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Non-Abelian feature of parton energy loss in energy dependence of jet quenching in high-energy
heavy-ion collisions
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One of the non-Abelian features of parton energy loss is the ratio �Eg/�Eq = 9/4 between gluon and quark
jets. Since jet production rate is dominated by quark jets at high xT = 2pT /

√
s and by gluon jets at low xT , high

pT hadron suppression in high-energy heavy-ion collisions should reflect such a non-Abelian feature. Within a
leading-order perturbative QCD parton model that incorporates transverse expansion and Woods-Saxon nuclear
distribution, the energy dependence of large pT ∼ 5–20 GeV/c hadron suppression is found to be sensitive to
the non-Abelian feature of parton energy loss and could be tested by data from low-energy runs at Brookhaven
National Laboratory’s relativistic heavy-ion collider or data from the large hadron collider.
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One of the ultimate goals of the relativistic heavy-ion
collider (RHIC) program at Brookhaven National Laboratory
is to produce a quark-gluon plasma by smashing two gold
nuclei at the speed of light. The discovery of the jet quenching
effect [1–4] in central Au+Au collisions together with the
observation of parton recombination [5–12] and the early
thermalization of dense matter [13–22] has provided clear
evidence of the formation of strongly interacting partonic
matter [23,24]. The observed jet quenching effect manifests
itself in several aspects of high pT hadron spectra, which
include suppression of inclusive spectra in Au+Au relative to
pp collisions [1,2], disappearance of back-to-back correlations
[3], and azimuthal anisotropy in noncentral Au+Au collisions
[4]. The absence of these jet quenching phenomena in d + Au
collisions [25–28] shows that they are due to final-state
interactions with the strongly interacting matter produced.
Detailed analyses indicate that parton energy loss is the source
of the observed jet quenching [29–34]. The initial gluon
density, to which the parton energy loss is proportional, has
been extracted from RHIC data of central Au+Au collisions
at

√
s = 200 AGeV and is about 30 times higher than that in

a cold nucleus [35,36].
The radiative parton energy loss incorporated in previous

studies within a leading-order (LO) perturbative QCD (pQCD)
model [32,33,37–40] has two basic non-Abelian features.
One is the quadratic dependence on the total distance
traversed by the propagating parton due to the non-Abelian
Landau-Pomeranchuk-Midal (LPM) interference effect in
gluon bremsstrahlung induced by multiple scatterings in a
static medium [41–48]. The second feature of the parton
energy loss is its dependence on the color representation of the
propagating parton. Therefore, energy loss for a gluon is 9/4
times larger than for a quark. Previous works have investigated
the consequences of the second non-Abelian feature in the
flavor dependence of the high pT hadron suppression [38].
In this paper we study the effect of the non-Abelian parton
energy loss on the energy dependence of the inclusive hadron
spectra suppression. We exploit the well-known feature of

the initial parton distributions in nucleons (or nuclei) that
quarks dominate at large fractional momentum x while gluons
dominate at small x. Jet or large pT hadron production as a
result of hard scatterings of initial partons will be dominated
by quarks at large xT = 2pT /

√
s and by gluons at small

xT . Since gluons lose 9/4 times as much energy as quarks,
the energy dependence of the large (and fixed) pT hadron
spectra suppression due to parton energy loss should reflect the
transition from quark-dominated jet production at low energy
to gluon-dominated jet production at high energy. Such a
unique energy dependence of the high-pT hadron suppression
can be tested by combining

√
s = 200 AGeV data with lower

energy data or future data from large hadron collider (LHC)
experiments.

We will work within a LO pQCD parton model incorporat-
ing the non-Abelian QCD parton energy loss in high-energy
heavy-ion collisions. We will study the energy dependence
of the high pT hadron suppression and compare the effect
of QCD energy loss with that of a non-QCD one where
gluons and quarks are chosen to have the same amount of
energy loss. In both cases, we will assume that parton energy
loss is proportional to the initial gluon density of the system
which in turn is assumed to be proportional to the mea-
sured total charge hadron multiplicity in the central rapidity
region.

In comparison to previous studies within the LO pQCD
parton model that employed the hard-sphere model of nuclear
distribution and assumed only longitudinal expansion, we
will use the more realistic Woods-Saxon nuclear distri-
bution and include the transverse expansion of the dense
medium.

