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Polarization transfer in 4He(�e, e′ �p) and 16O(�e, e′ �p) in a relativistic Glauber model
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Polarization-transfer components for 4He(�e, e′ �p)3H and 16O(�e, e′ �p)15N are computed within the relativistic
multiple-scattering Glauber approximation (RMSGA). The RMSGA framework adopts relativistic single-particle
wave functions and electron-nucleon couplings. The predictions closely match those of a relativistic plane-wave
model indicating the smallness of the final-state interactions for polarization-transfer components. Also short-
range correlations play a modest role for the studied observables, as long as small proton missing momenta
are probed in quasielastic kinematics. The predictions with free and various parametrizations for the medium-
modified electromagnetic form factors are compared to the world data.
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I. INTRODUCTION

In conventional nuclear physics, nuclei are described in
terms of pointlike protons and neutrons, interacting through
the exchange of mesons. It has been a long-standing and unre-
solved issue whether the electromagnetic properties of bound
nucleons differ from those of free nucleons. Any sizable mod-
ification would have a severe impact on the interpretation of,
e.g., the EMC effect [1]. Inclusive A(e, e′) data, including their
separated longitudinal and transverse cross sections, are rather
inconclusive with respect to the allowed ranges for medium
modifications. Indeed, a recent reanalysis of the longitudinal
inclusive 4He(e, e′) response, implementing two-body effects
in the nuclear charge operator and realistic wave functions,
finds the data consistent with the state-of-the-art calculations
when using free-nucleon electromagnetic form factors [2]. To
the contrary, an alternate recent reevaluation of the Coulomb
sum rule (CSR) concentrating on heavier nuclei discerns
it considerably quenched for A � 40, thereby not excluding
sizable medium modifications for the electric form factor
GE(Q2) [3]. Conversely, a y-scaling analysis of the inclusive
A(e, e′) data [4] indicates that the medium effects on the
magnetic form factor GM (Q2) are smaller than 3% for Q2 �
1 (GeV/c)2. At lower values of the four-momentum transfer
Q2, a considerably improved description of the separated
longitudinal and transverse A(e, e′) responses for 12C and 40Ca
was reached after including in-medium GE(Q2) and GM (Q2)
form factors as computed in the Nambu-Jona-Lasinio model
[5]. This model is thought to provide a reasonable description
of the dynamical breaking of chiral symmetry at nuclear
physics scales.

Exclusive A(e, e′p) processes have been put forward as
more discriminative than inclusive A(e, e′) when it comes
to investigating specific aspects of nuclei, and in par-
ticular, the possible modifications of the electromagnetic
properties attributed to the presence of a medium. Find-
ing signatures of those medium modifications, however,
requires an excellent control over all those ingredients of
the A(e, e′p) reaction process that are directly related to

the presence of a nuclear medium. They include medium-
related effects, such as final-state interactions (FSI), meson-
exchange currents (MEC), and isobar currents (IC). We
wish to stress that in principle there is a clear distinc-
tion among FSI, MEC, and IC effects and those dubbed
“medium modifications.” Indeed, the latter refer to medium-
driven changes in the internal quark-gluon structure of
nucleons. Unfortunately, at the level of the A(�e, e′ �p)
observables, no formal distinction can be made among FSI,
MEC, and IC effects on one hand and possible medium
modifications on the other.

In the 1980s, it was suggested that the ratio of the
transverse (T ) to the longitudinal (L) response in exclusive
A(e, e′p) may provide a handle on the medium modifi-
cations of the nucleon’s electromagnetic properties [6,7].
The longitudinal-transverse A(e, e′p) separations suggested
substantial deviations from the naive [i.e., plane-wave impulse
approximation (PWIA)] predictions for the T/L ratio. The
data for medium-heavy nuclei such as 12C and 40Ca, however,
could be satisfactorily explained after implementing FSI
mechanisms [8], thereby adopting free-nucleon electromag-
netic form factors. For the 4He nucleus, charge-exchange
processes turned out to be of great importance to explain the
measured T/L ratios [9–11]. The above-mentioned findings
indicate that medium modifications of the electromagnetic
form factors are apparently modest and support the picture
that despite their substructure, nucleons are rather robust
objects.

For a long time, Rosenbluth separations in elastic electron-
proton scattering were the sole source of information about
free-proton electromagnetic form factors. Continuing efforts to
improve on the quality of electron beams and hadron detection,
however, made precise measurements of polarization degrees-
of-freedom a viable option to address issues in hadronic
physics with the aid of the electromagnetic probe. In polarized
electron free-proton scattering �e(Ee) + p −→ e′(Ee′) + �p, the
ratio of the electric [GE(Q2 = −qµqµ)] to the magnetic
[GM (Q2)] Sachs form factors, can be extracted from the
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following [12]:

GE(Q2)

GM (Q2)
= −P ′

x

P ′
z

Ee + Ee′

2Mp

tan

(
θe

2

)
. (1)

Here, qµ is the four-momentum transfer, P ′
x and P ′

z are the
transferred polarization in the direction perpendicular to and
parallel with the three-momentum transfer, and θe is the
electron scattering angle.

