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Signal of the pion string at high-energy collisions
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We study the possible signals of a pion string associated with the QCD chiral phase transition in LHC Pb-Pb
collision at energy

√
s = 5.5 TeV. In terms of the Kibble-Zurek mechanism we discuss the production and

evolution of the pion string. The pion string is not topologically stable; it decays into neutral pions and sigma
mesons that in turn decay into pions. Our results show that all the neutral pions from the pion string are distributed
at the low momentum and the ratio of neutral to charged pions from the pion string violates the isospin symmetry.
For the momentum spectra of the total pions, the signal from the sigma particle decay from the pion string will
be affected by the large decay width of the sigma significantly.
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I. INTRODUCTION

The formation of topological defects in phase transition
is a very generic phenomenon in physics. It can be studied
experimentally in different condensed matter systems. It is
generally believed that the early evolution of the universe
undergoes a sequence of phase transitions, and the produced
topological defects in these phase transitions may have
observable consequences to the properties of the universe
today. For example, the cosmic strings have been suggested
as one possible source for the primordial density perturbations
that give rise to the large-scale structure of the universe and the
temperature fluctuations of the cosmic microwave background
(CMB) radiation [1,2]. In particular, in Ref. [3] the effect of
the pion string on the primordial magnetic field generation in
the early universe has been considered and its cosmological
significance is pointed out. However, in this article, we will
turn from cosmology to laboratory experiments and attempt
to study the possible signals of the pion string in the heavy
ion collision experiments that have many similarities with the
nonequilibrium phenomena that also take place in heavy ion
collisions experiments [4,5].

It is difficult to make experimental tests of our ideas
about the formation and evolution of topological defects
in cosmology directly. What we can do is to look for
analogous processes in experimentally accessible condensed-
matter systems. Fortunately, topological defects are formed
at phase transitions in certain condensed-matter systems
such as superfluids and superconductors, this phenomenon is
theoretically very similar to its cosmological counterpart, and
we can use this analogy to do “cosmology experiments” [6].
On a more fundamental level, these same experiments can be
used to test our understanding of nonequilibrium dynamics of
quantum field theories [7].

In relativistic nucleus-nucleus collisions, some phenomena
such as those that happen in the Big Bang have been
observed, which are called the Little Bang. Thus as hadron
momentum spectra correlations provide strong evidence for
the existence of the Little Bang: thermal hadron radiation with

T = 90–100 MeV and strong three-dimensional (Hubble like)
expansion with transverse flow velocities 0.5–0.55 c [8]. So
the study of the Little Bang from relativistic nucleus-nucleus
collisions may construct a bridge between high energy particle
physics and the cosmology. Conversely, we are not yet in a
position to give an evidence that quark-gluon plasma (QGP)
has really been produced. It turns out to be a difficult task to
figure out the theoretical picture of QGP even in equilibrium.
Beyond the trivial level of the trees and the nonequilibrium
properties of the QGP are essentially unknown. There is no
unique signal of QGP in the understanding of nucleus-nucleus
collisions so far. As pointed out by Rajantie [9], the heavy-ion
collisions experiments are so complicated that the reliable
and accurate theoretical calculations are needed to confront
the experimental results, but our present understanding of the
theory is too rudimentary for that.

Consequently, the insight provided by condensed systems
experiments is therefore likely to be extremely useful. In
particular, it is believed that at a certain value of the beam
energy, the QGP produced in the collision cools through a
second-order transition point. Pion strings as well as other
topological and nontopological strings are expected to be
produced [10,11]. An early study on the effects of these strings
in the case of heavy ion collisions and in the early universe
has been performed [11]; in their article, they speculate that
formation and subsequent evolution of the network of these
string defects can give rise to inhomogeneous distribution
of baryons and also the energy density by using the Kibble
mechanism. In this article, we extend their works on the
formation and evolution of strings and discuss the possible
signal of pion strings during chiral phase transition in the high
ion collisions.