In a LO pQCD model [37], the inclusive invariant differen-
tial cross section for high pT hadrons in A + B collisions is
given by

dσh
AB

dyd2pT

= K
∑
abcd

∫
d2bd2rdxadxbd

2kaT d2kbT tA(r)tB

× (|b − r|)gA(kaT , r)gB(kbT , |b − r|)
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× fa/A(xa,Q
2, r)fb/B (xb,Q

2, |b − r|)

× Dh/c(zc,Q
2,�Ec)

πzc

dσ (ab → cd)

dt̂
, (1)

where σ (ab → cd) are elementary parton scattering cross
sections. The factor K ≈ 1.0–2.0 is used to account for higher
order QCD corrections and is set to be the same for both
p + p and A + B collisions at the same energy. The hadron is
assumed to have the same rapidity as the parton, i.e., y = yc,
and its fractional momentum is defined by zc = pT /pT c. The
parton distributions per nucleon fa/A(xa,Q

2, r) inside the
nucleus can be factorized into the parton distributions in a free
nucleon given by the Coordinated Theoretical-Experimental
Project on QCD (CTEQ) parametrization [49,50] and the
impact-parameter-dependent nuclear modification factor given
by the new (HIJING) parametrization: fa/A(xa,Q

2, r) =
RA

a (x,Q2)[(Z/A)fa/p(x,Q2) + (1 − Z/A)fa/n(x,Q2)] with
RA

a (x,Q2) given by Eqs. (8) and (9) of Ref. [51]. We
assume that the initial transverse momentum distribution
gA(kT ,Q2, b) has a Gaussian form [37,52] with a width that
includes both an intrinsic kT in a nucleon and the nuclear
broadening due to initial multiple scattering in a nucleus:
gA(kT ,Q2, b) = e−k2

T /〈k2
T 〉A/(π〈k2

T 〉A). The impact-parameter-
dependent broadened variance is given by 〈k2

T 〉A(Q2) =
〈k2

T 〉N (Q2) + δ2(Q2)[νA(b) − 1], where the number of scatter-
ings νA(b) the projectile suffers inside the nucleus is νA(b) =
σNNtA(b) with the nuclear thickness function tA(b) defined as
follows, and the scale-dependent δ2(Q2) chosen as δ2(Q2) =
0.225 ln2(Q/GeV)/[1 + ln(Q/GeV)] GeV2/c2. The average
initial intrinsic transverse momentum in nucleon-nucleon
collisions is 〈k2

T 〉N (Q2) = 1.2 + 0.2Q2αs(Q2). The scale that
characterizes the partonic process is chosen to be Q = pT ,
where pT is the transverse momentum of the final-state partons
in a partonic scattering. Detailed description of this model and
systematic comparisons with experimental data can be found
in Ref. [37]. In this paper we use the Woods-Saxon nuclear
distribution FWS(r) = NA/[1 + exp((r − RA)/a)] to replace
the simplified hard-sphere one used in previous papers. Here
RA is the radius of the nucleus given by RA = 1.12A1.0/3.0 −
0.86A−1.0/3.0, a = 0.54 fm is a radius parameter, and NA is
the normalization constant. The Woods-Saxon distribution can
be further written as a function of the coordinate component
z along the beam direction of the nucleus and b that is
perpendicular to it by r = √

z2 + b2. The nuclear thickness
function tA(b) is then tA(b) = ∫ ∞

−∞ dzFWS(z, b) with the
normalization condition

∫
d2btA(b) = A.

The parton energy loss is encoded in an effective modified
fragmentation function [53,54]

Dh/c(zc,Q
2,�Ec) = (

1 − e−〈 �L
λ

〉) [
z′
c

zc

D0
h/c(z′

c,Q
2)

+
〈
�L

λ

〉
z′
g

zc

D0
h/g(z′

g,Q
2)

]

+ e−〈 �L
λ

〉D0
h/c(zc,Q

2). (2)

This effective form is a good approximation to the actual
calculated medium modification in the multiple parton scat-
tering formalism [55,56], given that the actual energy loss

should be about 1.6 times the input value in formula (2).
Here z′

c = pT /(pT c − �Ec), z′
g = 〈�L/λ〉pT /�Ec are the

rescaled momentum fractions and �Ec is the total energy loss
during an average number of inelastic scatterings 〈�L/λ〉. The
fragmentation functions in free space D0

h/c(zc,Q
2) are given

by the BBK parametrization [57].
In contrast to previous calculations that considered only

longitudinal expansion, we incorporate in this paper both
longitudinal and transverse expansion of the medium in the
calculation of parton energy loss. To simplify the calculation,
we again use hard-sphere nuclear distribution. Let us assume
the gluon number Ng is a slowly varying function of rapidity
y and proper time τ at central rapidity region y = 0, then we
have d2Ng/dτdy = 0. Noting that dNg/dy = ρdV/dy and
dV/dy = τπR2