Of all observables accessible in A(e, e′p), the transferred
polarization components P ′

i have been recognized as the ones
with the weakest sensitivity to FSI, MEC, and IC distortions
[13–18]. Therefore, polarization-transfer components have
been put forward as a tool to examine the magnitude of the
in-medium electromagnetic form factors. Hereby, one adopts
the philosophy that the in-medium (or off-shell) electron-
proton vertex �µ has the same Lorentz structure as the
free-proton one. This is the so-called impulse approximation
(IA), which has been successfully applied in a vast number
of calculations. Investigations search for anomalous behavior,
which manifests itself as a deviation between up-to-date calcu-
lations and well-controlled observables obtained in optimized
kinematic conditions. Possible anomalous behavior of this
kind may subsequently be interpreted as an indication for
a medium effect. The described procedure is a pragmatic
one and may be subject to criticism, particularly in view of
the ambiguities with respect to describing the off-shell �µ

vertex [19].
Recently, (�e, e′ �p) measurements for the target nuclei 16O

[20] and 4He [21,22] have been reported. The 16O(�e, e′ �p) mea-
surements have been confronted to various nonrelativistic and
relativistic calculations [23–27]. All these calculations utilize
an optical potential to incorporate the FSI. The calculations of
Ref. [26] indicate that two-nucleon currents such as MEC and
IC affect the polarization-transfer components in 16O to less
than 5% provided that missing momenta below 200 MeV/c are
probed. The nonrelativistic calculations of Ref. [23] attributed
somewhat larger corrections to the two-nucleon currents, in
particular for proton knockout from the p3/2 and s1/2 shells.
All calculations, however, predict similar trends for the MEC
and IC corrections on the polarization-transfer components.
One major finding is that their effect dwindles with increasing
Q2 and decreasing missing momentum. Relativistic effects on
the transferred polarizations P ′

x and P ′
z have been investigated

in Refs. [24,27] and are discerned at the few percentage levels
as long as the probed missing momentum remains relatively
small (pm � 200 MeV/c). These studies also indicated that
at higher missing momenta the uncertainties stemming from
off-shell ambiguities are larger than the overall impact of the
relativistic effects. Apparently, all theoretical investigations in-
dicate that when probing low missing momenta in quasielastic
kinematics, the effect on the polarization-transfer components
of typical medium-related complications such as MEC, IC,
and off-shell ambiguities can be kept under reasonable
control.

In Ref. [22] the Jefferson Laboratory (JLAB) 4He(�e, e′ �p)
data, which cover the range 0.5 � Q2 � 2.6 (GeV/c)2, are
compared to the state-of-the-art relativistic distorted-wave
impulse approximation (RDWIA) calculations of Udı́as

et al. [28]. This model provided a better overall description
of the data when implementing medium-modified electromag-
netic form factors as predicted in the quark-meson coupling
(QMC) model [29–31]. At JLAB, exclusive A(e, e′p) studies
are conducted in a kinematic regime that may outreach the
range of applicability of optical-potential approaches for
describing FSI mechanisms. Indeed, given the highly inelastic
and diffractive nature of proton-nucleon scattering at proton
lab momenta exceeding 1 GeV/c, the use of optical potentials
for modeling FSI seems rather unnatural. For example, for the
Q2 = 2.6 (GeV/c)2 case, the 4He(�e, e′ �p) data of Ref. [22] are
compared to RDWIA calculations with extrapolated optical
potentials.

At higher energies, Glauber multiple-scattering theory
provides a more natural and economical description of FSI
mechanisms [32–34]. A typical Glauber model is based on
the eikonal approximation and the assumption of consecutive
cumulative scattering of a fast proton on a composite target of
A − 1 “frozen” nucleon scatterers. Recently, we developed a
relativistic version and dubbed it as the relativistic multiple-
scattering Glauber approximation (RMSGA) [35–37]. The
RMSGA heavily draws on ingredients of standard RDWIA
A(e, e′p) approaches. For example, the assumptions made
with respect to the construction of the bound-state wave func-
tions and electromagnetic couplings are identical in RDWIA
and RMSGA. The sole difference concerns the construction
of the scattering wave function. In RDWIA one adopts
the philosophy that optical potentials parametrizing the FSI
mechanisms in elastic A(p, p)A processes, can also be utilized
to model the impact of the proton’s distortions in A(e, e′p)
reactions. In a Glauber framework, conversely, the effects
of FSI are computed directly from nucleon-nucleon scat-
tering data. Despite the dissimilar assumptions underlying
the treatment of FSI, it has been recently shown that the
RMSGA and RDWIA predictions for the nuclear transparen-
cies extracted from A(e, e′p) are alike in an intermediate
proton kinetic-energy range where both optical-potential and
Glauber approaches are judged to be applicable [38]. The
RMSGA A(e, e′p) model has a number of virtues, including
the fact that it is unfactorized, which means that our cross
section is not written in terms of the product of an off-shell
electron-proton cross section and a distorted missing mo-
mentum distribution. In addition, our implementation adopts
the full-fledged multiple-scattering version of the Glauber
approach and describes each nucleon scattering center in
the residual nucleus with its particular single-particle wave
function. Thereby, we avoid a frequently adopted averaging
approximation that allows introducing the nuclear density.

