), and (1.4) in (3.1b):

[V C(t)]γα = ZP e

v

∫
d3r Jγα(r) ·


̂z


 1

γ 2
√

|ρ−b|2
γ 2 + (z − vt)2

− 1√
(ρ − b)2 + (vt − z)2


 + (ρ − b)

×

 1

(ρ − b)2 + (vt − z)2 + (vt − z)
√

(ρ − b)2 + (vt − z)2

− 1/γ 2(ρ−b
γ

)2 + (vt−z)2 + (vt − z)
√(ρ−b

γ

)2 + (vt−z)2






+ZP e

∫
d3r

ργα√
(ρ − b)2 + (vt − z)2

. (3.6)
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B. Finite spherically symmetric projectile of charge ZP e

If we use �(r, t) from Eq. (2.13) in Eq. (3.4), we get

[V C(t)]γα − [V L(t)]γα = 4

v

∫ ∞

−∞
dωe−iωt

(ωγα

ω
− 1

)

×
∫

d3r[ρT (r)]γαei ω
v
z

[
ZP e

4π
K0

( |ω||ρ − b|
γ v

)

−K0

( |ω||ρ − b|
v

) ∫ Rp

0
r ′2dr ′j0

(
i
|ω|
c

r ′
)

ρP (r ′)
]

.

(3.7)

The time structure of Eq. (3.7) suggests that we formulate the
expression in terms of Fourier transforms:

V C,L(ω) ≡
∫ ∞

−∞

dt

h̄
eiωtV C,L(t) (3.8a)

V C,L(t) ≡ h̄

2π

∫ ∞

−∞
dωe−iωtV C,L(ω). (3.8b)

Then Eq. (3.7) takes the form

[V C(ω)]γα − [V L(ω)]γα = 8π

h̄v

(ωγα

ω
− 1

)
×

∫
d3r[ρT (r)]γαei ω

v
z

[
ZP e

4π
K0

( |ω||ρ − b|
γ v

)

−K0

( |ω||ρ − b|
v

)∫ Rp

0
r ′2dr ′j0

(
i
|ω|
c

r ′
)

ρP (r ′)
]

.

(3.9)

We see that onshell (i.e., ω = ωγα) interaction matrix elements
are the same in the Coulomb and Lorentz gauges, which
confirms the general result obtained in Sec. I concerning the
gauge invariance of onshell interaction matrix elements.

To find expressions for [V C(ω)]γα and [V L(ω)]γα sepa-
rately, we substitute Eqs. (2.5c) and (2.10) into Eq. (3.1a)
and use Eqs. (2.12b), (3.8a), and (3.8b). A straightforward
calculation gives

[V L(ω)]γα = 2ZP e

h̄v

∫
d3r

[
ρT (r) − v

c2
[JT (r)]z

]
γα

× ei ω
v
zK0

( |ω||ρ − b|
γ v

)
, (3.10)

and then Eq. (3.9) gives

[V C(ω)]γα = −2ZP e

h̄c2

∫
d3r

[
[JT ]z − c2

v

ωγα

ω
ρT

]
γα

× ei ω
v
zK0

( |ω||ρ − b|
γ v

)
− 8π

h̄v

(ωγα

ω
− 1

)

×
∫

d3r[ρT (r)]γαei ω
v
zK0

( |ω||ρ − b|
v

)

×
∫ Rp

0
r ′2dr ′j0

(
i
|ω|
c

r ′
)

ρP (r ′). (3.11)

Finally we can proceed, as in Eq. (3.6), to express the matrix
elements in terms of the current density only:

[V L(ω)]γα = −2ZP e

h̄c2

∫
d3r[JT (r)]γα ·

(
ẑ + ic2

vωγα

∇
)

× ei ω
v
zK0

( |ω||ρ − b|
γ v

)
(3.12a)

[V C(ω)]γα = −2ZP e

h̄c2

∫
d3r[JT (r)]γα ·

(
ẑ + ic2

vω
∇

)

× ei ω
v
zK0

( |ω||ρ − b|
γ v

)
− 8πi

vh̄ωγα

(
1 − ωγα

ω

)

×
∫ Rp

0
r ′2dr ′j0

(
i
|ω|
c

r ′
)

ρP (r ′)

×
∫

d3r[JT (r)]γα · ∇ei ω
v
zK0

( |ω||ρ − b|
v

)
.