T , we obtain

dρ

dτ

dV

dy
+ ρ

[
πR2

T + 2πτRT

dRT

dτ

]
= 0 , (3)

which is

dρ

dτ
+ ρ

[
1

τ
+ 2

RT

dRT

dτ

]
= 0 . (4)

The radius has the form RT (τ ) = RA + (τ − τ0)c2
s where cs is

the speed of sound in the medium given by c2
s = ∂P/∂e (1/3

for ideal gas). The solution of Eq. (4) is then

τρ
[
RA + (τ − τ0)c2

s

]2 = τ0ρ0R
2
A . (5)

The expansion is characterized by the gluon density ρg(τ, r)
whose initial distribution is proportional to the transverse
profile of participant nucleons. We can write the total energy
loss for a parton traversing the medium as

�E(b, r, φ) ≈
〈
dE

dL

〉
1d

×
∫ τmax

τ0

dτ
τ

[
Rmin + (τ − τ0)c2

s

]2 − τ0R
2
min

τ0R2
minρ0

× ρg(τ, b, r + nτ ), (6)

where Rmin = Min(RA,RB) and n is the direction where a
parton is propagating. The upper limit τmax = Min(�L, τf )
is the longest time for the parton to propagate in the dense
medium, where τf is the lifetime of the dense matter before
breakup. �L(b, r, φ) is the distance the parton, produced at
r, travels along n at the azimuthal angle φ relative to the
reaction plane in a collision with impact parameter b. Since
the formation time of a hadron fragmented from a parton is
proportional to the energy of the parton, very high energetic
partons generally hadronize after the dense medium breaks
up, or they hadronize outside the medium. In this case we
have τmax = �L. Function 〈dE/dL〉1d is the average parton
energy loss over a distance RA in a one-dimensional expanding
medium with an initial uniform gluon density ρ0. The gluon
density ρg in the longitudinally and transversely expanding
medium is then given by
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FIG. 1. Nuclear modification factor
RAuAu for neutral pions at

√
s = 62.4,

200, and 5500 AGeV. We chose the values
of corresponding parameters at 62.4 and
5500 AGeV based on their values at
200 AGeV and the ratio (dNch/dy)62/

(dNch/dy)200 and (dNch/dy)5500/

(dNch/dy)200.

ρg(τ, b, r + nτ ) = τ0ρ0

τ

R2
min[

Rmin + (τ − τ0)c2
s

]2

π

2cABRmin

×
[
R3

A

A
tA(r) + R3

B

B
tB(|b − r|)

]
. (7)

The average number of scatterings along the path of parton
propagation is

〈�L/λ〉 =
∫ τmax

τ0

dτσρg(τ, b, r + nτ ). (8)

The energy loss function can be parametrized as〈
dE

dL

〉
1d

= ε0
(E/µ0 − 1.6)1.2

7.5 + E/µ0
, (9)

according to a study of parton energy loss [48] that included
both bremstrahlung and thermal aborption of gluons. For

√
s =

200 AGeV, we find the following set of parameters can fit the
data: ε0 = 1.2 GeV, µ0 = 1.6 GeV, and λ0 = 0.2 fm (λ0 ap-
pears in the formula of 〈�L/λ〉). In Ref. [35,39], these param-
eters are set to slightly different values: ε0 = 1.07 GeV, µ0 =
1.5 GeV, and λ0 = 0.3 fm. The value of 〈dE/dL〉1d with ε0 =
1.2 GeV, µ0 = 1.6 GeV used in this paper is almost the same
in the energy range E = 5–20 GeV as with the previous values
ε0 = 1.07 GeV, µ0 = 1.5 GeV [35,39]. For example, at E = 5
and 20 GeV we have 〈dE/dL〉1d (ε0 = 1.2, µ0 = 1.6) = 0.19
and 1.05, while 〈dE/dL〉1d (ε0 = 1.07, µ0 = 1.5) = 0.19 and
0.99. Another modified parameter λ0 in this paper is inversely
proportional to the average number of scatterings undergone
by the propagating energetic parton. The value λ0 = 0.2 fm is
smaller than the previously used λ0 = 0.3 fm, which means
that the average number of scatterings is tuned larger to make
more energy loss by compensating for the effect caused by
transverse expansion, which makes the medium more rapidly
diluted. Note that the parameter ε0 is proportional and λ0 is
inversely proportional to the gluon or multiplicity density per

rapidity. The energy loss in a corresponding static medium is
found to be 14 GeV/fm, which is about 30 times as high as in
a cold nuclei [35].

