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We describe a method of estimating cross sections for the synthesis of very heavy nuclei by the fusion of
two lighter ones. The cross section is considered to be the product of three factors: the cross section for the
projectile to overcome the Coulomb barrier, the probability that the resulting composite nucleus reaches the
compound nucleus configuration by a shape fluctuation treated as a diffusion of probability in one dimension,
and the probability that the excited compound nucleus survives fission. Semi-empirical formulas for the mean
Coulomb barrier height and its distribution around the mean are constructed. After overcoming the Coulomb
barrier the system is assumed to be injected into an “asymmetric fission valley” by a rapid growth of the neck
between the target and projectile at approximately frozen asymmetry and elongation. Diffusion in the elongation
coordinate in this valley can occasionally bring the system over the saddle separating the injection point from the
compound nucleus configuration. This is the stage that accounts for the hindrance to fusion observed for very
heavy reacting systems. The competition between deexcitation of the compound nucleus by neutron emission
and fission is treated by standard methods, but an interesting insight allows one to predict in an elementary way
the location of the maximum in the resulting excitation function. Adjusting one parameter in the theory causes
the calculated peak cross sections to agree within about a factor of 2 or so with 12 measured or estimated values
for “cold” one-neutron-out reactions where targets of 208Pb and 209Bi are bombarded with projectiles ranging
from 48Ca to 70Zn. The centroids of the excitation functions agree with theory to within 1 or 2 MeV for the six
cases where they have been determined, and their widths are reproduced. “Hot” fusion reactions, where several
neutrons are emitted, are not treated, except that a comparison is made between the hindrance factors in cold and
hot reactions to make elements with atomic numbers 112 to 118. The calculated diffusive hindrances in the hot
reactions are less unfavorable by 4 to 5 orders of magnitude.

DOI: 10.1103/PhysRevC.71.014602 PACS number(s): 25.70.Jj, 25.70.Gh

I. INTRODUCTION

This paper continues the study of fusion excitation func-
tions along the lines of our early work [1], which will be
referred to as Part I. (The present paper goes beyond [1]
in several respects. Reactions with 209Bi targets have been
included, the calculations of the Coulomb barrier heights and
the diffusion stage have been much improved, and the diffusion
hindrance factors in hot reactions have been calculated. Refer-
ence [2] should also be consulted for background information
and relevant results.) The excitation functions in question refer
to nuclear reactions where a very heavy nucleus is synthesized
by the fusion of two lighter ones. Our theory approximates the
cross section for such reactions by the product of three factors,
written schematically as

Fusion = Stick × Diffuse × Survive. (1)

Here “Stick” stands for the cross section needed for the target
and projectile to form a composite system (essentially the
cross section for overcoming the Coulomb barrier). “Diffuse”
stands for the probability that the composite system reaches the
compound-nucleus configuration in the presence of thermal
shape fluctuations, treated as a diffusion of probability.
“Survive” represents the probability that the compound nu-
cleus survives fission.

In [1,2] as well as in the present paper we focus attention
(except for Sec. VI) on reactions where the target is either 208Pb

or 209Bi, and the projectiles range from 48Ca to 86Kr designed,
after fusion, to form compound nuclei with atomic numbers
Z = 102, 103, . . . , 119 (Fig. 1). In such “cold” reactions the
bombarding energy can be chosen sufficiently low so that the
compound nucleus (if formed) can deexcite by the emission of
a single neutron (followed by γ rays). In a future publication
we hope to apply our theory to “hot” reactions, where more
than one neutron is emitted (Fig. 1).

At the present time, there exists information on 12 one-
neutron-out excitation functions resulting in the production
of elements with Z = 102, 103, . . . , 112 [3–6]. The measured
(or estimated) peak cross sections are shown, respectively, as
solid or open circles in Fig. 2; they constitute the data set that
will be used to test our proposed scheme based on Eq. (1). In
what follows, Secs. II–IV specify the expressions used in the
calculation of the three factors in Eq. (1), as illustrated by the
three lines in Fig. 2. The calculated excitation functions are
confronted with measurements in Sec. V. Section VI compares
for cold and hot reactions the hindrances to fusion associated
with the diffusion stage. The results are further discussed and
summarized in Sec. VII.

II. STICKING

The classical formula for the cross section to overcome
a barrier B encountered at separation R between two mass
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FIG. 1. Contours of calculated shell corrections in MeV for very heavy nuclei [26]. The circles show the locations of the compound nuclei
(landing places) in one-neutron-out cold fusion reactions with 208Pb and 209Bi targets bombarded by the following projectiles: 48Ca, 50Ti, 54Cr,
58Fe, 62Ni, 64Ni, 70Zn, 76Ge, 82Se, and 86Kr. The solid circles refer to reactions where synthesis has been achieved. The squares refer to landing
places in hot fusion reactions in which 48Ca projectiles bombarded targets of 238U, 244Pu, 243Am, 245Cm, 248Cm, and 249Cf, and several neutrons
were emitted.

points colliding with center of mass energy E reads

σ (stick) = πR2

(
1 − B

E

)
for E � B,

(2)
σ (stick) = 0 for E � B.

Multiplying σ (stick) by E and dividing by πR2 we find for
the energy-weighted reduced cross section y ≡ σE/πR2, the

expression

y = E − B for E � B,
(3)

y = 0 for E � B.

This expression, consisting of segments of two straight
lines with a slope discontinuity at E = B, may be readily
generalized into a smoothed expression that reproduces much
more closely the smooth measured energy-weighted reduced
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FIG. 2. The lowest line shows logarithms of
calculated peak cross sections for the synthesis of
elements with atomic numbers Z = 102 to Z =
119, in one-neutron-out reactions using targets of
208Pb and 209Bi bombarded with the projectiles
listed along the Z axis. (The calculated values
were multiplied by 0.7 to allow approximately
for the dispersion of the beam energy in a typical
target foil.) The solid circles refer to measured
values, the open circles to estimates (more
likely to be under than overestimates because
the maxima in the excitation functions had not
been located). The uppermost curve shows the
calculated cross sections for overcoming the
Coulomb barrier; the middle curve, the cross
sections for forming a compound nucleus.
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cross sections. This is done as follows. Differentiating Eq. (4)
with respect to E results in a step function, and a second
differentiation produces a delta function at E = B. Now
replace the delta function by a normalized Gaussian of range v,
viz. (v

√
π )−1 exp(−X2), where X = (E − B)/v, and reverse

the differentiations. The first integration gives the smoothed
step function (1 + erf X)/2, and the second gives a smoothed
energy-weighted reduced cross section, from which follows
the generalized expression for σ (stick):

σ (stick) = πR2 v

2E

[
X(1 + erf X) + 1√

π
exp(−X2)

]
.