(3.12b)

In the following sections, we investigate significant differences
between expressions (3.12a) and (3.12b).

IV. COMPARISON OF THE STRUCTURES OF V L(ω)
AND V C (ω)

A. High bombarding energy limits

At high bombarding energy, where v ∼ c, the main bom-
barding energy dependence enters V L(ω) and V C(ω) via the
γ dependencies exhibited by Eqs. (3.12a) and (3.12b). Since

lim
γ→∞
v→c

K0

( |ω||ρ − b|
γ v

)
=−log

( |ω||ρ − b|
γ c

)
γ→∞−→ log γ,

we have

lim
γ→∞
v→c

[V L(ω)]γα = −2ZP e

h̄c2
log γ

×
∫

d3r[JT (r)]γα ·
[

ẑ + ic2

vωγα

∇
]

ei ω
v
z

= −2ZP e

h̄c2
log γ

(
1 − ω

ωγα

c2

v2

)∫
d3r[JT (r)]γα · ẑei ω

v
z

v→c−→ −2ZPe

h̄c2
log γ

(
1 − ω

ωγα

) ∫
d3r[JT (r)]γα · ẑei ω

v
z.

(4.1)

Since the φ dependence of [JT (r)]γα · ẑ is given by ei(Mγ −Mα )φ ,
the axial symmetry of ei ω

v
z implies that the integral in (4.1)

vanishes unless Mγ − Mα(≡µ) = 0. Thus we can have a log γ

divergence of [V L(ω)]γα if ω 
= ωγα and Mγ = Mα . The effect
of this divergence on high bombarding energy cross sections
was noted in Ref. [11] and is illustrated in Sec. VI below.

The high-bombarding-energy behavior of [V C(ω)]γα is
quite different. The last two lines of Eq. (3.12b) are inde-
pendent of γ and so obviously do not diverge as γ → ∞. The
high-γ behavior of the first line is dominated by
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lim
γ→∞
v→c

−2ZP e

h̄c2
log γ

∫
d3r[JT (r)]γα ·

[
ẑ + ic2

vω
∇

]
ei ω

v
z

= −2ZP e

h̄c2
log γ

(
1 − c2

v2

) ∫
d3r[JT (r)]γα · ẑei ω

v
z

= 2ZP e

h̄v2

log γ

γ 2

∫
d3r[JT (r)]γα · ẑei ω

v
z.

The factor of 1/γ 2 overpowers the log γ divergence, and the
matrix element [V C(ω)]γα is seen to be finite at arbitrarily high
bombarding energy.

B. Multipole expansions of V L(ω) and V C (ω)

It is illuminating to express Eqs. (3.12a) and (3.12b) in
terms of the multipole expansion given by WA, which is

ei ω
v
zK0

( |ω||ρ − b|
γ v

)
=

∑
µ

e−iµφbKµ

( |ω|b
γ v

)

×
∑

λ

Gλµjλ

( |ω|
c

r

)
Yλ

µ(r̂)

(4.2a)

with Gλµ defined by

Gλµ ≡ iλ+µ

(2γ )µ

(
ω

|ω|
)λ−µ( c

v

)λ√
4π (2λ + 1)(λ − µ)!(λ + µ)!

×
∑

n

1

(2γ )2n(n + µ)!n!(λ − µ − 2n)!
. (4.2b)

To expand the third line of Eq. (3.12b), we also need the
γ → 1 limits of Eqs. (4.2a) and (4.2b). To perform these limits,
without affecting the value of v, we allow c → ∞ and obtain

ei ω
v
zK0

( |ω||ρ − b|
v

)
=

∑
µ

e−iµφbKµ

( |ω|b
v

)

×
∑

λ

√
4π

2λ + 1

iλ+µ

√
(λ + µ)!(λ − µ)!

(|ω|
ω

)λ−µ (ωr

v

)λ

Y λ
µ(r̂).