The jet quenching effect can be shown by the nuclear
modification factor defined as [58]

RAB = dσh
AB

/
dyd2pT

〈Nbinary〉dσh
pp

/
dyd2pT

, (10)

where Nbinary is the average number of geometrical binary
collisions at a given range of impact parameters

〈Nbinary〉 =
∫

d2bd2rtA(r)tB(|b − r|) . (11)

If there is no energy loss, the cross section for nucleus-nucleus
collisions is a simple sum of that for elementary binary
nucleon-nucleon collisions, so the nuclear modification factor
RAB is Fig. 1. Hadron suppression due to parton energy loss
leads to RAB < 1.

As we mentioned earlier, we use the Woods-Saxon nuclear
distribution in the parton model calculation. The numerical
difficulty with the Woods-Saxon distribution is that one
cannot simply put the analytical formula into the program
because that would substantially reduce the speed of the
calculation and make the numerical calculation practically
impossible. One trick to overcome this problem is to calculate
the distribution before hand and then store the results in
tables whose entries can be called in the run time of the
program. The calculated RAB results for Au+Au collisions
are shown in Figs. 1 and 2 with Fig. 1 for π0 and
Fig. 2 for charged hadrons. The results for three collision
energies

√
s = 62.4, 200, and 5500 AGeV are given. The

parameters ε0 and λ0 at these energies are set to appropriate
values based on the ratios of charged particle (or gluon)
multiplicity density [51,61] (dNch/dy)5500/(dNch/dy)200,
(dNch/dy)62.4/(dNch/dy)200 and their values ε0 = 1.2 and
λ0 = 0.2 at 200 AGeV. In the figures, we can see different
transverse momentum behaviors of the nuclear modification
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FIG. 2. Nuclear modification factor
RAuAu for hadrons at

√
s = 62.4,

200, and 5500 AGeV. We chose the
values of corresponding parameters
at 62.4 and 5500 AGeV based on
their values at 200 AGeV and the
ratio (dNch/dy)62/(dNch/dy)200 and
(dNch/dy)5500/(dNch/dy)200.

factor at these energies. Similar behaviors have been seen in
recent studies [39,59,60]. The nuclear modification factor de-
creases with pT at 62.4 AGeV, while it slightly increases with
pT at 200 AGeV. So the nuclear modification factors for neutral
pions and charged hadrons at 62.4 AGeV intersect at about
pT = 11 and 10 GeV, respectively, with those of 200 AGeV
in the QCD case, where the energy loss parameters for gluons
and quarks satisfy g/q = 9/4 (we will explain this point
later). The same feature also occurs in Ref. [39] where the
hard-sphere distribution and only the longitudinal expansion
are used. In the intermediate pT region, one expects the jet
fragmentation process to be modified by other nonperturbative
processes such as parton recombination or coalescence [9–11].
The observed flavor dependence of the hadron suppression
and of the azimuthal anisotropy clearly points to the effect
of parton recombination that enhances both baryon and
kaon spectra in the presence of dense medium. To include
this effect in the current parton model, we added a soft
component to the kaon and baryon fragmentation functions
that is proportional to the pion fragmentation function with a
weight ∼〈Nbin(b, r)〉/[1 + exp(2pT c − 15)] where pT c is the
transverse momentum for parton c. {Actually we also found
that a similar effect can be achieved by using a function of the
hadron transverse momentum pT : 〈Nbin(b, r)〉/[1 + exp(pT −
5)].} The functional form and parameters are adjusted so
that (K + p)/π ≈ 2 at pT ∼ 3 GeV/c in the most central
Au+Au collisions at

√
s = 200 AGeV and approaches its

p + p value at pT > 5 GeV/c. This gives rise to the splitting
of the suppression factor for charged hadrons and π0 in the
calculation.

