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The dynamical cluster-decay model (DCM) is developed further for the decay of hot and rotating compound
nuclei (CN) formed in light heavy-ion reactions. The model is worked out in terms of only one parameter, namely
the neck-length parameter, which is related to the total kinetic energy TKE(T ) or effective Q value Qeff (T ) at
temperature T of the hot CN and is defined in terms of the CN binding energy and ground-state binding energies
of the emitted fragments. The emission of both the light particles (LP), with A � 4, Z � 2, as well as the complex
intermediate mass fragments (IMF), with 4 < A < 20, Z > 2, is considered as the dynamical collective mass
motion of preformed clusters through the barrier. Within the same dynamical model treatment, the LPs are shown
to have different characteristics compared to those of the IMFs. The systematic variations of the LP emission
cross section σLP and IMF emission cross section σIMF calculated from the present DCM match exactly the
statistical fission model predictions. A nonstatistical dynamical description is developed for the first time for
emission of light particles from hot and rotating CN. The model is applied to the decay of 56Ni∗ formed in the
32S + 24Mg reaction at two incident energies Ec.m. = 51.6 and 60.5 MeV. Both the IMFs and average TKE spectra
are found to compare resonably well with the experimental data, favoring asymmetric mass distributions. The
LPs’ emission cross section is shown to depend strongly on the type of emitted particles and their multiplicities.
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I. INTRODUCTION

Light compound nuclei (CN) formed in low-energy
(E/A < 15 MeV/nucleon) heavy-ion reactions are highly
excited and carry large angular momenta. The compound
systems so formed decay by emitting multiple light particles
(n, p, α) and γ rays, which in the statistical Hauser-Feshbach
(HF) analysis is understood as an emission process from
the equilibrated CN, resulting in CN fusion cross sections.
Apparently, the decay process must depend on temperature-
and angular-momentum-dependent potential barriers [1]. For
light compound systems with ACN � 40, the light-particles
(LP) emission is always accompanied by intermediate mass
fragments, the IMFs of Z > 2 and 4 < A < 20, also called
“complex fragments” or “clusters,” whose contribution,
though small of the order of 5–10%, is to be included in the
CN fusion cross sections. Then, the temperature- and spin-
dependent potentials must also be mass-asymmetry dependent.
In other words, the structure effects of the compound system
also become important.

To understand the IMF production, not only has HF analysis
been extended to include fragments heavier than α particles
in the BUSCO code [2] and in the extended Hauser-Feshbach
scission-point model [3], but other statistical fission model
descriptions [1] have been used that are based on either the
scission-point or saddle-point configuration, in the GEMINI

code [4] or the saddle-point “transition-state” model (TSM)
[1,5–8], respectively. The LP emission in these fission models
is still treated within the statistical HF method. It is interesting
to mention that light-nucleus emission can also be qualitatively

well described within the framework of a generalized rotating
liquid-drop model, proposed recently by Royer and collabo-
rators [9–11]. Since the measured angular distributions and
energy spectra of emitted complex fragments are consistent
with fission-like decays of the respective compound system,
the fusion-fission process is now well established in light
dinuclear systems [1]. The statistical fission models, for
which the fission decay of a CN is determined by the phase
space (level density) available at the saddle-point [4,7] (or
scission-point [3]) configuration, may however be lacking in
terms of not including more explicitly the structure effects
of the compound system. Large structure effects have been
shown to be important in the 56Ni compound system through a
strong resonance behavior [12,13] of the excitation functions
of large-angle 28Si + 28Si elastic and inelastic scattering
yields [8,14]. Although neither similar resonant effects nor
orbiting processes [15] have been evidenced in the 32S + 24Mg
reaction [16–18] studied here, a fully dynamical theory for
more complete description of the emission of both the LPs
and IMFs within the framework of the statistical model of the
decay of such a hot and rotating nuclear 56Ni system remains
highly desirable.