(4)
In the language of the “barrier distribution” scheme of
Rowley, Satchler, and Stelson [7], we have introduced a
Gaussian distribution of barriers [8]. However, our empirical
Gaussian smoothing may be simulating, at least approximately,
any kind of smoothing (for example, that due to quantal
barrier penetration) in addition to that due to actual distri-
butions of barriers associated with nuclear deformations and
vibrations.

Eq. (4) was fitted to accurately measured fusion cross
sections for a nucleus (A1Z1) colliding with a nucleus (A2Z2)
at energies around the barrier for 45 reactions ranging from
40Ca + 40Ca to 40Ca + 194Pt. (See [8] for an updated version
of such fits.) This resulted in 45 sets of fitted values of R, B,
and v. Note that in a logarithmic plot of σ given by Eq. (4),
different values of R result in a mere vertical shift of the
curve, the intrinsic shape of log σ being determined by B

and v alone. Hence the optimum fits to the data (which, for
any given reaction, turned out to be extremely accurate [8])
yield 45 pairs of values of B and v, which do not depend on
R. These values are plotted in Figs. 3–5 as functions of the
conventional Coulomb parameter z ≡ Z1Z2/(A1/3

1 + A
1/3
2 ),

up to about z = 170. The question now arises of extrapolating
these empirical trends to the reactions of interest, with z values
ranging from about 170 to 300. In the case of the barriers, we
made the extrapolation by first supplementing the empirical
points in Fig. 3 by barriers calculated using the parameterless
Proximity theory of [9]. (Only a sampling of the Proximity
barriers is displayed.) A parabolic fit to the Proximity barriers
passing through the origin in Fig. 3 indicates an overestimate
by several MeV of the 45 measured barriers, indicating the
need to adjust the Proximity barriers to the data. (See also [8].)
Figure 4 shows the result of lowering the Proximity barriers
by 3 MeV. The following cubic in z now provides a reasonable
representation of all the points:

B = 0.85247z + 0.001361z2 − 0.00000223z3 MeV. (5)

We adopted this cubic as our extrapolation formula for
the mean barrier energy. (Another extrapolation scheme is
suggested in [8].)

The extrapolation of the trend of v in Fig. 5 is more difficult.
To allow for some, at least, of the anticipated structural features
in the colliding nuclei, we experimented with several semi-
empirical formulas for v, of which we adopted the following:

v = CB

√
W 2

1 + W 2
2 + W 2

0 . (6)
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FIG. 3. The black dots are Coulomb barriers for 45 reactions
deduced from accurately measured excitation functions fitted by
Eq. (4) in the text. The circles are theoretical “Proximity” barriers [9]
calculated for eight reactions ranging from 48Ca to 86Kr on 208Pb. The
plots are against the Coulomb parameter z = Z1Z2/(A1/3

1 + A
1/3
2 ).

The curve, a parabolic fit to the circles, shows that the Proximity
theory overestimates measurements by several MeV.

Here B is the barrier given by Eq. (5) and C is an adjustable
parameter. W1 and W2 are the rms distributions of the radius
vectors specifying the surfaces of the projectile and target,
whose mean radii are R1 and R2 and whose quadrupole
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FIG. 4. This is like Fig. 3, but the Proximity points have been
moved down by 3 MeV. The curve is a cubic fit to all the points.
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FIG. 5. The Gaussian range parameters v, deduced from fits of
Eq. (4) to the excitation functions for 45 reactions, are plotted against
the Coulomb parameter z.

deformation parameters are β1 and β2. It is readily shown
that

W 2
i = R2

i β
2
i

4π
. (7)

We took Ri = 1.14A
1/3
i fm and βi as given under the heading

“β2” in [10]. (We disregarded multipolarities higher than the
quadrupole.) The quantity W0 in Eq. (6) is a second adjustable
parameter designed to represent, at least roughly, nuclear
vibrations, quantal barrier penetrability, etc.

Fitting Eq. (6) to the collection of measured v values, we
found C = 0.07767 fm−1 and W0 = 0.41 fm. The (limited)
success of this procedure is illustrated in Fig. 6, where the
parameterized values of v are plotted against the empirical
ones. The straight line along the diagonal indicates the result
of extrapolation to the reactions of interest up to 86Kr + 208Pb.
The rms deviation of the theoretical from the experimental
values of the Gaussian range v is 0.570 MeV. There is much
room for improvement here. We note, however, that for the
heaviest reactions, beyond about Z = 112, sticking becomes
an over-the-barrier process, and the sticking cross section tends
to the geometric limit, independent of v.

III. DIFFUSION

For relatively light colliding nuclei, overcoming the
Coulomb barrier leads automatically to the formation of the
compound nucleus. The cross section for the synthesis is then
the product of the cross section to overcome the Coulomb
barrier and the probability to survive fission:

Fusion = Stick × Survive. (8)

It has long been known that for heavier systems the ob-
served production cross sections begin to show exponentially
increasing deviations from such a product. A qualitative
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FIG. 6. The theoretical ranges v given by Eq. (6) are plotted
against measured values. The line along the diagonal indicates the
extrapolation of the theory to the heavier reactions shown by circles,
ranging from 48Ca to 86Kr on 208Pb.

understanding of this hindrance to fusion in heavy systems
has been available since the 1980s and has to do with a
simple geometrical feature. Figure 7 shows how, for relatively
light colliding systems, the overall length of the target and
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FIG. 7. The qualitative explanation of the appearance of a
hindrance to fusion for very heavy reactions. For light reacting
systems, the tangent configuration is on the inside of the saddle-point
shape in elongation space. Beyond a critical size of the reacting
system the saddle moves inside the tangent configuration and an
uphill diffusion is necessary for the system to reach the compound
nucleus configuration.
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FIG. 8. The macroscopic defor-
mation energies along the asymmetric
fission valley for 20 reactions ranging
from 48Ca + 208Pb to 86Kr + 209Bi,
as functions of s, equal to the excess
of the length of the configuration over
the sum of the target and projectile
diameters. In the entrance channel
of two approaching nuclei, a length
specified by s = 0 would correspond
to contact of the half-density con-
tours, and s ≈ 2.74 fm to the contact
between the classical turning points
of the fastest nucleons in the two
nuclei (the nucleons at the Fermi
energy).

projectile configuration at contact is less than the length of
the saddle-point configuration guarding the compound nucleus
against disintegration. Hence, after contact and neck growth,
the composite system is likely to find itself on the inside of the
saddle-point barrier, and fusion follows automatically. But for
progressively heavier systems, the saddle-point shape begins
to shrink rapidly when the fissility parameter x, the ratio of
the electrostatic to twice the surface energy of the spherical
configuration, exceeds about 0.7. (The macroscopic saddle
shape tends to the sphere as x tends to one. For asymmetric
systems, an effective fissility xeff replaces x [11].) As a result,
beyond a critical size of the target-projectile combination, the
composite nucleus will find itself outside the saddle-point
barrier, and automatic fusion will not take place. In fact,
in a classical dynamic calculation without fluctuations, the
system would redisintegrate without ever having reached the
compound nucleus configuration. An infinite hindrance to
fusion would have set in [11].