(4.3)

If we apply Eqs. (4.2a) and (4.3) to Eq. (3.12b), we find

[V C(ω)]γα = 2ZP e

h̄v

∑
µ

e−iµφb ·
∞∑

λ=|µ|

[(
Xλ

µ(E) + Xλ
µ(M)

)

×Kµ

( |ω|b
γ v

)
+ Xλ

µ(S)Kµ

( |ω|b
v

)]
, (4.4)

where

Xλ
µ(E) ≡ iv

ch̄ω


Gλ−1,µ

λ

√
λ2 − µ2

(2λ + 1)(2λ − 1)

+ Gλ+1,µ

λ + 1

√
(λ + 1)2 − µ2

(2λ + 1)(2λ + 3)




×
∫

d3r[JT ]γα(r) · (∇ × L)jλ

(ω

c
r
)

Yλ
µ(r̂)

(4.5a)

Xλ
µ(M) ≡ − vµ

c2h̄

Gλ,µ

λ(λ + 1)

∫
d3r[JT ]γα(r) · Ljλ

(ω

c
r
)

Yλ
µ(r̂)

(4.5b)

Xλ
µ(S) ≡

(
1 − ωγα

ω

) 4π

ZP e

∫ ∞

0
r̃2dr̃ρ̃P (r̃)j0

(
ir̃

ω

c

)

×
√

4π

2λ + 1

iλ+µ

√
(λ + µ)!(λ − µ)!

( |ω|
ω

)λ−µ

× 1

iωγα

(ω

v

)λ

×
∫

d3r[JT (r)]γα · ∇rλY λ
µ(r̂).

(4.5c)

On the other hand, substituting Eq. (4.2a) into Eq. (3.12a)
gives

[V L(ω)]γα = 2ZP e

h̄v

∑
µ

e−iµφb ·
∞∑

λ=|µ|

[
Xλ

µ(E)

+Xλ
µ(M) + Xλ

µ(G)
]
Kµ

( |ω|b
γ v

)
. (4.6)

Xλ
µ(E) and Xλ

µ(M) in Eq. (4.6) are the same as in
Eqs. (4.5a) and (4.5b), but Xλ

µ(G) is defined by

Xλ
µ(G) ≡

(
1 − ωγα

ω

) Gλµ

iωγα

×
∫

d3r[JT (r)]γα · ∇jλ

( |ω|
c

r

)
Yλ

µ(r̂).

(4.7)

C. Monopole matrix elements

Inspection of Eqs. (4.4) and (4.5a)–(4.5c) shows that
[V C(ω)]γα can be expressed as

[V C(ω)]γα =
∫

d3r[JT (r)]γα · QC(r), (4.8)

where QC(r) is a linear combination of (∇ × L)jλ(ω
c
r)Yλ

µ(r̂),
Ljλ(ω

c
r)Yλ

µ(r̂), and ∇rλY λ
µ(r̂). Since

∇ · (∇ × L)jλ

(
ω
c
r
)
Yλ

µ(r̂) = 0,

∇ · Ljλ

(
ω
c
r
)
Yλ

µ(r̂) = 0, and ∇ · ∇rλY λ
µ(r̂) = 0,

it follows that

∇ · QC(r) = 0. (4.9)

Now suppose that φα and φγ are both states of total angular
momentum zero (J = 0). Then [JT (r)]γα is a spherically
symmetric vector field (a central field) and can be written
as the gradient of a spherically symmetric scalar field:

[JT (r)]γα = ∇ψ(r).

Equations (4.8) and (4.9) imply that

[V C(ω)]γα =
∫

d3r∇ψ(r) · QC(r)

= −
∫

d3rψ(r)∇ · QC(r) = 0,
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so that the matrix elements of V C between any two J = 0 states
vanish identically. Thus an excited J = 0 state, in a nucleus
with a J = 0 ground state, can only be populated indirectly,
via a multistep process. However, if [V L(ω)]γα is expressed
as

[V L(ω)]γα =
∫

d3r[JT (r)]γα · QL(r), (4.10)

then one of the components in the expansion of QL(r) is
∇jλ(|ω|r/c)Yλ

µ(r̂) [see Eqs. (4.6) and (4.7)]. But

∇ · ∇jλ

( |ω|
c

r

)
Yλ

µ(r̂) = ∇2jλ

( |ω|
c

r

)
Yλ

µ(r̂)

= −
(ω

c

)2
jλ

( |ω|
c

r

)
Yλ

µ(r̂),

which is not identically zero. Thus ∇ · QL(r) is not identically
zero, and there is no reason to expect matrix elements of V L

between J = 0 states to vanish. A calculation based on V L

implies the possibility of one-step population of an excited
J = 0 state from a J = 0 ground state.