So far the theoretical scenario that can be applied to study
the formation of topological defects in systems with global
symmetry is the Kibble-Zurek mechanism [6,12]. Moreover,
according to Pisarski and Wilczek [13] the chiral phase
transition is expected to be of the second order for two
massless flavors; it is customary then in this article to apply the
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Kibble-Zurek mechanism to study the formation and evolution
of the pion string during Pb-Pb central collisions at the LHC
with energy

√
s = 5.5 TeV.

The remainder of this article is organized as follows. We
give a brief review of the pion string in the linear sigma model
in Sec. II. It is shown how to use the Kibble-Zurek mechanism
to consider the formation of the pion string at LHC in Sec. III.
We discuss the evolution and decay of the pion string and their
possible observational consequences at LHC in Sec. IV. Sec. V
is reserved for summary and discussion.

II. THE PION STRING IN QCD

The linear sigma model that serves as a good low-energy
effective theory of the QCD was first introduced in the
1960s as a model for pion-nucleon interactions [14] and
has attracted much attention recently, especially in studies
involving disoriented chiral condensates [4,15]. This model is
very well suited to describing the physics of pions in studies
of chiral symmetry. In what follows we review the work of
Ref. [10], in which it was shown that below the chiral symmetry
breaking scale, the linear sigma model admits global vortex
line solutions, the pion string. We then attempt to use the
Kibble-Zurek mechanism to give out a quantitative description
of the formation and evolution of the pion string and their
possible observational consequences in heavy ion collisions.

Considering a simple case of QCD with two massless
quarks u and d, the Lagrangian of strong interaction is invariant
under SU (2)L × SU (2)R chiral transformation

�L,R → exp(−i �θL,R · �τ )�L,R, (1)

where �T
L,R = (u, d)L,R . However, this chiral symmetry does

not appear in the low-energy particle spectrum because it is
spontaneously broken to the diagonal subgroup formation.
Consequently, three Goldstone bosons, the pions, appear and
the (constituent) quarks become massive. At low energy, the
spontaneous breaking of chiral symmetry can be described by
an effective theory, the linear sigma model, which involves
the massless pions �π and a massive σ particle. As usual, we
introduce the following field:

� = σ
τ 0

2
+ i �π · �τ

2
, (2)

where τ 0 is the unity matrix and �τ is the Pauli matrices with the
normalization condition Tr(τ aτ b) = 2δab. Under SU (2)L ×
SU (2)R chiral transformations, � transforms as follows:

� → L+�R. (3)

The renormalizable effective Lagrangian of the linear sigma
model can be written as follows:

L = L� + Lq, (4)

where

L� = Tr[(∂µ�)+(∂µ�)] − λ

[
Tr(�+�) − f 2

π

2

]2

(5)

and

Lq = �Liγ µ∂µ�L + �Riγ µ∂µ�R − 2g�L��R + h.c..

(6)

During chiral symmetry breaking, the σ field takes on
a nonvanishing vacuum expectation value, which breaks
SU (2)L × SU (2)R down to SU (2)L+R . It results in a massive
sigma particle σ and three massless Goldstone bosons �π , as
well as giving a mass mq = gfπ to the constituent quarks.1

In the previous article, two of us (X.Z. and T.H.) with
Brandenberger [10] discovered a type of classical solution, the
pion string, in the above linear sigma model. This pion string
is very much like the spin vortex produced at the superfluid
transition of the liquid 3He [7]. Similarly to the Z string [17,18]
in the standard electroweak model, the pion string is not
topologically stable, because any field configuration can be
continuously deformed to the trivial vacuum in the QCD
sigma model. With finite temperature plasma, however, one
of us (Nagasawa) and Brandenberger [19] argued that the pion
string can be stabilized. They propose that the interaction of
the pion fields with the charged plasma generates a correction
to the effective potential and this correction reduces the
vacuum maniford S3 of the zero temperature theory to a lower
dimensional submaniford S1, which makes the pion string
stable. Moreover, it has been shown by numerical simulations
that semilocal strings, which are also not topologically stable,
can be produced at the phase transition [18,20]. In a similar
way, pion strings are expected to be produced during the QCD
phase transition in the early universe as well as in experiment
of the heavy ion collisions. The strings will subsequently
decay.