Looking apart from quantal effects, only thermal shape
fluctuations can cause a system “on the wrong side of the
barrier” to nevertheless diffuse up hill and, with some probabil-
ity P (diffuse), to reach the compound nucleus configuration.
The simplest model that illustrates the essence of such a
diffusion process is the one-dimensional Brownian motion
of a particle suspended in a viscous fluid at temperature T

in the presence of a repulsive parabolic potential V (L) =
−b(L − Lmax)2/2, where Lmax locates the maximum in V (L).
In our case, the position L of the Brownian particle translates
into the fluctuating length of the fusing system. The equation
describing the probability W (L, t) to find the system with
coordinate L at time t is the Smoluchowski partial differential
equation [12]

G
∂W

∂t
= −(bLW )′ + T W ′′. (9)

Here G is proportional to the viscosity of the fluid in the
case of the Brownian particle, or to the dissipation acting in

the length degree of freedom L in the case of fusion. Primes
denote partial differentiations with respect to L.

As discussed in Part I, the solution for W (L, t) correspond-
ing to starting at t = 0 with a delta function distribution at some
initial elongation (the “injection point” Linj) is a monotonically
swelling Gaussian distribution in L, sliding away from the
maximum in V (L). (See [1] for the explicit expression for this
Gaussian.) As t tends to infinity, the portion of the Gaussian
distribution that managed to overcome the barrier tends to the
following expression (independent of G):

P (diffuse) = 1
2 (1 − erf

√
H/T ) = 1

2 erfc
√

H/T

if Linj � Lmax, (10)

P (diffuse) = 1
2 (1 + erf

√
H/T ) if Linj � Lmax. (11)

Here H is the height of the barrier opposing fusion along the
asymmetric fission valley, as seen from the injection point. T is
the temperature (of the fluid or of the fusing system), assumed
constant. In this bare-bones representation of the diffusion
stage, the only quantity needed to estimate P (diffuse), i.e., the
hindrance to fusion, is the ratio H/T .

As explained in [1] and [2], we estimate H/T by noting
that at a point near contact between two approaching fluid
spheres, a loss of equilibrium takes place against a rapid growth
of a neck. The system is then injected from near contact
into an “asymmetric fission valley.” defined by minimizing
the potential energy of the system at fixed asymmetry and
elongation. Using the parameterization of the nuclear shapes
by two spheres joined smoothly by a third quadratic surface
of revolution [13], this minimization gives a definite energy
along the bottom of the asymmetric fission valley in its
dependence on the length L of the system. (For details see
App. A.) The result is shown in Fig. 8. Here the (purely
macroscopic) deformation energy is plotted for 20 compound
nuclei with Z = 102–119. The abscissa is the overall length
L of the system less the sum of the diameters of the original
reacting partners. Thus s = 0 corresponds to a length equal
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to the length of the tangent configuration, and s = 3 fm to
a length in which the effective surfaces of the approaching
nuclei are 3 fm apart. It is in this range of separations, of
the order of the nuclear surface diffuseness, that one might
expect the loss of equilibrium against neck formation to take
place. The deformation energies in Fig. 8 were calculated by
the above-mentioned minimization procedure down to s = 0,
and continued by a smoothly joined cubic, constrained to
be stationary at the spherical configuration, i.e., at a value
of L = L0 equal to the diameter of the compound nucleus.
(See App. A for details.) For any assumed value of L (or s)
at injection, one may then deduce the height of the barrier
H that has to be overcome by diffusion. If one makes the
assumption that on reaching the bottom of the asymmetric
fission valley the dynamic evolution is strongly damped, so
that the collective kinetic energy is negligible, the thermal
excitation energy of the system follows from the difference
between the total available energy and the potential energy at
Linj. The temperature T may then be estimated in the usual
way. At the present time, we are not in a position to calculate
from first principles the precise value of s at which, in the case
of diffuse surfaces, loss of equilibrium takes place against neck
growth, or to deduce the (effective) value of L at which the
diffusion process begins. We shall consider this value of L,
as specified by s, to be an adjustable parameter of our theory.
In fact, it will be the only adjustable parameter. On physical
grounds the value of s ought to be somewhere between about
zero and 3 fm.

IV. SURVIVAL

In the case when an excited system can decay by overcom-
ing two distinct saddle-point passes in configuration space
(in our case by fission and neutron emission), the canonical
transition state theory of reaction rates gives for the relative
decay probability (i.e., the ratio of the partial decay widths
�n/�f ) the elementary relation

�n/�f = Nn/Nf . (12)

Here Nn and Nf are measures of the phase spaces available
to the “activated complexes” or “transition states.” (These
are defined as the systems described by all the degrees of
freedom of the saddle-point configurations except for the
disintegration variables.) For a system in which the degrees of
freedom are quantized, Nf is the number of levels (channels)
in the activated complex in the energy slot between the energy
Vf of the fission saddle configuration and the total available
energy E (Fig. 9.) In the case of neutron emission, the formal
saddle-point configuration is the residual nucleus of mass
number A − 1 with a neutron (just) outside it. The quantity
Nn is then the number of relevant levels of this configuration
in the slot between its energy Vn and E. Treating the neutron-
emission and fission processes in an identical way [14] we
find

Nn

Nf

=
∫ Un

0 ρn(ε)dε∫ Uf

0 ρf (ε)dε
. (13)

Fission
Barrier

Neutron
binding
energy Fission

saddle:
Mass Mf

Neutron
emission saddle: 
Mass Mn

Total Mass: Ec.m. + Mproj + Mtarget

Compound nucleus

Nn
Nf

FIG. 9. The relative decay probability by neutron emission or
fission is the ratio Nn/Nf of the number of levels (“channels”) in
the energy intervals between the total available energy (or mass
in energy units) and the masses of the neutron emission or fission
saddle points, Mn or Mf , respectively. The mass of the compound
nucleus does not enter into this ratio. The middle part of the
figure could be erased without any loss of relevant information,
showing that neither the fission barrier height nor the neutron
separation energy, nor any other property of the compound nucleus
is required for the calculation of the relative decay probability.