V. NUMERICAL COMPARISONS OF MATRIX
ELEMENTS OF V L AND V C

The following numerical comparisons refer to Coulomb
excitation of the giant dipole resonance (GDR) in a 40Ca
target by a 208Pb projectile. The target transition current
density matrix elements [JT (r)]γα needed in Eqs. (4.5) and
(4.7) are calculated using Brink’s model [15] of the GDR, in
which unexcited proton and neutron spheres undergo harmonic
oscillations relative to each other. The radial densities of the
spheres are obtained by filling the lowest available shell-
model single-particle states. The relative harmonic oscillations
of the proton and neutrons spheres are characterized by
the eigenstates φn,�

m (rpn) of a three-dimensional harmonic
oscillator. The ground state is φ

0,0
0 . The degenerate first excited

states that can be populated by Coulomb excitation are φ
0,1
0

and (φ0,1
1 + φ

0,1
−1 )/

√
2, the combination of φ

0,1
±1 symmetric

under reflection across the reaction plane. Further details on
the calculation of matrix elements using the Brink model
eigenstates are given in Ref. [11].

In the calculations represented in Fig. 1, it has been assumed
that the 82 protons of 208Pb are distributed uniformly within a
sphere of radius 7.5 fm (as seen by an observer moving with
the projectile). The parameters used for the calculations imply
that b = 20 fm and ωγα = 11.7 MeV/h̄. It can be verified by
inspection of Fig. 1 that, in every case, V C and V L agree at
ω = 11.7 MeV/h̄, as required by Eq. (3.9).

In Fig. 1, µ = 0 refers to the transition φ
0,0
0 → φ

0,1
0 , and

µ = 1 refers to the transition φ
0,0
0 → (φ0,1

1 + φ
0,1
−1 )/

√
2. In

every case, the solid line gives V C(ω), whereas the dashed
line gives V L(ω).

The first observation concerning Fig. 1 is that at a bom-
barding energy of E/A = 100 MeV, there is little difference
between V C and V L. However, at E/A = 10 GeV, the
difference is pronounced. The most striking difference is
the very strong increase with bombarding energy of V L for

the µ = 0 transition. This is an expression of the logarithmic
divergence (with increasing γ ) of the µ = 0 matrix elements
of V L, as shown in Eq. (4.1). It is clear that, at high bombarding
energy, calculations using V L ascribe a much higher role to
µ = 0 transitions than do calculations using V C .

Figure 1 also shows that, at high bombarding energy,
the use of the Coulomb gauge leads to an interaction that
is more adiabatic than predicted by the Lorentz gauge.
The wider spread of V L(ω), as a function of ω, compared
to the spread of V C(ω), shows that the impulse in the
Lorentz gauge is sharper than the Coulomb gauge impulse.
For example, Fig. 2 shows the same comparison as in the
E/A = 10 GeV, µ = 1 plot of Fig. 1, but in the time domain.
The sharpness of the pulse provided by V L(t), compared
with that provided by V C(t), is evident. Note that in this
particular case, [V L(−ω)]γα = [V L(ω)]γα , which has the
consequence that [V L(t)]γα is real. However, this is not true
of [V C(ω)]γα , and thus [V C(t)]γα has both real and imaginary
parts.