A recent attempt toward dynamically treating the decay
of a hot and rotating nucleus has been made by Gupta and
collaborators [19–24], who propose a dynamical collective
clusterization process as a possible alternative of the fission
process. Both the LPs and IMFs are considered as the
dynamical mass motion of preformed fragments or clusters
through the barrier. Note that, in terms of the barrier picture, a
cluster-decay process is in fact a fission process with structure
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effects of the CN also included via the preformation of the
fragments, but without any phase space arguments (i.e., with
no level-density calculations). Alternatively, the dynamical
fission process has been considered by some authors [25,26]
simply as a continuous deformation of the CN [27–31].
The dynamical cluster-decay model (DCM) of Gupta and
co-workers [19–22] is thus far used to calculate the decay
constant and total kinetic energies (TKEs) of IMFs alone,
and only in a renormalization procedure. In other words,
only the angular momentum � = 0 (s-wave) solution and TKE
for fixed � value are considered. In this paper, we develop
the DCM further for the calculation of actual (summed up,
“total” �) cross sections and the average total kinetic energies
TKEs for both the emitted light particles and complex IMFs.
Interestingly enough, the light particles, though treated within
the same dynamical collective clusterization process, are found
to possess different characteristic properties. Brief reports
of the present work have recently been presented elsewhere
[23,24].

The data for IMFs chosen here are those of the 32S +
24Mg → 56Ni∗ reaction, where the mass spectra for A = 12
to 28 fragments and the average total kinetic energy (TKE) for
only the most favored (enhanced yields) α-nucleus fragments
are measured at two incident energies, Elab = 121.1 MeV
and 141.8 MeV, or equivalently at Ec.m. = 51.6 MeV and
60.5 MeV, respectively [6,16] (only even-even fragments
are observed for Ec.m. = 51.6 MeV). In this experiment, by
detecting both fragments in coincidence, it was possible to
deduce the primary mass distribution for the decay process
(i.e., the mass distribution before the occurrence of the
secondary light-particles emission from the fragments). These
primary, pre-evaporation mass distributions show that the
mass-asymmetric channels are favored over the symmetric
ones, with α-nucleus, A = 4n, fragments having enhanced
yields. The IMF emission cross section, estimated in one of
these experiments [16], is 59 ± 12 mb. The CN fusion cross-
section data due to multiple LP emission at these energies
are also deduced later from the same experiment [6], and,
as quoted in [7], they are 1080 ± 130 and 1050 ± 100 mb,
respectively, at Ec.m. = 51.6 MeV and 60.5 MeV, which fit
the other available earlier measurements at similar and other
energies for this system [16,32,33]. The total fusion cross
section is then the sum of this cross section due to the LP
emission and the fission-like IMF emission cross section.

The paper is organized as follows. Section II gives briefly
a description of the DCM for hot and rotating light-mass
nuclei. The model is presented for the emission of both the
LPs and IMFs. The calculations are presented in Section III.
The discussion of our results and a summary constitute
Section IV.

II. THE DYNAMICAL CLUSTER-DECAY MODEL FOR
HOT AND ROTATING COMPOUND SYSTEMS

The DCM for hot and rotating nuclei is a reformula-
tion of the preformed cluster model (PCM) of Gupta and
collaborators for ground-state decays in cluster radioactivity
(CR) and related phenomena [34–39]. Thus, like PCM, DCM
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FIG. 1. Temperature- and angular-momentum-dependent scatter-
ing potentials, illustrated for 56Ni∗ → 12C + 44Ti at T = 3.39 MeV
(equivalently, Ec.m. = 51.6 MeV). The potential for each � is cal-
culated by using V (R, T , �) = Ec(T ) + VP (T ) + V�(T ), normalized
to exit channel T -dependent binding energies BL(T ) + BH (T ), each
defined as B(T ) = VLDM(T ) + δU (T ). The decay path, defined by
V (Ra, �) = Qeff (T , �) for each �, is shown to begin at Ra = Ct + �R

for � = 0 case, where �R is the average over η of the different
neck-length parameters �R(=Ra − Ct ) calculated for V (Ra) =
Qeff (T , � = 0) for all possible fragmentations. The critical angular
momentum �c value is determined from Eq. (23). For other details,
see text.

is also based on the dynamical (or quantum mechanical)
fragmentation theory of cold fusion in heavy-ion reactions
and fission dynamics [25,26,40–42], including the prediction
of CR [38,43,44]. This theory is worked out in terms of (i) the
collective coordinate of mass (and charge) asymmetry (H and
L stand, respectively, for heavy and light fragments)