In this article, RMSGA predictions for the polarization-
transfer components in 4He and 16O are presented and
compared to the world data. The numerical calculations are
performed with both free and medium-modified electromag-
netic form factors. For the latter we use the predictions
of the QMC model [29–31] and of a modified Skyrme
model [39,40]. It is the purpose of this article to address
the questions whether a Glauber approach can adequately
describe the (�e, e′ �p) polarization-transfer components and to
what extent its predictions differ from typical distorted-wave
(or optical-potential) approaches.
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The outline of this article is as follows. In Sec. II A the basic
features of the RMSGA formalism are sketched. Section II B
presents predictions for the medium-modified electromagnetic
form factors from some specific nucleon models and outlines
how these form factors are implemented in the calculation of
the polarization-transfer components. Section III presents our
numerical results. We summarize our findings and state our
conclusions in Sec. IV.

II. FORMALISM

In this section, we first review the basic ingredients that
enter the RMSGA formalism [37]. Next, the method of
implementing medium-modified electromagnetic form factors
is outlined.

A. RMSGA model

Adopting the IA and the independent-nucleon picture, the
basic quantity to be computed in a relativistic approach to
A(e, e′p) is the transition matrix element

〈Jµ〉 =
∫

d�r φF (�r)Ĵ µ(�r)ei �q.�rφα(�r), (2)

where φα and φF are the relativistic bound-state and scattering
wave functions. Further, Ĵ µ is the relativistic one-body current
operator modeling the coupling between the virtual photon
and a nucleon embedded in the medium. The relativistic
bound-state wave functions are obtained within the Hartree
approximation to the σ -ω model [41]. As discussed by
Walecka [42], the quantum-field theory can be approximated
by replacing the meson field operators with their expectation
values. The resulting eigenvalue equations of the relativistic
mean-field theory can be solved exactly. The corresponding
bound-state wave functions φα are four-spinors and can be
formally written as follows:

φα(�r, �σ ) =
(

iGnακα (r)
r

Yκαmα
(�r, �σ )

−Fnακα (r)
r

Y−καmα
(�r, �σ )

)
, (3)

with Yκαmα
(�r, �σ ) the usual spin spherical harmonics. In a

high-resolution and exclusive A(e, e′p) experiment, the angu-
lar momentum of the state in which the A − 1 residual nucleus
is left determines the quantum numbers α ≡ (nα, κα,mα).
In determining the bound-state wave functions, all results
contained in this work use the W1 parametrization [43] for
the different field strengths. Further, we adopt the Coulomb
gauge and the current operator in its CC2 form [44]

Jµ(�r) = F
p

1 (Q2)γ µ + F
p

2 (Q2)i
κp

2mp

σµνqν. (4)

In computing the matrix elements, the qµ is evaluated in the
laboratory frame and the energy transfer is based on electron-
scattering kinematics.

We now turn to the question of how to determine a
relativistic scattering wave function for the emitted proton.
Traditionally, the Glauber approach relies on a number of
assumptions: first, the use of the eikonal approximation and,

further, the so-called frozen approximation. The latter allows
one to formulate a full-fledged multiple-scattering theory for
the emission of a “fast” proton from a composite system
consisting of A − 1 frozen nucleons. In Ref. [37], a relativistic
and unfactorized formulation of Glauber multiple-scattering
theory has been outlined. In this approach, termed RMSGA,
the scattering wave function in the matrix element of Eq. (2)
takes on the following form:

φF (�r) ≡ φpF , sF
(�r) G(�b, z), (5)

where φpF ,sF
is a relativistic plane wave. The impact of the

FSI mechanisms on the scattering wave function is contained
in the scalar Dirac-Glauber phase G(�b, z)

G(�b, z) =
∏
α �=α1

[
1 −

∫
d�r ′|φα(�r ′)|2θ (z′ − z)�(�b − �b′)

]
,

(6)
where the product over α(n, κ,m) extends over all occupied
single-particle states in the target nucleus, not including the
one (here denoted as α1) from which the proton is ejected. The
profile function for pN scattering is defined in the standard
manner

�(�b) = σ tot
pN (1 − iεpN )

4πβ2
pN

exp

(
−b2

2β2
pN

)
. (7)

The parameters σ tot
pN , βpN , and εpN depend on the proton

energy and fitted values to the pN data can be found in
Ref. [45].