Here ρn(ε) and ρf (ε) are the level densities characterizing the
two saddle-point configurations (Fig. 9.) The calculation of
Nn and Nf is essentially as described in Part I, but because of
slight modifications, App. B lists the actual equations used in
the present paper.

Note that the ratio Nn/Nf is independent of the properties
of the compound nucleus, such as its ground state mass, its
fission barrier, neutron separation energy, shell effect, and level
density (Fig. 9.) The implication that �n/�f is independent
of the fission barrier of the compound nucleus is valid so long
as equating �n/�f to Nn/Nf is justified. Whether or not this
result of the canonical transition state theory continues to be
valid (at least approximately) even when the fission barrier is
very small (and eventually vanishes) is not clear.

The probability that the compound nucleus evaporates
just one neutron is the product of the probability to emit a
neutron rather than fission in the first stage of the deexcitation
process times the probability P< that, after the emission of the
neutron, the excitation energy is less than the threshold Eth for
second chance fission or second neutron emission (whichever
is lower). Thus

P (survive) = �n

�t

P<, (14)

where

�t = �n + �f . (15)
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FIG. 10. The anatomy of a one-neutron-out excitation function for the reaction 58Fe + 208Pb → 265108 + n (see text).

In what follows we disregard γ emission, which becomes
negligible compared to neutron emission or fission almost as
soon as the latter have become energetically possible.

Using a standard neutron evaporation spectrum propor-
tional to k exp(−k/T ), where k is the neutron’s kinetic energy
and T the temperature of the transition state for neutron
emission, P< follows by integrating the neutron spectrum from
E − Eth to infinity, with the result

P< =
(

1 + K

T

)
exp

(
−K

T

)
if K � 0, (16)

P< = 1 if K � 0, (17)

where K = E − Eth.

V. THE EXCITATION FUNCTIONS

A. Comparison of theory and measurement

The three factors in Eq. (1), as calculated using the formulas
described above, are all functions of the center of mass energy
E, and their product gives a theoretical excitation function. It
contains one adjustable quantity, the effective elongation L (as
specified by the parameter s) at which the diffusion process
in the asymmetric fission valley is assumed to begin. The
calculated peak cross sections, corrected approximately for
the dispersion of the beam energy in the target, are compared
with measurements in Fig. 2. The value of s was adjusted to be
1.6 fm. Changing s pivots the calculated curve by changing its
overall slope, with the point for Z = 102 approximately fixed.
This is because for the 48Ca + 208Pb reaction (Z = 102) there
is essentially no hindrance to fusion, so that this cross section
is very insensitive to changes of s (see Fig. 8). For larger
Z the effect of changing s becomes progressively greater.

Figure 2 also shows how the separate contributions to the
calculated cross sections depend on Z.

Figure 10 illustrates the factors determining the appearance
of the excitation function in the case of the reaction 58Fe +
208Pb → 265108 + n. The reaction channel for neutron emission
opens near the effective threshold Ec.m. = 213.8 MeV, after
which the cross section increases rapidly, since all three
factors (stick, diffuse, and survive) increase with energy. (The
word “effective” means that the actual energetic threshold has
been augmented by a correction to allow for the even-odd
effect in the level density; see App. B.) This exponential-like
increase is terminated abruptly when the channel for fission
after neutron emission (“second chance fission”) opens near
the effective threshold Eth = 218.9 MeV. To avoid fission
beyond this energy, the emitted neutron must carry off as
kinetic energy the excess E − Eth. As mentioned in the
previous section, the probability that this happens decreases
exponentially, with a characteristic fall-off range of the order
of the temperature of the residual nucleus A − 1 (less than
1 MeV in the cases of interest). This decrease, indicated by
the dashed curve in Fig. 10, is sufficiently abrupt to reverse
the original exponential-like growth of the cross section. The
resulting excitation function consists then of an exponential-
like increase below Eth and an exponential-like decrease above
Eth, with a maximum very close to the threshold for second
chance fission. In the general case, Eth would be the threshold
for second chance fission or for second neutron emission,
whichever was lower. (In the cases of interest here, the former
is lower.) This leads to the “optimum energy rule” from [1],
which we restate in a more general form as

The optimum center-of-mass bombarding energy in a one-
neutron-out heavy ion fusion reaction exceeds by a small
amount (usually ∼0.3 MeV) either the effective mass of the
fission saddle point of the residual nucleus (A − 1) plus the
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FIG. 11. Comparison of the theoretical excitation function for
the 58Fe + 208Pb → 265108 + n reaction with measurements. The
dotted curve is the theoretical excitation function convoluted with a
(rectangular) spread in the center of mass beam energy of 4 MeV
caused by the finite target thickness. The solid curve results from
multiplying the dotted curve by 0.7, and shifting it down by 0.5 MeV.
These numbers are a measure of the discrepancy between theory and
experiment. Note that the predicted width of the excitation function
agrees with measurement.

mass of a neutron minus the masses of target and projectile, or
the effective mass of the residual nucleus (A − 2) plus the mass
of two neutrons minus the masses of target and projectile –
if the latter quantity is lower.

(The word “effective” again refers to the correction applied
to the saddle masses in order to allow for the even-odd effect
in the level densities.)

Note that the location of the Coulomb barrier is, in most
cases under consideration here, irrelevant to the location of
the maximum in the excitation function. The Coulomb barrier
might begin to play a role for the very lightest reactions (48Ca +
208Pb is a case in point), where sticking occurs as a deeply
sub-barrier process, and the resulting sticking cross section
increases so rapidly with energy that it is able to delay the
downturn of the fusion cross section by appreciably more than
a fraction of an MeV.