VI. GAUGE-DEPENDENT EFFECTS IN
COUPLED-CHANNEL CALCULATIONS

The most significant test of the differences between V L

and V C is in the calculation of relativistic Coulomb excitation
(RCE) cross sections, since the cross section is the point
where theory and experiment intersect. In this section, we
compare cross sections calculated with these two interactions,
for the 208Pb + 40Ca system described in Sec. V. We have
performed coupled-channel integrations of the time-dependent
Schrödinger equation. The target states included in the calcula-
tion span were the zero-phonon, one-phonon, and two-phonon
states of the 40Ca GDR. The methods used to do the numerical
Fourier transform needed in Eq. (3.8b), and to integrate the
coupled equations, are described in Ref. [11]. We also describe
there the integrations over the impact parameter needed to
calculate the cross section.

Figure 3 compares the calculated cross sections for the
population of the six reflection-symmetric one- and two-
phonon states that can be reached via RCE, as functions of
the kinetic energy of the 208Pb projectile nucleus. In every
case, a solid line is used to show the result of the calculation
using V C(t), and a dashed line is used to show the result of the
corresponding calculation using V L(t).

For the one-phonon states, the situation is similar to that
shown in Fig. 1. The two sets of calculations agree at
low bombarding energy (E/A ∼< 1 GeV). However, at high
bombarding energy (E/A ∼> 5 GeV), V L(t) predicts much
greater cross sections for the population of the J = 1,M = 0
state than does V C(t). The situation is more complicated for
the two-phonon states. The cross sections are much smaller
than for the one-phonon states, and they depend upon multiple
excitation processes. Also, the truncation of our calculation at
two phonons introduces an additional element of uncertainty
into our two-phonon cross sections. However, it is noteworthy
that the two-phonon |M| = 1 state is also strongly favored
by V L(t) at high bombarding energy, compared to V C(t).
The reason is that this state is mostly populated in two-step
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FIG. 3. Calculated coupled-channel Cou-
lomb excitation cross sections for one- and
two-phonon states of the GDR in 40Ca with
208Pb projectiles. The solid curves correspond
to calculations in which the Coulomb gauge
has been used; the dashed curves correspond to
calculations with the Lorentz gauge.

processes, such as

(J = M = 0) → (J = 1,M = 0) → (J = 2, |M| = 1)

and

(J = M = 0) → (J = 1, |M| = 1) → (J = 2, |M| = 1).

In both cases, a �M = 0 transition is involved, and it is the
logarithmic divergence (with increasing γ ) of the �M = 0
transition amplitude that leads to the strongly increasing cross
section when V L(t) is used. But the J = 2, |M| = 2 state is
reached mainly by

(J = M = 0) → (J = 1, |M| = 1) → (J = 2, |M| = 2),

in which there is no �M = 0 step, and so the J = 2, |M| = 2
state is not strongly favored by V L(t) at high bombarding
energy. Thus we see that for E/A ∼> 5 GeV, V C(t) and V L(t)
predict very different cross sections when used in truncated
coupled-channel analyses. A calculation using V L(t) will
predict stongly enhanced cross sections for populating any
state that can be reached via a one-step or two-step process
involving a �M = 0 transition.

The stongest transition illustrated in Fig. 3 populates the
one-phonon |M| = 1 state. It is predominantly a one-step
transition and so is well described by the Born approxima-
tion. According to Eq. (4.4) or (4.6), this implies that the
b dependence of the transition probability is given by[

K1

(
ωon−shellb

γ v

)]2

whose the integral over the impact parameter diverges in
the γ → ∞ limit [cf. Eqs. (3.1) and (3.6) of Ref. [2]]. The
physical reason for this divergence is that as γ increases and
the electromagnetic pulse becomes more strongly retarded, it
becomes flatter and its influence extends for a longer distance
away from the trajectory of the projectile. Thus, in the integral
over b, larger values of b play a more important role as γ

increases, and in the γ → ∞ limit, the b integral diverges.
This occurs only for �M = ±1, because the flat pulse is
spatially axially symmetric (�M = 0) and the intrinsic spin
of the photon transfers �M = ±1. The one-phonon |M| = 1
cross section shown in Fig. 3 exhibits this logarithmic-like
increase with bombarding energy.

However, the log γ divergence of the offshell µ = �M = 0
matrix element, discussed in Section IV A, is a much more
serious divergence. It occurs for every b, and thus the b-
integrated cross section would be a divergence of still higher
order. This is the divergence that is introduced when the
Lorentz gauge is used in a coupled-channel calculation, a
divergence that is not present when the Coulomb gauge is
used.