The pion string is a static configuration of the Lagrangian
L� of Eq. (5). To discuss the pion string, we define the
following new fields:

φ = σ + iπ0

√
2

(7)

and

π± = π1 ± iπ2

√
2

. (8)

The Lagrangian L� now can be rewritten as follows:

L� = (∂µφ∗)(∂µφ) + (∂µπ+)(∂µπ−)

− λ

(
φ∗φ + π+π− − f 2

π

2

)2

. (9)

For the static configuration, the energy functional correspond-
ing to the above Lagrangian is given by the following:

E =
∫

d3x

[
�∇φ∗ �∇φ + �∇π+ �∇π−

+ λ

(
φ∗φ + π+π− − f 2

π

2

)2
]

. (10)

1The σ field can be used to represent the quark condensate and the
order parameter for the chiral phase transition because both exhibit
the same behavior under chiral transformations [16], the pions are
very light particles and can be considered approximately as massless
Goldstone bosons.
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The time-independent equations of motion are as follows:

∇2φ = 2λ

(
φ∗φ + π+π− − f 2

π

2

)
φ (11)

and

∇2π+ = 2λ

(
φ∗φ + π+π− − f 2

π

2

)
π+. (12)

The pion string solution with a single winding number
extremizing the energy functional in Eq. (10) is given by the
following [10]:

φ = fπ√
2

[1 − exp(−µr)] exp(iθ ) (13)

and

π± = 0, (14)

here the coordinates r and θ are polar coordinates in x − y

plane (the string is assumed to lie along the z axis), µ2 =
λ 89

144f 2
π , the energy per unit length of the string is as follows:

E = [0.75 + log(µR)]πf 2
π , (15)

where R is introduced as a cutoff because for global symmetry
the energy density of the string solution is logarithmically
divergent. Generally R is given by the horizon size or the
typical separation length between strings. The typical distance
between strings can be determined by the string number
density at the formation that is based on the the Kibble-Zurek
mechanism and the following evolution that is ruled out
by the string tension and the interaction between the string
and the surrounding matter. Thus the interaction between the
strings would not be so significant. In the following numerical
calculation, we take R = O(fm), for other parameters we
have λ = 9.877, fπ = 90 MeV, mπ = 140 MeV, and mσ =
400 MeV [21].

III. THE FORMATION OF THE PION STRINGS AT LHC

The order of the QCD chiral phase transition seems to
depend on the mass of the nonstrange u and d quarks,
mu ≈ md , and the mass of the strange quark ms . At the
phase transition temperature on the order of 150 MeV, heavier
quark flavors do not play an essential role. In the chiral limit,
one can use universality arguments to determine the order of
the phase transition. According to universality, the order of
the chiral transition in QCD is identical to that in a theory
with the same chiral symmetries as QCD, for instance, the
U (Nf )L × U (Nf )R linear sigma model for Nf massless quark
flavors. This argument was employed by Pisarski and Wilczek
[13], who showed that for Nf = 2 flavors of massless quarks,
the transition can be of second order if the U (1)A symmetry
is explicitly broken by instantons; whereas for three or more
massless flavors, the phase transition for the restoration of the
SU (Nf )R × SU (Nf )L is first order.

So far, the formation of topological defects has been studied
in liquid crystal and superfluid experiments [22], which are
systems with global symmetry. It is generally believed that
the theoretical scenario that can be applied to determine

the defects initially formed immediately after second-order
symmetry breaking phase transition in this case is the Kibble-
Zurek mechanism. The basic picture of this mechanism is
the following. For a second phase transition, after the phase
transition, the physical space develops a domainlike structure,
with the typical size of the domain being of the order of a
relevant correlation length ξ (which depends on the nature of
the dynamics of the phase transition). Inside a given domain,
the broken phase is roughly uniform, but varies randomly from
one domain to the other. The string defects are to be formed in
the junction of three or more domains.