η = (AH − AL)/(AH + AL)

(and ηZ = (ZH − ZL)/(ZH + ZL))

and (ii) relative separation R, which in DCM characterizes,
respectively, (i) the nucleon division (or exchange) between
outgoing fragments and (ii) the transfer of kinetic energy of
incident channel (Ec.m.) to internal excitation (total excitation
energy TXE or total kinetic energy TKE) of the outgoing
channel, since the fixed R = Ra (defined later), at which the
process is calculated, depends on temperature T as well as on
η, that is, R(T , η). This energy transfer process follows the
relation (see Fig. 1)
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E∗
CN = Ec.m. + Qin = |Qout(T ) | + TKE(T ) + TXE(T ).

(1)
Note that, for the 32S + 24Mg →56 Ni∗ reaction, Qin is
positive (=16.68 MeV) and hence adds to the entrance channel
kinetic energy Ec.m. of the two incoming nuclei in their ground
states, and Qout(T ) is negative and different for different exit
channels at a fixed temperature T . The CN excitation energy
E∗

CN and its temperature T (in MeV) are related as

E∗
CN = (A/9) T 2 − T . (2)

Using the decoupled approximation to R and η motions,
the DCM defines the decay cross section, in terms of partial
waves, as [21,22]

σ =
�max∑
�=0

σ� = π

k2

�max∑
�=0

(2� + 1)P0P ; k =
√

2µEc.m.

h̄2 ,

(3)
where P0, the preformation probability, refers to η motion
and P , the penetrability, to R motion. Apparently, for � = 0
(s wave), σ0 = π

k2 P0P , which is equivalent to the decay
constant λ = ν0P0P (or decay half-life T1/2 = ln 2/λ) with
ν0 as the barrier assault frequency. In other words, σ0 and
λ differ through a constant only. Thus, as in PCM, here the
complex fragments (both LPs and IMFs) are treated as the
dynamical collective mass motion of preformed clusters or
fragments through the barrier. The structure information of
the CN enters the model via the preformation probabilities P0

(also known as the spectroscopic factors) of the fragments.
The P0 is given by the solution of the stationary Schrödinger

equation in η, at a fixed R,{
− h̄2

2
√

Bηη

∂

∂η

1√
Bηη

∂

∂η
+ V (R, η, T )

}
ψν(η) = Eνψν(η),

(4)
with ν = 0, 1, 2, 3, . . . referring to ground-state (ν = 0) and
excited-states solutions. Then, the probability is

P0(Ai) =|ψ(η(Ai)) |2
√

Bηη

2

A
, (5)

where i = 1 or 2, the heavy (H) and light (L) fragment,
respectively, and for a Boltzmann-like function

|ψ | 2 =
∞∑

ν=0

|ψν|2 exp(−Eν/T ). (6)

The constant R = Ra = Ct = C1 + C2 in (4) is fixed
empirically as the first turning point of the penetration path
(as in Fig. 1) for the ground-state (g.s., T = 0) decay, since
this value of R (instead of CN radius R0) assimilates the effects
of the deformations of two fragments and neck formation
between them [45]. Thus, for the deformation effects included,
we have for g.s. decay

Ra(T = 0) = Ct or, in general,

Ra(T = 0) = Ct +
2∑

i=1

δR(βi), (7)

an equivalent of lowering of the barrier for deformed fragments
[45]. This is important because the expected shapes of

some of the observed fragments in the exit channel of the
reactions studied here could be deformed [14,46]. Thus, the
deformation effects of the fragments (and the neck formation
between them), included here within the extended model of
Gupta and collaborators [45,47,48], are treated via a neck-
length parameter

∑
δR(βi) at the scission configuration that

simulates the two-center nuclear shape parameterization, used
for both the light [47,48] and heavy [45] nuclear systems.
This method of introducing a neck-length parameter

∑
δR

is similar to that used in both the scission-point [3] and
saddle-point [6,7] statistical fission models. The alternate—the
calculation of fragmentation potential V (η) and scattering
potential V (R) for deformed nuclei—though shown to be
difficult [45], is being worked out [49,50]. Also, we use here
the Süsmann central radii Ci = Ri − b2/Ri (in fm), where
Ri = 1.28A

1/3
i − 0.76 + 0.8A

−1/3
i fm and surface thickness

parameter b = 0.99 fm. Note that the Ct are different for
different η values and hence Ra(T = 0) also depends on η.