The expression for V L(ω) given by Eq. (3.12a) depends
upon the total projectile charge but not on the radial depen-
dence of this charge. However, there is a dependence on the
projectile radial charge density in V C(ω) given by Eq. (3.12b).
Fortunately, this dependence is very weak. The calculations
using V C(ω) whose results are shown in Fig. 3 were done
using a radial charge distribution that was constant from the
center out to 7.5 fm. By way of comparison, we have repeated
these calculations, assuming that the entire charge of the 208Pb
nucleus is concentrated at its center. In all cases, we found
that the calculated cross sections changed by no more than a
few tenths of a percent. As might be expected, the transition
amplitudes are more sensitive to projectile radial density at
small impact parameters. However, when the integration over
all impact parameters is done, the residual effect on the cross
section of changes in the projectile radial charge density is
very small.

VII. CONCLUSIONS AND DISCUSSION

We have studied the relationship between the electromag-
netic potentials in the Lorentz gauge and the Coulomb gauge
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for the fields encountered in relativistic Coulomb excitation
and have found expressions in the two gauges for the inter-
action between projectile and target. At bombarding energies
above about 2 GeV per nucleon we have found significant
differences in excitation cross sections when the two gauges
are used in coupled-channel time-dependent calculations,
especially for processes involving �M = 0 transitions. Since
there is no a priori reason for using one gauge rather than
another, this lack of gauge invariance reveals a weakness of
the coupled-channel time-dependent approach to relativistic
Coulomb excitation. It demonstrates that the common practice
of relying totally on calculations in the Lorentz gauge cannot
be justified.

We have discussed one cause of lack of gauge invariance,
the truncation of the set of target states used in the coupled-
channel calculation. Another cause is revealed by considera-
tion of the Hamiltonian for a target charged particle moving in
the fields (ϕ(r, t), A(r, t)) produced by the projectile:

H = 1

2m

(
p − eA(r, t)

c

)2

+ eϕ(r, t) + Unuc(r)

= 1

2m
p2 − e

2mc
(p · A(r, t) + A(r, t) · p) + eϕ(r, t)

+ e2

2mc2
A(r, t) · A(r, t) + Unuc(r). (7.1)

The terms in Eq. (7.1) that are linear in e,

− e

2mc
(p · A(r, t) + A(r, t) · p) + eϕ(r, t),

give rise to the interaction (1.3) that has been the basis of this
study. However, the term quadratic in e,

e2

2mc2
A(r, t) · A(r, t),

has not been included in our calculation, or in other studies
published to date on relativistic Coulomb excitation. But the
equation(

p − e(A(r, t) + ∇�(r, t))
c

)2

ei
e�(r,t)

h̄c ψ(r, t)

= ei
e�(r,t)

h̄c

(
p − eA(r, t)

c

)2

ψ(r, t),

which is an essential component in the argument about
the gauge invariance of the observable consequences of the
Schrödinger equation, relies for its validity on the presence
of the A · A term. Thus it is clear that no gauge invariant
theory of relativistic Coulomb excitation can be constructed
without inclusion of this term. We will address this issue in a
forthcoming publication.

APPENDIX: TWO INTEGRAL RELATIONS

Define I (r̃) by

I (r̃) ≡
∫

d2q⊥
q2

⊥ + λ2
1

eiq⊥·(ρ−b)j0
(
r̃

√
q2

⊥ + λ2
2

)
. (A1)

Operate on this expression with ∇2
r̃ :

∇2
r̃ I (r̃) =

∫
d2q⊥

q2
⊥ + λ2

1

eiq⊥·(ρ−b)∇2
r̃ j0

(
r̃

√
q2

⊥ + λ2
2

)

= −
∫

d2q⊥
q2

⊥ + λ2
2

q2
⊥ + λ2

1

eiq⊥·(ρ−b)j0
(
r̃

√
q2

⊥ + λ2
2

)

= −
∫

d2q⊥

(
1 + λ2

2 − λ2
1

q2
⊥ + λ2

1

)
eiq⊥·(ρ−b)j0

(
r̃

√
q2

⊥ + λ2
2

)
= −

∫
d2q⊥eiq⊥·(ρ−b)j0

(
r̃

√
q2

⊥ + λ2
2

)
− (

λ2
2 − λ2

1

) ∫
d2q⊥

q2
⊥ + λ2

1

eiq⊥·(ρ−b)j0
(
r̃

√
q2

⊥ + λ2
2

)
.