Figure 11 compares the predicted theoretical excitation
function for the reaction 58Fe + 208Pb → 265108 + n with
measurements. The effect of a 4 MeV energy dispersion due
to the finite target thickness has been convoluted into the
theoretical excitation function (dotted curve). Multiplication
by 0.7 and a shift down by 0.5 MeV is necessary to bring
the theory into agreement with the data. The width of the
theoretical excitation function needs no adjustment. Figure 12
shows a similar comparison for the reaction 50Ti + 208Pb →
257104 + n, and Fig. 13 for the reaction 54Cr + 208Pb →
261106 + n. Figure 14 compares the less well-defined experi-
mental excitation function for 64Ni + 208Pb → 271110 + n with
theory. Figure 15 compares with theory the two measured cross
sections for the reaction 70Zn + 208Pb → 277112 + n (one event
at each of two energies). Figure 16 compares the excitation
functions for the reaction 50Ti + 209Bi → 258105 + n, and
Fig. 17 for the reaction 64Ni + 209Bi → 272111 + n. It
will be seen that the absolute values of the cross sections
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FIG. 12. This is like Fig. 11, but for the reaction 50Ti + 208Pb →
257104 + n.

are typically off by up to a factor of 2 or so, and that the
optimum bombarding energies are off by 1 or 2 MeV, as shown
in Fig. 18.

B. The cross-bombardment scaling rule

An interesting insight is gained by comparing the calculated
excitation functions for two 1n reactions leading to the same
compound nucleus, such as the reactions 64Ni + 209Bi →
272111 + n and 65Cu + 208Pb → 272111 + n. Figure 19
shows these excitation functions plotted against the center
of mass energy. Figure 20 shows them replotted against the
energy excess over the effective thresholds for the respective
reactions in order to exhibit the similarity of the excitation
functions’ intrinsic shapes. This is brought out vividly by
the curve identified by the solid circles, obtained by multi-
plying the Cu + Pb excitation function by 1.90. The result
is virtually indistinguishable from the Ni + Bi excitation
function (open circles). This leads to the following scaling
rule:

The excitation functions for two (neighboring) one-neutron-
out heavy-ion reactions leading to the same compound
nucleus by way of different target-projectile combinations,
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FIG. 13. This is like Fig. 11, but for the reaction 54Cr + 208Pb →
261106 + n.
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FIG. 14. This is like Fig. 11, but for the reaction 54Ni +
208Pb → 271110 + n. The theoretical excitation function was neither
scaled nor shifted.

when plotted against the energy excess above their respective
effective reaction thresholds, to a good approximation differ
only by a constant scaling factor.

We have used this rule to predict the excitation function
for the 65Cu + 208Pb reaction from the measured 64Ni + 209Bi
excitation function shown in Fig. 17, using the theoretical
scaling factor 1.90. The result is shown in Fig. 21, together
with a recent measurement. More decisive and comprehensive
tests of this scaling rule for suitable pairs of reactions would
be of considerable interest.

VI. HINDRANCE FACTORS IN HOT FUSION REACTIONS

So far, we have not applied our theory to xn reactions,
but we have calculated the relevant hindrance factors, which
bring out an important fact. Figure 22 shows these hindrance
factors compared with the cold fusion hindrance factors. In
both cases, the reactions refer to the synthesis of elements
with the same atomic numbers Z = 112 to 118, but different
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FIG. 15. This is like Fig. 11, but for the reaction 70Zn + 208Pb →
277112 + n.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

176 178 180 182 184 186 188 190 192 194 196 198 200 202

Ec.m. (MeV)

C
ro

ss
 s

ec
ti

o
n

 (
n

b
)

Theory multiplied by 2 and 
shifted up by 1.8 MeV

Theory
4 MeV target
thickness

50Ti + 209Bi  258105 + n
GSI data

FIG. 16. This is like Fig. 11, but for the reaction 50Ti + 209Bi →
258105 + n.

neutron numbers, as shown in Fig. 1. In the case of hot
fusion the hindrance factors were calculated for bombarding
energies where the compound nucleus would be formed with
excitations of 25, 35, and 45 MeV, at which around 2,
3, or 4 neutrons might be emitted. In all cases the same
adjustable parameter was used, s = 1.6 fm. But it should be
kept in mind that this value, deduced from a fit to reactions
where a magic or near-magic target nucleus was used, may
be different in the case of hot reactions, where the targets
are not magic. In fact, it could well be that in the former
reactions the loss of equilibrium against a neck growth was
delayed because of the stiffness of the solid-like target nuclei.
With the nonmagic targets, the loss of equilibrium might
occur at somewhat larger separations, requiring a greater
value of s to fit the data. The excitation energy dependence
of the hindrance factors in Fig. 22 is relatively mild, and
the striking feature is the reduction of the hindrances by 4
or 5 orders of magnitude in comparison with the case of
cold fusion. It remains to be seen whether these favorable
factors, when combined with the unfavorable reductions due
to multiple neutron emission and a possible increase of
the surface separation at which loss of equilibrium takes place,
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FIG. 17. This is like Fig. 11, but for the reaction 64Ni + 209Bi →
272111 + n.
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FIG. 18. The differences between measured and theoretical opti-
mum center of mass energies deduced from Figs. 11 to 17.

are able to account for the cross sections measured in hot fusion
reactions.

The two reasons for the reduction of the hindrance factors
in Fig. 22 are the smaller barriers opposing diffusion and the
higher temperatures, which together reduce considerably the
critical factor H/T . The reduced barriers are plotted in Fig. 23.
In the case of the relatively small projectile 48Ca fusing with
the very heavy targets from U to Cf, not only is the product
Z1Z2 smaller but also, after neck growth, the system is more
compact and closer to the maximum deformation energy where
the barrier opposing diffusion would be zero.

VII. DISCUSSION

We made an attempt to interpret the cross sections for the
synthesis of very heavy elements in one-neutron-out reactions,

focusing in particular on reactions with 208Pb and 209Bi targets.
We approximated the excitation functions by the product of
the cross section to overcome the Coulomb barrier, times the
probability that the resulting composite system overcomes
by a diffusion process the barrier separating it from the
compound-nucleus configuration, times the probability that
the excited compound nucleus survives fission. Something like
this general scheme is common to many current treatments of
the subject (see, for example, [15,16]). Apart from technical
details, the feature that distinguishes our approach is the
concept of an injection of the system from the near-
contact configuration into an “asymmetric fission valley.”
This represents an attempt to bypass the intricate dynamic
process of the neck growth stage, which is especially
difficult to treat in a realistic way. The hope here is to
make use of the expected short time scale characteriz-
ing the neck growth. This shortness is due to the large
driving force associated with the considerable saving of
surface energy obtained by filling the crevice between the
two juxtaposed nuclear surfaces, achieved at the cost of only
a small adjustment of the nuclear density distribution. This
means that, at least at first, the neck growth can be considered
as proceeding with the overall elongation and asymmetry
of the system approximately frozen. This leads the system
toward the bottom of an asymmetric fission valley, defined
by minimizing the potential energy—at fixed elongation and
asymmetry—with respect to the neck degree of freedom. As
the system approaches the bottom of this valley, we expect
that the neck growth will slow down, the system will heat
up owing to dissipative effects, and a stage of diffusive shape
evolution will begin. (In the initial stages of neck growth,
the system’s temperature is close to zero, and one may be
justified in disregarding thermal shape fluctuations.) This
suggests an idealization in which the complicated dynamics
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FIG. 19. The theoretical excitation functions for the reactions 64Ni + 209Bi and 65Cu + 208Pb leading to the same residual nucleus 272111.
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FIG. 20. The two excitation functions from Fig. 19 were replotted with respect to their effective reaction thresholds. The Cu + Pb excitation
function was then scaled up by 1.90, which makes the result virtually indistinguishable from the Ni + Bi excitation function.