It is customary then for us to apply the Kibble-Zurek
mechanism to make an estimate of the density of pion strings
during Pb-Pb central collisions at the LHC with energy√

s = 5.5 TeV. At the initial stage of the collision there exists
manifestly partons with very large cross section for gluon
scattering, so the gluons will reach equilibrium quickly with
an initial temperature at about Ti = 600 MeV corresponding
to the time ti = 0.2 fm [23]. If the entropy of the system is
conserved throughout the expansion, using the Bjorken model
we have that the thermal freeze out of the fireball occurs at
tf = 25 fm when the temperature reaches Tf = 120 MeV.
The calculation in Ref. [24] shows that the quark-gluon plasma
can be formed over very large space-time volumes at the LHC
Pb-Pb collisions. The hydrodynamic model predicts that the
volume of such a plasma region evolves as follows [25–27]:

V (tf ) = V (tc)
tf

tc
, (16)

where V (tf ) = 2 × 104 fm3, whereas evolution of the temper-
ature is given by the following:

T (t) = Ti

(
ti

t

) 1
3

. (17)

From Eqs. (16) and (17) we obtain that the time when the
phase transition occurs at Tc = 170 MeV is tc � 8.793 fm and
the volume at the freezing out is V (tf ) = 2 × 104 fm3.

When the LHC Pb-Pb collisions take place, a big fireball
is formed in the central region of the collision with the initial
temperature around T (ti) = 600 MeV at the time ti = 0.2 fm.
The fireball quickly reaches to the equilibrium state and it
expands rapidly with the volume and temperature given in
Eqs. (16) and (17). During the period when the temperature
is higher than Tc = 170 MeV (before tc � 8.793 fm), the
fireball is in the QGP phase, where the chiral symmetry is
unbroken. When the temperature of the fireball decreases
down to the critical point Tc(tc) = 170 MeV and its volume
is about V (tc) ≈ 7 × 103 fm3, the fireball undergoes a rapid
second-order chiral phase transition. At this time the system is
in an out-of-equilibrium dynamical state, and the phase with
broken chiral symmetry starts to appear due to the fluctuations
of the order parameter simultaneously and independently in
many separate regions of the expanding fireball. Subsequently
during the process with further cooling, these regions grow
and merge with each other to realize the new phase with the
broken symmetry all over the fireball. At the boundaries where
causally disconnected different regions meet, the order param-
eter field does not necessarily match and a domain structure
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is formed. This is essentially similar to the process of the
defect formation during the cosmological phase transitions in
the early universe.

As described by the Kibble-Zurek mechanism, the
transition speed can be given by the quench time τQ

[6,7,12]:

τQ = Tc

|dT /dt |t=tc

= 3tc. (18)

From the Ginzburg-Landau theory for the second-order
phase transition, the quench time τQ can be deduced
by the order parameter relaxation time τ with a general
form

τ (T ) = τ0

(
1 − T

Tc

)−1

, (19)

where τ0 ∼ ξ0 and ξ0 is the zero temperature-limiting value of
the temperature-dependent coherence length ξ (T ), and in this
article we take ξ0 = 1/mσ � 0.49 fm. When the temperature
T is close to Tc, we have the following:

ξ (T ) = ξ0

(
1 − T

Tc

)− 1
2

. (20)

As the temperature is below Tc the order parameter coherence
spreads out with the following velocity:

c(T ) ∼ ξ

τ
= ξ0

τ0

(
1 − T

Tc

) 1
2

. (21)

The pion strings are expected to be produced at the Zurek
freeze-out time tz when the causally disconnected regions have
grown together and the coherence is established in the whole
volume. At the Zurek freeze-out temperature T (tz) < Tc, the
causal horizon is given by the following:

ξH (tz) =
∫ tz

0
c(T )dt = ξ0τQ

τ0

(
1 − Tz

Tc

) 3
2

. (22)

The causal horizon has to be equal to the coherence length
ξ (tz), then from Eqs. (19)–(22) we obtain the following:

tz = tc + τ (tz) = tc + √
τ0τQ ≈ 12.4 fm (23)

and

ξz = ξ0(τQ/τ0)1/4 � τ
1/4
Q τ0

3/4 � 1.33 fm. (24)

Due to the Kibble-Zurek mechanism, a network of pion strings
is formed at the Zurek freeze-out time tz with a typical
curvature radius and separation of ξz. After that time, the
network of the pion string is going to evolve with the fireball
expansions until to the freeze-out time tf .