For the decay of a hot CN, we use the postulate [20–22] for
the first turning point

Ra(T ) = Ra(η, T = 0) + �R(η, T ), (8)

depending on the total kinetic energy TKE(T). The correspond-
ing potential V (Ra) acts like an effective Q value, Qeff , for
the decay of the hot CN at temperature T , to two exit-channel
fragments observed in g.s. (T = 0), defined by

Qeff(T ) = B(T ) − [BL(T = 0) + BH (T = 0)]

= TKE(T ) = V (Ra(T )). (9)

Here the B’s are the respective binding energies. Thus, �R in
Eq. (8) gives the change in TKE(T) with respect to TKE(T =
0), which is taken to depend on η. As a first approximation to
Eq. (9), in our earlier calculations [20–22], we used a constant
average �R, which also takes care of the additional

∑
δR(βi)

effects of the deformations of fragments and neck formation
between them,

Ra(T ) = Ct (η, T ) + �R(T ). (10)

Note that here Ct is also taken to depend on temperature [to
be defined later through Eqs. (19) and (20)]. In the following
calculations, we shall first use a constant �R(T ) and then
show the effect of using the actual η-dependent �R(η, T ),
calculated from Qeff or V (Ra, T ) defined by Eq. (9).

The so-defined decay of a hot CN to two cold (T = 0)
fragments, via Eq. (9), could apparently be achieved only by
emitting some light particle(s), such as n, p, or α, or γ rays of
energy

Ex = B(T ) − B(0) = Qeff(T ) − Qout(T = 0)

= TKE(T ) − TKE(T = 0), (11)

which is zero for the g.s. decay, as it is for exotic CR.
Note that the second equality in Eq. (11) is not defined for
a negative Qout(T = 0) system since negative TKE(T = 0)
has no meaning. Apparently, Eq. (11) with respect to Eq. (9)
suggests that the emission of light particles starts early in
the decay process. The exit-channel fragments in (9) are then
obtained in the ground state with TKE(T = 0), as can be seen
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by calculating E∗
CN − Ex :

E∗
CN − Ex = |Qout(T )| + TKE(T = 0) + TXE(T ). (12)

The excitation energy TXE(T ) is used in the secondary
emission of light particles from fragments that are otherwise
in their ground states with TKE(T = 0) in the radial motion.
We will not treat this aspect here; instead, we compare present
calculations with the primary pre-secondary-evaporation frag-
ment emission data [6,16]. Thus, by defining Qeff(T ) as in (9),
in this model we treat the LP emission at par with the IMF
emission. In other words, a nonstatistical dynamical treatment
is attempted here for the first time for the emission of not only
IMFs but also of multiple LPs, understood thus far only as the
statistically evaporated particles in a CN emission. Recall that
the statistical model (CN emission) interpretation of IMFs is
not as good as it is for LP production [2–4,6,7,14].

The collective fragmentation potential V (R, η, T ) in Eq. (4)
is calculated according to the Strutinsky method by using the
T -dependent liquid-drop model energy VLDM of Ref. [51],
with its constants at T = 0 refitted [21,22] to give the recent
experimental binding energies [52], and the “empirical” shell
corrections δU of Ref. [53]. (In the appendix of [21] and Eq.
(8) of [22], aa = 0.5, instead of unity.) Then, including the
T dependence also in Coulomb potential, nuclear proximity
potential, and �-dependent potential in the complete sticking
limit of moment of inertia, we get

V (R, η, T ) =
2∑

i=1

[VLDM(Ai, Zi, T )]

+
2∑

i=1

[δUi]exp

(
− T 2

T0
2

)

+Ec(T ) + VP (T ) + V�(T ). (13)

The shell corrections δU (T ) in (13) are taken to go to zero
exponentially with T , with T0 = 1.5 MeV [54]. The other
T -dependent terms (Ec, VP , and V�) are defined in the
following. First,