of neck growth and a gradual onset of diffusion is replaced
by the sequence of two simpler processes: a schematic
diffusion-free injection into the asymmetric fission valley,
followed by a Brownian diffusion of probability beginning
at some effective location in the valley, specified by the
parameter s.

One may question the assumption that the subsequent
diffusion continues to take place at fixed asymmetry, since
with increasing neck radius the inhibition of the asymmetry
degree of freedom disappears, and the system would find it
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FIG. 21. The solid curve from Fig. 17, representing the measured
excitation function for the 64Ni + 209Bi → 272111 + n reaction,
was used to predict the excitation function for the 65Cu + 208Pb →
272111 + n reaction by dividing it by the theoretical scaling factor 1.90
and shifting it up by the difference in the effective reaction thresholds
for the two reactions. A recent measurement (based on a single event)
is shown.

profitable to evolve toward more symmetric shapes. This is
because the lowest barrier guarding the compound nucleus
configuration is associated with a symmetric saddle point.
(The discussion so far is confined to the macroscopic part
of the deformation energy. Shell effects will be mentioned
presently.) Here we are fortuitously assisted by the nature of
the parameterization of the nuclear shapes by two spheres
connected by a hyperboloid for small necks, which goes over
into a spheroid for large necks. With increasing neck size,
the smoothly fitted spheroid begins to cover up an increasing
fraction of the unequal spheres, whose size ratio formally
defines the asymmetry. Hence the resulting shape, which even-
tually would actually become a (reflection symmetric) single
spheroid, automatically tends to a symmetric configuration,
even though it is formally a member of a family of shapes with
frozen asymmetry. Thus, for very heavy systems, the energy
of the macroscopic saddle in the asymmetric fission valley as
calculated with our parameterization is expected to differ only
slightly from the energy of the symmetric saddle point.

All this having been said, it is clear that our injection scheme
of bypassing the dynamics of neck growth is not a theory of the
process, but rather a schematic prescription with a qualitative
justification and the virtue of simplicity.

One may well question the disregard of shell effects in the
deformation energy landscape along the asymmetric fission
valley. (The shell effects in the initial fragments are, of
course, taken into account, and so are shell effects in the
compound nucleus and in the neutron-emission saddle-point
mass. Shell effects in the fission saddle mass are expected
to be small [17].) Some attenuation of shell effects in the
asymmetric valley is to be expected because of the excitation
of the system, and an indirect indication of the limited
importance of shell structure in this stage of the process
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comes from a comparison of our theory (without shell
effects in the asymmetric fission valley) with the measured
cross sections. In the set of 12 cross sections displayed in
Fig. 2, there is at present no evidence for large discrepancies
that could be attributed to the neglect of shell effects in the
deformation energies. A realistic inclusion of such shell effects
in the theory would, of course, complicate the calculations
considerably.
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FIG. 23. The barriers opposing diffusion in cold fusion reactions
to make elements 112 to 118 range from about 7 to 16 MeV (compare
Fig. 8). In hot fusion reactions, the corresponding barriers range from
3 to 7 MeV. The reason is partly the reduced Coulomb repulsion, as
indicated by the values of Z1Z2 listed along the curves. In addition,
the injection configurations in the asymmetric fission valley are more
compact and closer to the top of the barrier opposing diffusion, where
the total repulsive force is zero.

With reference to Fig. 2 we may note the following. In
the calculations there is one adjusted parameter, s = 1.6 fm,
specifying the location in the asymmetric fission valley where
diffusion is assumed to begin. As already mentioned, the
calculated cross section for the reaction leading to Z = 102 is
virtually independent of s (see Fig. 8) so the order of magnitude
agreement with measurement in this case can be said to result
without the help of an adjustable parameter. Changing s allows
the overall decrease of the cross sections with increasing Z to
be adjusted. The approximately linear trend of the logarithmic
cross sections is reproduced, as are the major deviations from a
smooth line. The illustrated extrapolation of the cross sections
to the reactions with 76Ge on 208Pb and 209Bi (Z = 114 and
Z = 115) assumes that the corresponding compound nuclei
are spherical. If, instead, we assumed that they continue to be
deformed, the extrapolation would follow the trend of the cross
sections for Z = 111, 112, and 113, resulting in predicted
values about an order of magnitude smaller than shown in
Fig. 2. As can be seen from Fig. 1, the landing places for Z =
114 and 115 are (according to calculations) on the boundary
between the regions dominated by the deformed and spherical
magic numbers. For Z = 116 to 119 the calculated compound
nuclei are spherical. Taking the extrapolations at face value,
the predicted cross section for the reaction 86Kr + 208Pb →
293118 + n is between 0.01 pb and 0.001 pb, about two orders
of magnitude below the present upper limit [6]. One should not
forget, however, that all these estimates hinge on the accuracy
of the calculated shell effects in Fig. 1, which affect the neutron
emission probabilities. These shell effects have been shown to
agree well with measurements in the region of the deformed
nuclei around Z = 108, N = 162, but the reliability of the
extrapolation to the region of spherical nuclei is uncertain.
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Somewhat different predictions for these very heavy nuclei are
currently under discussion [18–21]. (The shell corrections we
actually used were obtained by reading off the values from
Fig. 1 in the first reference listed under [26] and applying
a slight renormalization explained in App. B. More recent
calculations from the second reference in [26] and private
communication from Z. Patyk and A. Sobiczewski do not
differ substantially from the older results. But a comprehensive
study of the dependence of the predictions obtained using our
theory on different theoretical estimates of the shell corrections
remains to be carried out.)