The Dirac-Glauber phase G(�b, z) of Eq. (6) can be cast in
the following form:

G(�b, z) =
∏

α(n,κ,m)�=α1(n1,κ1,m1)

{
1 − σ tot

pN (1 − iεpN )

4πβ2
pN

∫ ∞

0
b′db′

×
∫ +∞

−∞
dz′θ (z′ − z)

([
Gnκ (r ′(b′, z′))

r ′(b′, z′)
Yκm(�′, �σ )

]2

+
[
Fnκ (r ′(b′, z′))

r ′(b′, z′)
Y−κm(�′, �σ )

]2
)

× exp

[
− (b − b′)2

2β2
pN

] ∫ 2π

0
dφb′

× exp

[−bb′

β2
pN

2 sin2

(
φb − φb′

2

)]}
. (8)

For numerical reasons, the z axis is chosen along the
asymptotic direction of the ejectile. It is noteworthy that
when computing the Dirac-Glauber phase G(�b, z) each of the
residual nucleons behaves as a “frozen” scattering center with
its unique relativistic wave function, which has an upper [G(r)]
and lower [F (r)] component. Cylindrical symmetry about the
axis defined by the ejectile’s asymptotic momentum makes
the Dirac-Glauber phase to depend on the two independent
variables (b, z). Hereby, b = | �b |, where �b is orthogonal to the
ejectile’s direction. Equation (8) includes the cumulative effect
of free passage of the hit proton, single-scattering, double-
scattering, up to and including (A − 1)-fold scattering. Often,
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FIG. 1. QMC predictions [31] for the radial dependence of GE , GM , and GE/GM in 4He at four different values of Q2 (GeV/c)2. The bag
radius was taken to be 0.8 fm.

the product over all scattering centers
∏

α �=α1
is approximated

by a sum that is cut at some order in the multiple-scattering
series. At the expense of a great numerical cost, we compute
Eq. (8) rigorously.

B. Electromagnetic form factors

In the QMC model [29–31], the scalar (σ ) and vector
(ω) fields, carrying the forces between nucleons in quantum
hadrodynamics [41,42], couple directly to the quarks within
the nucleon. As a result, the intrinsic properties of a bound
nucleon are affected by the presence of a medium. In the
QMC framework, the nucleon is described in terms of
the MIT bag model with almost massless and relativistic
pointlike quarks. For the A(�e, e′ �p) results presented below,
we use the QMC predictions corresponding to a bag radius of
0.8 fm. In the QMC model, the electric and magnetic form
factors attain a dependence on the total baryon density:
GE,M (Q2) → GE,M (ρB(�r),Q2). In a mean-field model, the
total baryon density ρB(�r) is defined according to the
following:

ρB(�r) =
∑

α

∫
d �σ (φα(�r, �σ ))†(φα(�r, �σ )). (9)

The magnitude of the free form factors is not so well
described within the QMC model. Therefore, we retain only
the prediction for its density dependence and scale the free
form factor with the ratio of the QMC form factors at a given
density to the ones at vanishing baryon density as follows:

G̃
QMC
E,M (ρB(�r),Q2) = GE,M (Q2)

G
QMC
E,M (ρB(�r),Q2)

G
QMC
E,M (ρB(�r) = 0,Q2)

.

(10)

In Fig. 1 the QMC predictions for the radial dependence of G̃E ,
G̃M , and their ratio in 4He are displayed at four different values
of Q2. Thereby, we have plotted the renormalized quantities as
defined in Eq. (10). The magnitude of medium modifications
grows with Q2. As suggested by Kelly in Ref. [18], the Q2

dependence of the above ratios for a particular single-particle
state can be estimated in the local density approximation in

GE(s1/2)

GM(s1/2)

Q2 (GeV2/c2)

G~

E
,M

/G
E

,M
(f

re
e)

GE(s1/2)
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Q2 (GeV2/c2)

G~

E
,M

/G
E

,M
(f

re
e)

0.8

1

1.2

0 0.5 1 1.5 2 2.5

FIG. 2. The Q2 dependence of the ratio of the in-medium to free
electric and magnetic form factors for the proton in 4He according to
the QMC model with a bag radius of 0.8 fm [31].

terms of the following density convolution

G̃
QMC
E,M (α1,Q

2) =
∫
G̃

QMC
E,M (ρB(�r),Q2) ρα1 (�r) d�r∫

ρα1 (�r) d�r . (11)

Here, ρα1 (�r) is the square of the 〈A − 1 | A〉 overlap wave
function. In a naive independent particle picture the overlap
wave function corresponds with the single-particle wave
function of the state from which the proton is ejected.
Figure 2 displays G̃

QMC
E,M (s1/2,Q2) for a proton in 4He. At

Q2 � 1.5 (GeV/c)2, the averaged medium magnetic form
factor is 10% larger than the free one. It has been pointed
out that modifying the bag radius can considerably reduce
the overall magnitude of the medium effects [46]. A recent
calculation in the chiral quark soliton model resulted in
predictions for the electromagnetic form factors of bound
protons that show the same trends as the QMC model [47].