To study the sensitivity of hadron spectra suppression to
the non-Abelian parton energy loss, we compare the results
with two different cases at each energy: one for the QCD case
where the energy loss for a gluon is 9/4 times as large as for
a quark, i.e., �Eg/�Eq = 9/4; the other is for a non-QCD
case where energy loss is chosen to be the same for both
gluons and quarks. Similarly, the average number of inelastic

scatterings obeys 〈�L
λ

〉g
/〈�L

λ
〉q = 9/4 in the QCD case. For

the non-QCD case, that ratio is set to 1. In Figs. 1 and 2 we
can see that the differences between the QCD and non-QCD
cases are more significant for higher collision energies. This
fact manifests itself at 200 and 5500 AGeV, where the nuclear
modification factors RAB are much lower for the QCD energy
loss pattern than for the non-QCD one. As shown in the figures,
the suppression at 62.4 AGeV is sensitive not to gluon energy
loss but only to quark energy loss because of the dominance of
quark jets at large pT . At 200 AGeV, however, the suppression
is sensitive to both quark and gluon energy losses. At LHC
energy, the results are sensitive only to gluon energy loss in the
pT range we calculated. Such an energy-dependence pattern is
a direct consequence of the non-Abelian feature of the energy
loss.

To demonstrate the colliding energy dependence of the nu-
clear modification factor and illustrate the difference between
QCD and non-QCD energy loss, we computed the RAA for
neutral pions at fixed pT = 6 GeV in Au+Au collisions as a
function of

√
s from 20 to 5500 AGeV. Shown in Fig. 3 are

the calculated results with both the QCD energy loss and a
non-QCD case where the energy loss is set to be identical
for quarks and gluons. Two parameters ε0 and λ0, which
are relevant to the energy loss, are determined according to
the gluon number or the charged particle multiplicity per
rapidity [51,61]. One can see that because of the dominant
gluon bremstrahlung or gluon energy loss at high energy
the RAA for the QCD case is more suppressed than for the
non-QCD case where the gluon energy loss is assumed to
have an influence equal to that of the quark energy loss. In
the calculation, we assumed that the lifetime of the dense
matter is equal to or longer than the parton propagation time,
which is essentially determined by the system size. This might
not be the case for heavy-ion collisions at lower energies,
in particular around

√
s = 20 AGeV. If one assumes a short

lifetime, the suppression factor RAA is much larger than 1
due to a strong Cronin effect [39]. The dashed box around
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FIG. 3. Nuclear modification factor
RAuAu for neutral pions as function of colli-
sion energy at fixed pT = 6 GeV in most
central collisions (with centrality 10%).
Here we compare the QCD energy loss and
a non-QCD case where the energy loss is
identical for quarks and gluons.

√
s = 20 AGeV in Fig. 3 assumes a lifetime τf = 0–2 fm/c

and thus provides an estimate of the uncertainty due to the
lifetime of the dense matter. Since a finite lifetime reduces the
effect of the full parton energy loss, the difference between
the QCD and non-QCD energy loss effects in RAA should be
smaller. The difference seen in Fig. 3 is therefore the upper
limit.

Another interesting feature of the energy dependence of
RAA is the change of slope around

√
s = 1300 GeV. The rapid

decrease of RAA at
√

s = 20–1300 GeV is mainly due to the
increase in parton energy loss caused by the increased initial
gluon density and the change of pT slope of jet production
cross section with

√
s. As the energy loss increases, more

jets produced inside the overlapped region are completely
suppressed. Only those that are produced within an outlayer
in the overlapped region survive. This phenomenon is like
surface emission with a finite depth. The suppression factor
RAA is then determined by the width of the outlayer, which is
just the averaged mean-free-path 〈λ〉. As a consequence, RAA

has much weaker
√

s dependence.
In summary, nuclear modification factors in Au+Au

collisions at
√

s = 62.4, 200, and 5500 AGeV are calculated
in an LO perturbative QCD model with medium induced
parton energy loss. The previous calculations based on
the hard-sphere distribution of nucleus and the longitudinal

expansion of the dense medium are improved in terms
of a more realistic Woods-Saxon distribution and both
longitudinal and transverse expansion. The comparison of
nuclear modification factors for energy loss patterns in QCD
and non-QCD cases shows sizable differences at higher
colliding energies. Thus, the energy loss pattern can be
tested by the energy dependence of the hadron suppres-
sion factor RAA in the range

√
s = 20–1000 GeV. We

also found a weaker energy dependence above
√

s =
1000 GeV due to surface emission with finite depth.
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