IV. THE EVOLUTION AND DECAY OF THE PION STRING

Similarly to the evolution of the cosmic string in the
early universe [3,28,29], when the temperature of the fire-
ball falls down from the Zurek temperature, Tz ≡ Ti(

ti
tz

)
1
3 =

151.6 MeV to Tf , the evolution of the string network would
obey the following procedure. Initially, at the Zurek time tz,
the pion string has a typical curvature radius and separation

of the correlation length ξz, which then increases rapidly and
eventually approaches a scaling solution in which ξ (t) ∼ ta .
In the case of the pion string in the heavy ion collision
experiments, because the volume of fire ball obeys the
following law V (t) ∼ t , we make the assumption that a = 1

3
for our case from time tz up to tf . Hence, the correlation length
of the pion string at time tf is

ξf = ξ (tf ) = ξz

(
tf

tz

) 1
3

� 1.69 fm. (25)

The pion string ceases to evolve at the time tf and decays
because of the fireball disappearance. Hence we have to find
out the size and number of loops at the time tf .

Note that in our situation, closed string loops have a
dominant contribution to the total energy of the string. This is
because at the freezing out, the string evolution is still ruled out
by the frictional force by the surrounding matter so that the free
motion of the string is not realized. In addition, the expansion
of the system is too rapid that the initial Brownian string
distribution will be conserved. Then the initial structure of
the string network partially remain and the spatial trajectories
of strings are very much complicated. Thus we take the initial
pion string network as that of the Brownian one and regard
that the distribution of these loops does not change with time,
the size of the loops are conformally stretched during the
expansion of fireball and a simple scaling can be realized.
By using the scale invariance of Brownian string described
by Vachaspati and Vilenkin [29], we get the distribution of
number density of the pion string with the length between l

and l + dl at the freeze-out temperature, Tf :

dn(l) = Kξ
− 3

2
f l−

5
2 dl, (26)

where the parameter K is approximately in the range of 0.01 ∼
0.1 [7].

Integration of Eq. (21) over dl will result in the total number
of the string loops. Note that the string width r0 ∼ 1

µ
gives a

minimum length of the pion string at time tf , l0 = 2πr0 �
5.6 fm and the longest string is also constrained by the volume
of the system. From Eq. (26) we have the total number of pion
strings:

N (0) = 2KV (tf )

3ξ
3
2
f l

3
2
0

= 459K. (27)

Because K varies from 0.01 to 0.1 the total number of pion
strings varies between N (0) � 4 and N (0) � 45.

In the immediate aftermath of the phase transition, when
the temperature is still close to Tc, the string tension remains
small and motion of the strings is heavily damped by the
frictional effects of the surrounding high-density medium. The
mechanism of Nagasawa and Brandenberger implies that pion
strings might effectively be stable in this high-density medium
until the thermal freeze out time tf . After that, the string
tension approaches its zero-temperature value and the motion
of the strings is effectively decoupled from the surrounding
medium, there will not be corrections to the effective potential
from the thermal bath and pion strings undergo the second
phase transition. Even though pion strings undergo the second
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phase transition under the temperature Tf , pion strings will
not decay immediately and can still survive sometime below
the freeze-out time tf , because the pion strings undergo a
core phase transition and lose their central structure where
the field strength equals to zero but still preserve the winding
number of neutral components [30]. For simplicity we assume
that pion strings can survive after the decoupling time and
all pions that are eventually emitted from pion strings will be
completely incoherent with the rest of the pions. According
to the work of Ref. [27], the produced pions in the interval
T > Tf have time to be thermalized before the freeze-out
time, they lead to an enhancement of thermal pions, whereas
in the interval T < Tf the produced pions do not get chance
to be thermalized, they result in a nonthermal enhancement
of pions with low momentum. Thus it is expected that the
resultant pion spectrum with the pion string will contain the
nonthermal pions that can be taken as the evidence of the pion
string.