Recently, Yakhshiev et al. [39,40] addressed the issue of
in-medium electromagnetic form factors in the framework of a
modified Skyrme model. This model provides a fair description
of nucleon properties in free space and adopts degrees of
freedom directly related to the spontaneous chiral symmetry
breaking of QCD. In contrast to most constituent quark models,
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FIG. 3. The radial dependence of the proton magnetic moment
in 4He according to the Skyrme model of Ref. [40]. The free case
corresponds with µp = 2.79 n.m.

the pion-cloud contribution is naturally taken into account. As
a result, the influence of the nuclear medium and the nucleon’s
response to it are predicted to be very probe dependent. Beyond
Q2 = 0.6 (GeV/c)2, vector mesons and boost effects are
deemed to come into play, and the Skyrme model is no longer
considered realistic. In the Skyrme model, the proton magnetic
moment gains an additional radial dependence dictated by the
density of the nucleus. Whereas GE(Q2) remains unaffected,
its magnetic counterpart takes on the following form:

GM (Q2, r) = µp(r)GE(Q2). (12)

In Fig. 3 the medium proton magnetic moment is displayed as a
function of the distance to the center of the 4He nucleus. In the
interior of 4He, the magnetic form factor is mildly suppressed,
whereas a modest increment is observed in the surface area.

When including medium modifications in the A(�e, e′ �p)
calculations, the electromagnetic current operator of Eq. (4) is
modified according to the following:

Jµ(�r) = F̃
p

1 (ρB(�r),Q2)γ µ + F̃
p

2 (ρB(�r),Q2)i
κp

2mp

σµνqν.

(13)
The density-dependent Dirac and Pauli form factors are related
to the G̃

QMC
E (ρB(�r),Q2) and G̃

QMC
M (ρB(�r),Q2) of Eq. (10) in

the standard fashion. The medium-modified form factors F̃
p

1,2
in Eq. (13) depend on the total density in the neighborhood of
the nucleon that absorbs the virtual photon.

III. RESULTS

All 4He(�e, e′ �p) and 16O(�e, e′ �p) calculations reported in this
section are performed in quasielastic kinematics and adopt
kinematical conditions that allow a direct comparison with the
available data from Refs. [20–22]. For the 4He nucleus, the
polarization-transfer measurements have been performed in
parallel kinematics.

Throughout this section, we adopt a dipole parametrization
for the free-nucleon form factors. This choice may appear
doubtful as improved fits implementing the new p(�e, e′) �p data
are readily available [48]. For the present purposes, however,
a dipole parametrization is adequate. Indeed, the 16O(�e, e′ �p)
data are restricted to Q2 = 0.8 (GeV/c)2, where deviations
between the dipole and more sophisticated parametrizations

 W1

4He

q (fm-1)

|F
c(

q)
|

10-5

10-4

10-3

10-2

10-1

0 1 2 3 4 5

FIG. 4. The charge form factor of 4He, obtained within the W1
parametrization of [43]. The data are from Refs. [49] and [50].

are minor. Conversely, the 4He polarization-transfer results
are commonly expressed in terms of a double ratio R

R = (P ′
x/P

′
z)4He

(P ′
x/P

′
z)1H

, (14)

which is almost independent of the used parametrization for
the form factors, as long as identical ones are used for 4He and
1H. To not obscure the result by small kinematical differences
between the individual 1H and 4He measurements, data and
calculations are often shown in terms of a double ratio with
the RPWIA result as baseline.

At present, realistic relativistic wave functions for the
4He ground state are not available. Wave functions based
on a relativistic mean-field approach emerge as the only
alternative when embarking on fully relativistic A(e, e′p)
calculations. At first sight, an independent-particle approxi-
mation for describing the four-nucleon system may appear as
a venture into dangerous territory. As can be appreciated from
Fig. 4, however, a fair description of the low-momentum part
of the charge form factor for the 4He nucleus is obtained with
the “W1” parametrization used throughout this work. The
deviation between the computed and measured charge form
factor Fc at high momentum transfer can be partly attributed to
large two-body charge contributions [51], which are neglected
for the curve displayed in Fig. 4.