(A2)

In the first term of Eq. (A2), replace j0(r̃
√

q2
⊥ + λ2

2) by

j0
(
r̃

√
q2

⊥ + λ2
2

) = 1

4π

∫
sin θ̃dθ̃dφ̃e−i(q⊥·ρ̃+λ2 z̃),

where ρ̃ ≡ r̃ sin θ̃ (cos φ̃x̂ + sin φ̃ŷ) and z̃ = r̃ cos θ̃ . Then
Eq. (A2) becomes

∇2
r̃ I (r̃) = − 1

4π

∫
sin θ̃dθ̃dφ̃

∫
d2q⊥eiq⊥·(ρ−b−ρ̃)e−iλ2 z̃

− (
λ2

2 − λ2
1

) ∫
d2q⊥

q2
⊥ + λ2

1

eiq⊥·(ρ−b)j0
(
r̃

√
q2

⊥ + λ2
2

)

∇2
r̃ I (r̃) + (

λ2
2 − λ2

1

)
I (r̃) = − (2π )2

4π

×
∫

sin θ̃dθ̃dφ̃e−iλ2 z̃δ(ρ − b − ρ̃). (A3)

In our application, |ρ| is bounded by the radius of the target and
|ρ̃| is bounded by the radius of the projectile. The condition that
the projectile and target do not overlap implies that |ρ − b| >

|ρ̃| for every orientation θ̃ , φ̃, and so ρ − b − ρ̃ is never zero.
Thus the δ function on the right-hand side of Eq. (A3) vanishes,
and we get

∇2
r̃ I (r̃) + (

λ2
2 − λ2

1

)
I (r̃) = 0. (A4)

We have two applications of Eq. (A4). In one of them, λ2
1 =

λ2
2 = (ω/(γ v))2. In the other, λ2

1 = (ω/v)2, λ2
2 = (ω/(γ v))2.

Thus in both cases (λ2
2 − λ2

1) � 0, and we can write the general
solution of Eq. (A4) as

I (r̃) = α j0
(
ir̃

√
λ2

1 − λ2
2

) + β n0
(
ir̃

√
λ2

1 − λ2
2

)
, (A5)

where α and β are independent of r̃ . The first term in Eq. (A5)
is finite at r̃ = 0, whereas the second term diverges there. But
if we set r̃ = 0 in the definition (A1), we get

I (0) =
∫

d2q⊥
q2

⊥ + λ2
1

eiq⊥·(ρ−b) = 2πK0(|λ1||ρ − b|), (A6)
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which is finite in our |ρ − b| � 0 situation. Thus β in Eq. (A5)
vanishes and

I (0) = αj0(0) = α = 2πK0(|λ1||ρ − b|),
leading to

I (r̃) ≡
∫

d2q⊥
q2

⊥ + λ2
1

eiq⊥·(ρ−b)j0
(
r̃

√
q2

⊥ + λ2
2

)
= 2πK0(|λ1||ρ − b|)j0

(
ir̃

√
λ2

1 − λ2
2

)
. (A7)

Thus we get the two special cases

∫
d2q⊥

q2
⊥ + (

ω
γ v

)2 eiq⊥·(ρ−b)j0


r̃

√
q2

⊥ +
(

ω

γ v

)2



= 2πK0

( |ω||ρ − b|
γ v

)
(A8a)

∫
d2q⊥

q2
⊥ + (

ω
v

)2 eiq⊥·(ρ−b)j0


r̃

√
q2

⊥ +
(

ω

γ v

)2



= 2πK0

( |ω||ρ − b|
v

)
j0

(
ir̃

|ω|
c

)
. (A8b)

These equations are valid when r̃ < |ρ − b|.
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