All pion strings will decay into the sigma particles and
neutral pions. To estimate the numbers of the particle produced
we notice that for the ansatz Eqs. (13) and (14), the sigma field
in Eq. (10) contributes about 50% of the total energy of the
string. Due to energy conservation half of the string energy
should convert into that carried by the sigma particles. The
remaining 50% of the string energy will go to the neutral pions.
For global string such as the axion string [31] one expects the
mesons produced from the decay of the pion strings with length
l have a typical momentum p ∼ 1/l. Using Eq. (26), we obtain
that the total number of sigma particle Nσ emitted from pion
strings within a fireball is about 100 (K = 0.1), 43 (K = 0.05),
22 (K = 0.03), and 5 (K = 0.01), respectively. And the total
number of neutral pions Nπ0 is about 332 (K = 0.1), 148 (K =
0.05), 80 (K = 0.03), and 19 (K = 0.01). As mentioned above
it is expected that the eventually resultant pion spectrum will
have a nonthermal enhancement at low momentum region
because all produced pions from pion strings are distributed at
low momentum.

It can be seen that the most of the sigma particles and
the neutral pions have a relatively low momentum and these
particles are nonthermal particles. The momentum distribution
of the sigma from the pion string decay is given by the
following:

dNσ (p)

dp
= KV (tf )

√
p

D1ξ
3
2
f

, (28)

where the normalization factor D1 = 0.476. The momentum
distribution of the neutral pions is given by the following:

dNπ0 (p)

dp
= KV (tf )

√
p

D2ξ
3
2
f

, (29)

where the normalization factor D2 = 0.142. The averaged
momentum of sigma and neutral pion is 〈p〉 � 21.1 MeV.
The neutral pions and sigma particles are dominant in the
low momentum region, and the momentum distribution of the
pions produced at the decay of the pion string can be taken as
a distinctive signal of the formation of the pion string in heavy
ion collisions.

FIG. 1. The momentum spectra of the total pions from the pion
string and thermal pions by taking parameter K = 0.1 and without
considering the large decay width of the sigma. The indirect pions
(π 0’s, π±) via σ decay from the pion strings are mostly distributed
around 〈p〉 ∼ 143.2 MeV.

The sigma particles from pion strings will decay equally
into neutral and charged pion mesons.2 As we know, the σ

particle has a large decay width and it is more complicated
issue to get the real distribution of the pions from the σ meson.
To get the simplified results, we ignore its large decay width
and take it as a stable particle. Because the momentum of the
sigma can be approximately neglected, for mσ = 400 MeV
these pions from the sigma decay will have momentum around
143 MeV. In Fig. 1 we plot the distribution of these pions
as a function of the momentum together with the thermal
pions calculated in Ref. [27]. Numerically there are about
200 nonthermal pions mostly distributed at p ∼ 143 MeV
for K = 0.1, (In the following discussion, for simplicity, we
always take the parameter K = 0.1 for the case of the sigma
decay.)

In the above discussion, we get the simplified results by
ignoring the large decay width of the sigma and take it as
a stable particle. In fact, the σ particle is a broad resonance
and have a decay width, then the narrow peak in Fig. 1 will
definitely smoothen out. To get a more reality figures, we
should take into account the decay width of sigma and redraw
the figure. Mass and width of σ particle are somewhat model
dependent; in this article we take the Breit-Wigner function as
follows [32]:

BWσ = 1

m2
σ − s − imσ
σ

, (30)

where 
σ is a constant. From Eqs. (26), (28), and (30), we
plot the distribution of these pions together with the thermal
pions as a function of the momentum and the decay width
of sigma by taking the parameters as 
σ = 300 MeV and

2An early study on the effects of pion string in heavy ion collision
has been performed in Ref. [11], but they have not quantitatively
estimated the numbers of the pions produced from the pion string
decay.
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FIG. 2. The momentum spectra of the total pions from the pion
string and thermal pions by taking parameters 
σ = 300 MeV and

σ = 600 MeV and K = 0.1. The indirect pions (π0’s, π±) via σ

decay from the pion strings are broadly distributed from p ∼ 0 MeV
to p ∼ 500 MeV.