A source of theoretical uncertainty on the computed
polarization-transfer components is the presence of short-
range correlations (SRC). The RMSGA formalism outlined in
Sec. II A is based on an independent-particle approximation.
The effect of SRC on the FSI mechanisms can be estimated by
introducing a central correlation function in the expression
for the Dirac-Glauber phase of Eq. (6). This amounts to
performing the following substitution:

|φα(�r ′)|2 → |φα(�r ′)|2g(�r − �r ′), (15)
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where g(�r − �r ′) is the central correlation function. Physically,
the existence of a central correlation function reflects the
inability of mean-field models to properly implement the
strong repulsion of the nucleon-nucleon force at short internu-
cleon distances. We use the central correlation function from
a G-matrix calculation by Gearheart and Dickhoff [52]. To
date, the strongest sensitivity to central correlation functions
is observed in exclusive A(e, e′pp) reactions. The adopted
correlation function provides a favorable agreement with the
12C(e, e′pp) and 16O(e, e′pp) data [53]. In the process of
computing the Dirac-Glauber phase of Eq. (8), the introduction
of a correlation function through the replacement of Eq. (15),
strongly reduces the interaction between the struck proton
and any of the scattering centers when they are very close
(internucleon distances smaller than 0.8 fm) and bring about
a moderate enhancement for internucleon distances between
0.8 and 2 fm. In Fig. 5, we investigate the effect of SRC on the
transferred-polarization components in 4He at two different
values of Q2. The results are expressed in the barycentric
frame with l parallel to the direction of the ejectile �pf and t

in the hadronic plane, orthogonal to the l component. As we
can see, the SRC effects are relatively small, being typically of
the order of 1% at a missing momentum of 200 MeV/c. Some
asymmetric effect on P ′

l and P ′
t is seen. A major finding is that

the effect of SRC on the Dirac-Glauber phase tends to cancel
in the ratio R at smaller values of Q2. At higher values, we
predict a modest enhancement of R due to SRC effects.

We now turn to the results for the double-polarization ratio
R obtained for the 4He nucleus. Response functions from the
model calculations were used in a Monte Carlo code [54]
to calculate the transferred and induced proton polarizations
averaged over the experimental acceptance. The starting point
is always the huge number of events (experimental data or MC
simulations) within the acceptance of the detectors. The full
acceptance is then divided in various bins. For Figs. 6 and 7
there are four bins in pm for the data and several more for
the calculations. Next, the average value of the polarization is
calculated for each bin. For the pm distributions the data are
reported at the mean value of the missing momentum within
that bin. The best comparison with the model would be to bin
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FIG. 5. Relative effect of short-range correlations on the
polarization-transfer components and their ratio. The solid (dot-
dashed) curves refer to 4He(�e, e′ �p) in quasielastic and parallel
kinematics for Q2 = 0.5(2.6) (GeV/c)2. The RMSGA + SRC results
implement the effect of SRC according to the prescription of Eq. (15).

the MC data into the same number of bins as the data. One
would then compare one data point with one calculated point.
That way, however, the reader loses the information about
the general missing momentum dependence. Our comparison
is reliable as long as the transferrred polarizations are not
changing rapidly within the considered bin width.

Figure 6 shows R as a function of the missing momentum
at Q2 = 0.4 and 0.5 (GeV/c)2. We note that positive missing
momentum pm corresponds to | �pf | < |�q|. As can be inferred,

RPWIA

Q2 = 0. 4

pm(MeV/c)

(P
′ x
/P

′ z)
H

e/
(P

′ x
/P

′ z)
H

RMSGA

Q2 = 0. 4

pm(MeV/c)

(P
′ x
/P

′ z)
H

e/
(P

′ x
/P

′ z)
H

RMSGA + QMC

Q2 = 0. 4

pm(MeV/c)

(P
′ x
/P

′ z)
H

e/
(P

′ x
/P

′ z)
H

RMSGA + Skyrme

Q2 = 0. 4

pm(MeV/c)

(P
′ x
/P

′ z)
H

e/
(P

′ x
/P

′ z)
H

(P
′ x
/P

′ z)
H

e/
(P

′ x
/P

′ z)
H

(P
′ x
/P

′ z)
H

e/
(P

′ x
/P

′ z)
H

(P
′ x
/P

′ z)
H

e/
(P

′ x
/P

′ z)
H

(P
′ x
/P

′ z)
H

e/
(P

′ x
/P

′ z)
H

0.8

1

-100 -50 0 50 100

Q2 = 0. 5

pm(MeV/c)

Q2 = 0. 5

pm(MeV/c)

Q2 = 0. 5

pm(MeV/c)

Q2 = 0. 5

pm(MeV/c)

0.8

1

-200 -100 0 100 200

FIG. 6. The double ratio R as a function of the missing momentum for Q2 = 0.4 and 0.5 (GeV/c)2 in 4He. The solid (dashed) curve are
RPWIA (RMSGA) calculations. Influence of medium modifications are shown for the QMC (dot-dashed) and the Skyrme model (dotted). Data
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the FSI have only a minor impact on R, but move the predic-
tions somewhat closer to the measurements. Both RMSGA and
RPWIA overestimate the double ratio R by nearly 10% and
predict R ≈ 1 for zero recoil momentum. After implementing
the medium-modified electromagnetic form factors from the
QMC model, the computed double-ratios R are lowered by
almost 8%, resulting in a better overall agreement with the data.
The Skyrme model predicts modest medium modifications
that do not suffice to bring about a major improvement in
the description of the data within the context of the RMSGA
model.