A further serious concern regarding extrapolations from
reactions involving deformed compound nuclei to reactions
resulting in spherical nuclei is raised by the studies in [22],
where the anticipated enhancement of cross sections associated
with a spherical (residual) nucleus stabilized by a shell effect
does not appear to be observed in the region Z ≈ 88, N ≈ 126.

As for other uncertainties and shortcomings of the present
scheme, we should mention the limited accuracy of the
extrapolated Coulomb barriers in Fig. 4 and, especially, the
clearly quite uncertain extrapolation of the Gaussian widths in
Fig. 6. (As noted before, this is critical for the lighter reactions,
which rely on a sub-barrier process for sticking, but becomes
less serious for the heaviest over-the-barrier reactions.) In the
survival stage, there is also some uncertainty regarding the
accuracy of the formula used for the ratio of the neutron
to fission disintegration widths, based on [14]. The more
conventional expression for this ratio has a pre-exponential
factor that is typically greater by about a factor 3 than the
one used here. This would aggravate the discrepancy with the
lighter reactions in Fig. 2 (there is no recourse for them in
the adjustable parameter s). The difference between the two
formulas becomes serious for xn reactions, where the ratio
of the two predictions would be proportional approximately
to 3n.

Finally, a remark on the overall objective of this study
and the approach to the problem that we have adopted. In
attempting to understand and interpret a set of experimental
findings, two somewhat different approaches may be useful.
In some cases, the physics is sufficiently unambiguous so that
one is faced with simply finding the solution of a well-defined
mathematical problem. (Examples include atomic problems,
where the underlying Hamiltonian is to all intents and purposes
well defined.) In other cases, and this includes many nuclear
problems, especially of a dynamic character, the underlying
Hamiltonian is not really defined. In those cases, a more
creative approach is indicated: to invent a soluble model
that has a chance of representing a significant part of the
physics of the situation to be analyzed. In the case of the
dynamic fusion of two nuclei, even idealized models, such as
hydrodynamic or time-dependent Hartree-Fock schemes, are
not easily soluble. In the present paper, we have gone one step
further in simplifying the problem in that we have bypassed the
dynamics of the neck growth phase by a conjectured injection
into the asymmetric fission valley. The price we pay is the
introduction of an adjustable parameter. The gain is that the
whole procedure is now represented by algebraic equations
rather than by computer outputs. There are two advantages
here: operationally the scheme is very transparent, and the

calculations are sufficiently simple, so that the model may
be modified and experimented with using little effort. (To
this end we have described in sufficient detail the formulas
used, so that interested readers could do these explorations
for themselves.) These advantages have to be weighed against
the undoubted shortcoming that no well-defined model has
actually been solved with controlled accuracy. Nevertheless,
we believe that our study may be helpful in the interpretation
of existing data and in extrapolations to novel situations.
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APPENDIX A

For the sake of completeness we repeat here the content of
App. B in Part I, supplemented with an improved treatment of
the interpolation of the deformation energy in the asymmetric
fission valley in the interval between the length of the system
corresponding to contact and the length (diameter) of the
compound nucleus.

The following formulas provide approximations to the
macroscopic deformation energy, 	E, in the asymmetric
fission valley of a nucleus idealized as a uniformly charged
drop. The shape of the drop, originally spherical with radius
R, is parameterized by two spheres with radii R1 and R2

connected smoothly by a portion of a spheroid, cone, or
hyperboloid [11,13]. Three variables specify a given shape:
elongation, asymmetry, and neck size.

Let ξ denote the deformation energy in units of the surface
energy Es of the spherical shape. Let σ stand for the surface
separation variable s in units of R (not to be confused with the
cross section σ ). Thus

σ = L − 2(R1 + R2)

R
, ξ = 	E

Es

. (A1)

For each value of s the macroscopic energy from [13]
was minimized with respect to the neck variable at fixed
asymmetry. In a range of parameters to be specified presently,
the resulting deformation energy in its dependence on s

was found to be reproduced to good approximation by the
following quadratic:

ξ = a + bσ + cσ 2. (A2)

The coefficients a, b, c are functions of the asymmetry 	 and
of the fissility x defined as

	 = R1 − R2

R1 + R2
, (A3)

x = Electrostatic energy of sphere

2Es

. (A4)
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Using the notations D = 	2 and t = 1 − x, we found

a = αa + βat + γ t2, (A5)

b = αb + βbt, (A6)

c = αc + βct, (A7)

where

αa = −0.00557 − 0.01929 exp(−D/0.02283), (A8)

βa = 0.048 + 0.12151 exp(−D/0.04053), (A9)

γ = −0.073 + 0.94D, (A10)

αb = −0.01045 − 0.05303 exp(−D/0.03205), (A11)

βb = 0.019 + 0.25663 exp(−D/0.07331), (A12)

αc = −0.02137 + 0.1944D, (A13)

βc = 0.0214 + 0.6158D. (A14)

The above formulas have been tested for adequate accuracy in
the range 0.85 < x < 1.05, −0.25 < 	 < 0.25, and −0.1 <

σ < 0.44.
In the interval of lengths between contact, L = 2(R1 + R2),

and L = 2R (the diameter of the compound nucleus) we shall
use instead of Eq. (A2) the cubic

ξ = p(σ − σ0)2 − q(σ − σ0)3. (A15)

Here σ0 stands for the value of σ corresponding to the spherical
compound nucleus

σ0 = 2R − 2(R1 + R2)

R
. (A16)

Using R3
1 + R3

2 = R3, together with Eq. (A3), we find

σ0 = 2 − 4

(2 + 6D)1/3
, (A17)

a negative quantity.
Demanding a smooth junction of Eqs. (A2) and (A15) at

σ = 0, we readily find

p = b

σ0
+ 3a

σ 2
0

and q = − b

σ 2
0

− 2a

σ 3
0

. (A18)

When the maximum in ξ is located for positive σ , Eq. (A2) is
to be used, giving

σmax = − b

2c
and ξmax = a − b2

4c
. (A19)

When the maximum occurs for negative σ , Eq. (A15) gives

σmax = σ0 + 2p

3q
and ξmax = 4p3

27q2
. (A20)

The barriers opposing diffusion follow as [ξmax − ξ (s)]Es .
Note that Eq. (A20) is not to be used when p turns negative
for very heavy systems. The maximum in ξ , equal to zero, is

then located at the fixed value σmax = σ0, i.e., at the (unstable)
spherical compound-nucleus configuration. Note also that the
use of a cubic when s is negative means that the barrier to
be overcome by diffusion is no longer exactly parabolic, as
assumed in the derivation of Eqs. (10) and (11). As can be
verified with the aid of Fig. 8, the relevant parts of the
deformation energies differ very little from parabolas, so
the above equations should remain good approximations.
The assumption of a constant temperature during the diffusion
is not a serious defect for the lighter systems, when the barrier
to be overcome is appreciably less than a typical excitation
energy. It may become significant for the heaviest systems,
when this is no longer the case. The use of the relatively high
temperature based on the excitation at the injection point would
tend to underestimate the hindrance for such reactions.