Ec(T ) = ZH ZLe2/R(T ), (14)

where the charges Zi are fixed by minimizing the potential
V (R, η, T ) in the charge asymmetry coordinate ηZ (for fixed
R and η coordinates). Note that here the T dependence of Ec

is the same as in Ref. [51]. Next,

VP (T ) = 4πR̄(T )γ b(T )�(s(T )), (15)

with R̄(T ) and �(s(T )), respectively, as the inverse of the root
mean square radius of the Gaussian curvature and the universal
function, independent of the geometry of the system, given
by [55]

R̄(T ) = C1(T )C2(T )

Ct (T )
, (16)

�(s(T )) =
{

− 1
2 (s − 2.54)2 − 0.0852(s − 2.54)3, s�1.2511

−3.437exp
(− s

0.75

)
, s�1.2511,

(17)

and γ , the nuclear surface energy constant, given by

γ = 0.9517

[
1 − 1.7826

(
N − Z

A

)2
]

MeV fm−2. (18)

The overlap or separation distance, in units of b, between the
two colliding surfaces

s(T ) = R − Ct (T )

b(T )

with the temperature dependence of radii Ri , used in Ci , taken
from Ref. [51] as

Ri(T ) = 1.07(1 + 0.01T )A
1
3
i (19)

and surface width [56]

b(T ) = 0.99(1 + 0.009T 2). (20)

Here the proximity potential VP of Ref. [55] is extended to
include the T dependence. Similarly,

V�(T ) = h̄2�(� + 1)

2I (T )
, (21)

where, in the complete sticking limit, the moment of inertia

I (T ) = IS(T ) = µR2
a + 2

5AHmC2
1 + 2

5ALmC2
2 . (22)

Here µ = [AHAL/(AH + AL)]m = 1
4Am(1 − η2) is the re-

duced mass, with m as the nucleon mass. Note that this limit
is defined for the separation distance �R, or �R, to be within
the range of nuclear proximity (<2 fm).

Finally, the �max value in Eq. (3) is the critical � value, in
terms of the bombarding energy Ec.m., the reduced mass µ,
and the first turning point Ra of the entrance channel ηin, given
by

�c = Ra

√
2µ[Ec.m. − V (Ra, ηin, � = 0)]/h̄, (23)

or, alternatively, it could be fixed for the vanishing of the fusion
barrier of the incoming channel, called �fus, or else the � value
where the light-particle cross section σLP → 0. This, however,
could also be taken as a variable parameter [6,16].

The mass parameters Bηη(η), representing the kinetic
energy part in Eq. (4), are the smooth classical hydrodynamical
masses [57], since we are dealing here with temperatures at
which the shell effects are almost completely washed out.

The P in Eq. (3) is the WKB integral,

P = exp

[
−2

h̄

∫ Rb

Ra

{2µ[V (R) − Qeff]}1/2dR

]
, (24)

solved analytically [35], with Rb as the second turning point
(see Fig. 1) satisfying

V (Ra) = V (Rb) = Qeff = TKE(T ). (25)

Note that, since we do not know how to add the � effects in
binding energies, the � dependence of Ra is defined by

V (Ra) = Qeff(T , � = 0), (26)

(i.e., Ra is the same for all � values, given by this equation),
and that Qeff(T , �) = V (Ra, �). Then, using (25), we have
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that Rb(�) is given by the �-dependent scattering potentials, at
fixed T,

V (R, T , �) = ZHZLe2/R(T ) + VP (T ) + V�(T ), (27)

which is normalized to the exit-channel binding energy.
This means that all energies are measured with respect to
BL(T ) + BH (T ). Such a potential is illustrated in Fig. 1 for
the 12C decay of 56Ni∗ at T = 3.39 MeV (Ec.m. = 51.6 MeV),
using different � values. The first turning point Ra is marked
for R = Ra = Ct + �R values and the second turning point
Rb for only the � = 0 case of Ra = Ct + �R. Note that, as
the �value increases, the Qeff(=TKE) value increases, since
the decay path for all the � values begins at R = Ra . For the
reaction under study, at Ec.m. = 51.6 MeV, the critical angular
momentum �c = 32 h̄ from Eq. (23) and, for the vanishing
of the barrier for the incoming channel, �fus = 49h̄. It is
interesting to note that this �c value is only slightly lower
than the value of �crit = 34h̄ that has been extracted [3,6] from
the complete fusion cross-section data [16,32,33] using the
sharp cutoff approximation. The corresponding values for the
higher energy Ec.m. = 60.5 MeV (T = 3.60 MeV) case will
be given later.