Figure 7 summarizes the missing momentum dependence
of the 4He results for Q2 � 1 (GeV/c)2 [22]. The FSI effects
on R are even smaller in this high-energy regime. For Q2 =
1.6 (GeV/c)2 the measured pm dependence can be reasonably
reproduced using free-nucleon form factors. Substituting the
free form factors with the QMC ones reduces R, an effect
that grows with pm. At Q2 = 1.0 (GeV/c)2 the effect of
medium modifications moves the theoretical curves closer to
the data. Qualitatively our RMSGA results are not dramatically
different from the RDWIA predictions presented in [22].

In Fig. 8, the superratio R/RRPWIA is displayed as a function
of Q2. Also here, the data and calculations are integrated over
the full experimental acceptance. The data and calculations
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FIG. 8. The superratio R/RRPWIA as a function of Q2 in 4He.
The dot-dashed (solid) curve shows RMSGA (RDWIA) calculations,
and the dotted (dashed) curve represents RMSGA calculations with
in-medium electromagnetic form factors from the QMC (Skyrme)
model. The RDWIA and RDWIA+QMC results are those from the
Madrid group as reported in Ref. [22]. Data are from Refs. [21] (open
triangle) and [22] (solid circles).

are reported as single points at the nominal Q2 value. The
model “curves” only connect the computed points to guide the
eye. As seen in Fig. 8 the Mainz data point nicely matches
with the lowest Q2 measurement at JLAB. As off-shell effects
are not completely negligible for the polarization-transfer
components, it is worth stressing that the RDWIA (RMSGA)
4He results shown here are obtained with the CC1 (CC2)
current operator. For Q2 � 1 (GeV/c)2 the standard nuclear
physics RDWIA and RMSGA results fail to reproduce the ratio
R. The overestimation is of the order of 10% for RMSGA, and
5–7% in RDWIA. The predicted four-momentum dependence
for R is modest in both models. The RMSGA attributes smaller
effects to FSI than RDWIA does. In Ref. [38], a similar trend
was found when comparing RDWIA and RMSGA A(e, e′p)
nuclear transparencies for light nuclei.

Inclusion of medium modifications for the electromagnetic
form factors according to the predictions of the Skyrme
model shifts the RMSGA calculations marginally closer to
the data. The results for the Skyrme model are shown
up to Q2 = 0.6 (GeV/c)2 because the model is no longer
deemed realistic at higher values. Conversely, implementing
QMC electromagnetic form factors lowers the pm-integrated
RMSGA predictions for the superratio R between 5 and 10%.
The difference between the RMSGA and the RMSGA+QMC
values for P ′

x/P
′
z grows with increasing Q2. This reflects the

fact that in the QMC model, the ratio G̃E/G̃M moves steadily
away from the free values with increasing Q2 to reach a
maximum of over 20% at about Q2 = 2 (GeV/c)2, after which
some turning in the trend is observed. This has been illustrated
in Fig. 9. As can be inferred from this picture, about one-third
of the predicted magnitude of the medium modifications on
GE/GM is visible in the P ′

x/P
′
z ratio. It is worth stressing that

Fig. 9 compares two different quantities. On the one hand,
the curve showing the G̃E/G̃M has been averaged over the
squared 1s1/2 proton overlap wave function, thus receiving
its largest contributions from the nuclear interior. This is not

014605-7



LAVA, RYCKEBUSCH, VAN OVERMEIRE, AND STRAUCH PHYSICAL REVIEW C 71, 014605 (2005)

(G
~

E/G
~

M)/(GE/GM)free

(RMSGA + QMC)/RMSGA

Q2 (GeV2/c2)

R
at

io

(G
~

E/G
~

M)/(GE/GM)free

(RMSGA + QMC)/RMSGA

Q2 (GeV2/c2)

R
at

io

0.7

0.8

0.9

1

1.1

0 1 2

FIG. 9. The ratio of the RMSGA+QMC to the RMSGA pre-
diction for R as a function of Q2 for the 1s1/2 proton in
4He (dashed line). The solid line shows [G̃QMC

E (1s1/2,Q2)/G̃QMC
M

(1s1/2,Q2)]/[GE(Q2)/GM (Q2)].

necessarily the case for the 4He(�e, e′ �p) observables. Indeed, in
the process of computing the observables, the medium effects
in the form factors are weighted with a more complex function
that involves not only the 1s1/2 proton overlap wave function
but also the current operator and the scattering wave function.
The dashed curve of Fig. 9 indicates that over the whole larger
radii, and correspondingly lower densities, are probed. This
phenomenon reduces the magnitude of the medium-dependent
effects on the observables.

Figure 10 displays the induced normal polarization as
a function of Q2 for the 4He nucleus. In the one-photon
exchange approximation, Py vanishes in the absence of FSI.
Accordingly, this observable serves as a stringent test for
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FIG. 10. The induced normal polarization as a function of Q2 in
4He. The solid curve represents RMSGA calculations with free from
factors. For the dashed lines G̃

QMC
E,M (1s1/2,Q2) form factors are used.