σ = 600 MeV and K = 0.1 in Fig. 2. The averaged momen-
tum of indirect pions via sigma decay is 〈p〉 ∼ 152.5 MeV
and 〈p〉 ∼ 175.9 MeV according to 
σ = 300 MeV and 
σ =
600 MeV respectively. Numerically there are also about 200
nonthermal pions broadly distributed at the momentum region
p ∼ 0 − 500 MeV for 
σ = 300 MeV and 
σ = 600 MeV.
From Fig. 2, the narrow peak in Fig. 1 definitely smoothens
out and nearly disappears. These nonthermal pions can hardly
be distinguished from the thermal pions, so one of the possible
signals of pion stings is not significant because of the large
decay width of sigma.

Because the string configuration violates the isospin sym-
metry the direct production of the pions from the pion string
decay is only for the neutral pion, not the charged pion.3 In
Fig. 3 we plot these neutral pion distribution together with
the thermal pions. Numerically there are about Nπ0 ∼ 20–300
nonthermal pions distributed in the low momentum region
with 〈p〉 ∼ 21 MeV. From the Fig. 3, all the neutral pions
from pion strings are distributed at the low momentum and the
ratio of neutral to charged pions from pion strings violates the
isospin symmetry, this can be taken as the possible signal of
pion strings.

V. SUMMARY AND DISCUSSION

We have investigated the effects of the pion string in
the experiment of the heavy ion collisions. Following the
Kibble-Zurek mechanism pion strings are expected to be
formed in LHC Pb-Pb collision at energy

√
s = 5.5 TeV, then

decay after the freezing out time into pions. These pions are

3The charged pion strings are expected to be also produced; how-
ever, according to the mechansim of Nagasawa and Brandenberger
the charged pion string will not be able to be stabilized in the plasma,
consequently, they will decay away and their decay products will be
thermalized before the freezing out.

FIG. 3. The momentum spectra of the nonthermal neutral pions
(π 0’s) emitted from the pion strings together with the thermal
pions. The nonthermal pions are mainly distributed around p ∼
0 − 35 MeV.

mostly distributed in two separated low-momentum regimes.
These effects are expected to be observable and differ from
predictions of other models [27,33]. The pion enhancement
in a small window around the nonthermal momentum p0 �
21.1 MeV for neutral pions, although for other nonthermal
pions, the situation is completely different. If we ignore the
large decay width of the sigma and take the sigma as a
stable particle, there are the pion enhancement in a small
window around the nonthermal momentum p0 � 143 MeV,
but actually the sigma has the large decay width, then the peak
will smoothen out and almost tend to disappear. So it is difficult
to detect this part of nonthermal pions in experiment. All the
resultant pion spectrum depend strongly on how long the pion
string can survive below the freeze-out time tf .

In this article, we have made the assumption that pion
strings can survive after the decoupling time, then both the
neutral pions and sigma particles emitted from pion strings
do not get chance to be thermalized. Conversely, we do not
exclude the situation in which part (even all) of pion strings
will decay into pions and sigma particles when the time is very
close to the decoupling time, and such produced pions from
pion strings will be thermalized by the final state interactions
and the peak in the pion spectra due to the pion string decay
will disappear partly (or completely). However, even though
this situation is happened, there still have possible signals of
the pion string produced. Then pion string decay can lead
to experimentally observable anomlies that are very similar
to the DCC (disoriented chiral condensate) decay. It is the
ratio of neutral to charged pions, r = n0/n0 + nch, here n0

is the number of neutral pions, whereas nch corresponds to
charged pions, which is different from what is naively expected
( 1

3 ) if there are pion strings produced during chiral phase
transition.

Therefore, to obtain more reliable conclusions, we need to
know more details of the process of the pion string decay, the
sigma decay, and behaviors of the fireball at freeze-out time in
heavy ion collisions.
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