III. CALCULATIONS

The reaction 32S + 24Mg → 56Ni∗ has been studied at two
incident energies (Ec.m. = 51.6 MeV and 60.5 MeV), which
correspond to 1.8 and 2.2 times the Coulomb barrier [6,16].
As already mentioned, at such energies, the fission-like IMF
cross section σIMF is about 6% of the LP emission cross section
σLP. Specifically, σIMF/σLP = (59 ± 12)mb/(1050 ± 50)mb at
Ec.m. = 60.8 MeV [16]. In the following, however, we choose
to use the data of Ref. [6], and the 60.8-MeV energy of Ref. [16]
is close to one of the energies of the chosen data. In the
experiment of Ref. [6], for the fission-like decay of 56Ni∗,
a complete mass spectrum of IMFs is measured, beginning
with a mass AL = 12 fragment. Later on, the measurements
of the IMF mass spectrum were extended at Elab = 130 MeV
(equivalently, Ec.m. = 55.7 MeV) to include the 8Be fragment
yields [58]. In this experiment [58], an enhanced emission
yield for 8Be by a factor of 1.5 to 1.8, over the two
α particles, is observed, which in the extended Hauser-
Feshbach method (EHFM) [3] is shown to be related to an
increased deformation of the heavier fragment 48Cr. More
recently, ternary events from a conjectured hyperdeformed
56Ni CN have been observed at Elab = 165 MeV (equivalently,
Ec.m. = 70.7 MeV) [59]. The two sets of data (Refs. [58]
and [59]) are consistent with the strong deformation effects
found in 56Ni, as is also populated by the 28Si + 28Si fusion-
evaporation reaction [60,61].

Figure 2 gives for 56Ni∗ the mass fragmentation potentials
V (A) at different � values, for fixed T = 3.39 MeV and
R = Ra = Ct + 1.28 fm. The R value is chosen for the best
fit to the IMF cross-section data (see later discussion). Two
interesting results are apparent in this graph: (i) Because of
T-dependent VLDM, the non-α, Z = N , even-A fragments also
appear at minima that are in addition to the preferred α-nucleus
structure present in the macroscopic liquid-drop energy due to
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FIG. 2. Fragmentation potentials V (A) for the compound system
56Ni∗ formed in the reaction 32S + 24Mg at Ec.m. = 51.6 MeV, calcu-
lated for different � values at a fixed T = 3.39 MeV (corresponding
to Ec.m. = 51.6 MeV) and Ra = Ct + 1.28 fm. The fragmentation
potential V (A) = VLDM(T ) + δU (T ) + Ec(T ) + VP (T ) + V�(T ) for
fixed R = Ra . The �c value is from Eq. (23).

the “Wigner term.” This happens because the pairing term
in VLDM goes to zero for T > 2 MeV (refer to the appendix
in [21]). We notice in Fig. 2 that, even for the � = 0 case,
the potential energy minima at odd-Z (=N ) fragments are
much deeper (more so for 10B and 14N fragments) compared
to that for even-Z (=N ) fragments, which could be partly
due to the differences in fitted binding energies with respect
to the experimental data (see Fig. 2 in [21]). Also, the shell
corrections δU are already nearly zero at these temperatures.
Thus, when temperature is included in the potential, not only
do shell structure effects vanish but no explicitly preferred
α-nucleus structure remains. It is worth noting here that the
same behavior is also known for fission calculations [1], based
upon either the saddle-point picture [4–6] or the scission-point
picture [3]. (ii) The structure in the fragmentation potential (the
positions of minima and maxima) is independent of the � value,
though very important effects of symmetric or asymmetric
mass division are present here in Fig. 2. Apparently, the
favored (lower in energy) asymmetric mass distributions at
zero and smaller � values go over to the symmetric ones
for partial waves with angular momenta � near the �c value.
In particular, at lower � values the light particles (plus the
corresponding heavy fragments) are strongly favored, over the
heavier fragments (IMFs), but this situation gets reversed at
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FIG. 3. Fragment preformation factor P0(�, AL), penetrability
P (�, AL), and decay cross section σ�(AL), with � summed over
�max = �c = 32h̄ calculated from Eq. (23), for the decay of 56Ni∗