Data points and RDWIA results are from Ref. [22].

models of FSI mechanisms. The smallness of Py suggests
relatively moderate FSI. The RDWIA calculations for Py are
shown for exactly the same kinematics, although with the CC1
choice for the current operator. The RDWIA predictions for the
Py in 4He(e, e′ �p) are presented for two viable choices of the
optical-potential parametrization: “RLF” (limited to proton lab
kinetic energies smaller than 0.4 GeV) and “MRW” (limited
to proton lab kinetic energies smaller than 1.0 GeV). The
two optical potentials predict a dissimilar Q2 dependence for
Py . Indeed, in many cases various optical potentials can fit the
elastic proton-nucleus data equally well, but do not necessarily
lead to identical predictions in electromagnetically induced
nucleon knockout. The RDWIA model predicts values for Py
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that are over twice as large as the RMSGA ones. Studies in
the Dirac eikonal approach have stressed the importance of
the spin-orbit part in the optical potential for the computed
values of Py in 16O [56]. Similar observations have been
made for the 12C(e, e′ �p) case at Q2 = 0.49 (GeV/c)2 [57].
The measured value of Py at Q2 = 2.6 (GeV/c)2 may indeed
suggest the decreasing role of this spin-dependent part as
the energy increases. As can be inferred, Py remains nearly
unaffected by medium modifications in the electromagnetic
form factors. This is not unexpected given that Py is an
observable which quantifies the magnitude of secondary
processes, like rescattering mechanisms. The introduction of
medium-modified form factors induces some change in the
way these mechanisms are folded over the density of the target
nucleus.

Finally, in Fig. 11, results for the transferred polarization
components and their ratio for the 16O nucleus are shown
at Q2 = 0.8 (GeV/c)2. Hereby, we adopt constant (�q, ω)
kinematics and compare the RMSGA predictions with the
measurements of Ref. [20] and the results of the RDWIA
model from the Madrid group. For the oxygen calculations, the
RDWIA and RMSGA calculations adopt identical mean-field
wave functions (W1 parametrization) and current operators
(CC2 in the Coulomb gauge). The RDWIA calculations
are performed with the EDAD1 parametrization for the
optical potential [58]. In essence, the RDWIA and RMSGA
curves result from identical model ingredients, apart from
the implementation of FSI distortions, which is grounded on
different philosophies. The RPWIA and RMSGA curves for
P ′

l and P ′
t are close, the RDWIA model predicting larger FSI

distortions. At corresponding Q2 values (Figs. 6 and 7), the
4He results could be better reproduced after introducing QMC
medium-modified form factors. As can be appreciated from
Fig. 11, the 16O data do not allow one to draw conclusions
on the possibility of medium modifications. The overall trends
of the 16O polarization-transfer data are reasonably reproduced
in the RMSGA, using free-proton electromagnetic form
factors. When comparing the RMSGA and RMSGA+QMC
curves, a significant orbital dependence of the magnitude of
the medium effect is observed. Comparing the results for R

for the various orbitals in a particular nucleus could allow one
to study the density dependence of the medium effects.

IV. CONCLUSIONS

Unfactorized and relativistic Glauber calculations are per-
formed for the polarization-transfer components in 4He and
16O(�e, e′ �p) for Q2 = 0.4, 0.5, 0.8, 1.0, 1.6, and 2.6 (GeV/c)2.
The selected kinematics are those for which data are available.
The adopted framework has the virtues that it is relativistic
and can be reliably applied up to the highest four-momentum
transfers covered in the measurements. Overall, the effect of
FSI on the polarization-transfer components is smaller in the
relativistic Glauber framework than in a relativistic optical-
potential framework. After all, this is not so surprising given
that typical Glauber approaches rely on spin-independent
nucleon-nucleon scattering amplitudes when modeling the
final-state interactions. The spin-dependent effects are
expected to lose their importance as the energy increases.
Polarization studies with the electromagnetic probe, such as
the one presented here, will help in further clarifying this issue.

For the 16O target, for which the data are restricted to
Q2 = 0.8 (GeV/c)2, the calculations provide a fair description
when adopting free-proton electromagnetic form factors. A
similar situation holds for the 4He case at Q2 � 1.6 (GeV/c)2.
For 4He and Q2 � 1.0 (GeV/c)2 substantial deviations between
the RMSGA predictions and the data are observed. Under these
circumstances, the implementation of the in-medium form
factors from the QMC nucleon model, makes the RMSGA
calculations to go in the right direction and induces changes
in the ratio of the polarization-transfer components, which are
of the right order of magnitude to explain the discrepancies.
A recently approved experiment at JLAB [55] will address the
polarization-transfer ratio at Q2 values of 0.8 and 1.3 (GeV/c)2

and is expected to reduce the statistical uncertainties by over a
factor of two compared to the previous round of measurements.
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