In the special case of symmetric configurations (	 = 0),
Eq. (A15) reduces to

ξ = (0.5354 t − 0.6347 t2)α2

− (0.1226 + 0.0750 t − 0.7204 t2)α3, (A21)

where α is the relative elongation α = (L − L0)/L0.
Equation (A21) may be used to calculate, for systems with
fissility close to 1, the purely macroscopic saddle-point defor-
mation energies, or to estimate corrections to the topographic
theorem (see Sec. III). Note that the coefficients αb and αc in
Eqs. (A11) and (A13) are slightly different than in [1]. This is
the result of imposing the constraint that p should vanish when
D = 0 and t = 0, which constraint was not enforced in [1].

The energy unit Es and the fissility x were calculated using
the parameters from [23], viz.

Es = 17.9439(1 − 1.7826 I 2)A2/3 MeV, (A22)

x = Z2/A

50.883(1 − 1.7826 I 2)
, (A23)

where I = (N − Z)/A.

APPENDIX B

1. The level densities

The level density ρ(U ) for a nucleus of mass number A, in
its dependence on shape and excitation energy U , is written as

ρ(U ) = exp[S(U )], (B1)

where, for U ∗ > 0, the entropy S(U ) is given by [24,25]

S(U ) = 2
√

a{U ∗ + 	sh[1 − exp(−U ∗/k)]}, (B2)

with k = A1/3/0.47 and 	sh the shell correction, both in MeV,
and

a = 0.076A + 0.180A2/3F (α) + 0.157A1/3G(α) MeV−1.

(B3)
When U ∗ < 0 we set ρ(U ) equal to zero. Here

U ∗ = U − 24 MeV/
√

A for even-even nuclei, (B4)

= U − 12 MeV/
√

A for odd-A nuclei, (B5)

= U for odd-odd nuclei. (B6)
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The last two terms in Eq. (B3) allow approximately for
the shape dependence of the level density on the deformation
variable α, defined by (Rmax − R)/R, where Rmax is the
semimajor axis of the (axially symmetric) nucleus of radius
R before deformation (see Part I). The functions F and G are
approximated by

F (α) = 1 + (0.6416α − 0.1421α2)2 (B7)

G(α) = 1 + (0.6542α − 0.0483α2)2. (B8)

These equations represent an attempt to take approximate
account of deformation, pairing, and shell effects on the level
densities [1]. Note that assuming the level density to be zero
up to U ∗, which differs from U by an even-odd correction,
is equivalent to increasing the threshold for the reaction
in question by this amount. This leads to the “effective”
thresholds used in Sec. IV.

The shell corrections 	sh for the ground states were read
off of Fig. 1 (taken from [26]) and modified slightly as follows.
Since for the macroscopic part of the nuclear mass of a
spherical nucleus we use the Thomas-Fermi value MTF [27],
the sum MTF + 	sh represents the predicted mass of a nucleus.
We found that using the shell effect from [26], this mass is,
on average, lower than the measured mass by 0.69 MeV for
even-even nuclei, by 0.31 MeV for even-Z, odd-N nuclei,
by 0.43 MeV for odd-Z, even-N nuclei, and by 0.2 MeV
for odd-odd nuclei. (For each nuclear type, there were four
cases in the region of interest where the predictions could
be compared with measurements.) Thus the corrected shell
effects that we adopted are a little less negative than those
in [26].

To evaluate (approximately) the integrals in Eq. (12), we
expand the entropies about the upper limits of integration and
obtain

�n

�f

= Tn[1 − exp(−Un/Tn)] exp Sn

Tf [1 − exp(−Uf /Tf )] exp Sf

, (B9)

where the temperatures Tn, Tf stand for the reciprocals of the
entropy derivatives S ′

n and S ′
f which, together with Sn and Sf ,

are all evaluated at the appropriate upper limits.

2. The saddle-point masses

For the saddle-point masses, we used a slightly modified
topographic theorem, which states that a fission saddle-point

mass is approximately equal to the macroscopic saddle
mass with shell effects disregarded [17]. The modification
concerns cases when the fissility parameter is close to 1,
and the macroscopic saddle-point shape is close to the sphere.
The macroscopic saddle-point mass is then close to that of
the spherical shape; however, if the nucleus is stabilized by
a shell effect (especially if the ground state is deformed), the
saddle-point shape may be quite significantly elongated, and
the macroscopic mass at that elongation will be somewhat
less than the mass of the sphere. Thus, even if the shell
correction itself at that location is disregarded in the spirit
of the topographic theorem, the saddle-point deformation
energy, as approximated by the macroscopic part, will be
somewhat negative. To apply this correction to the topographic
theorem, one needs to know the deformation of the saddle-
point shape in question and the macroscopic energy at that
deformation. In the results presented in the present paper,
the former were provided to us by R. Smolanczuk (private
communication), and the latter were calculated using the
Thomas-Fermi model [27]. Since such Thomas-Fermi calcu-
lations of deformation energies are not generally available,
an alternative is to use the macroscopic deformation energies
described in App. A, this time for symmetric configurations
with 	 = 0 [Eq. (A.21)]. A comparison of the saddle-point
deformation energies obtained in this way with the Thomas-
Fermi results shows that the former is greater by 0.67 MeV
for the lightest compound nucleus considered here (256No),
but the difference becomes almost negligible for the heaviest,
especially in cases where the shell-stabilized nucleus is
spherical.

In cases where the saddle deformation is not known, the
following rule of thumb may be useful: If the ground state
of the heavy compound nucleus with fissility x close to 1 is
stabilized by a spherical shell effect, the major semiaxis of the
saddle configuration will exceed the radius of the spherical
configuration by about 1.5 fm. If the ground state is well
deformed due to a shell effect, the corresponding difference
will be about 2.5 fm. This is probably a rather rough rule, but
in the present context it is used only to estimate the relatively
small correction to the topographic theorem. The (corrected)
topographic theorem itself is to be used only in the sense of a
reference baseline for the saddle-point masses; deviations of
about an MeV, caused by shell effects at the saddle, are to be
expected.
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