to various complex fragments (both LPs and IMFs), using the
fragmentation potentials in Fig. 2 based on the DCM.

or near the �c value. In this reversing process (from favored
asymmetric at � = 0 to favored symmetric mass distribution
at higher � values), the relative depths of potential energy
minima at odd-Z fragments seem to grow more, making these
fragments energetically more favorable. As we shall see in the
following, these results have important consequences not only
for the relative contributions of odd-Z and even-Z fragments
but also for the LP and IMF emission at different �’s to the
total decay cross section. Furthermore, from the experiments
of Beckerman et al. [62] we already know that the emission of
IMFs starts only beyond a certain energy (and hence beyond a
certain angular momentum) and that, for lower energies, only
LP emission occurs, which gives the complete fusion cross
section. This result is already given by the DCM worked out
in the s-wave (� = 0) approximation [20–22].

Figure 3 shows the calculated preformation factors
P0(�,AL), the penetration probability P (�,AL), and the cross
section σ�(AL), with � summed over �max = �c, for use of
the fragmentation potentials of Fig. 2. Only the energetically
most favored mass fragments are considered for both the
LPs and IMFs. Two important results can be drawn for
P0(AL) (shown as a solid thin line in Fig. 3): (i) P0(AL) is
a strongly oscillating function with maxima only at Z = N ,
even-A fragments; (ii) the preformation yields are large for
light particles and for asymmetric fragments. In other words,
in agreement with experiments [6,16], an asymmetric mass
distribution of IMFs is favored by the preformation factors.
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even-A, N = Z IMFs (solid lines), calculated with the DCM for the
compound system 56Ni∗, using the fragmentation potentials in Fig. 2.
For protons, the calculated P0 values are three times those shown in
the figure.

In contrast, the penetrability P (AL) (dashed line) is almost
a monotonically decreasing function, with P being relatively
small for symmetric fragments. Thus, P (AL) also supports
the asymmetric mass distribution. The total cross section
σ (AL) = ∑�c

�=0 σ�(AL) for each fragment (solid thick line) is
a combined effect of these two terms (to be discussed later in
comparison with experiments). Here we notice that its behavior
is given more by P0(AL) than by P (AL). In the following,
we first study the variation of these quantities with angular
momentum �.

Figure 4 shows the variation of P0 with � for the energet-
ically favored LPs (A�4) and the even-A, N = Z IMFs (the
contribution of the energetically unfavored odd-A IMFs being
small at all �’s). The maximum � value, �max, is taken to be
equal to the �c value. We notice that, whereas P0 decreases for
LPs with an increase of �, it increases for IMFs as � increases
and then starts to decrease at a large � value. P0(�) for 4He
behaves like the LPs and the behavior of all LPs (A�4) is
different from that of the IMFs (A > 4). Also, for heavier IMFs
(A�16), P0 is almost zero for ��18h̄. Furthermore, in Fig. 5,
the P ’s for LPs are also large (P = 1 for proton emission since
there is no barrier at all �’s), but for � � 18h̄ the penetrabilities
are nearly zero for all IMFs. Thus, for the penetrability P

also, the behavior of LPs differs from those of the IMFs. This
result for the cross sections means that the lower � values
contribute mostly to the LP cross section σLP and that the
higher � values (� > 18h̄) contribute to the fission-like IMFs
production cross section σIMF. This is illustrated in Fig. 6,
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where σLP, σIMF, and the total cross section

σTotal = σLP + σIMF

are plotted for each �. (The values of the three cross sections
for �max = �c are also given in the legend.) We notice that σLP

is already zero for ��31h̄ (a value close to �c), which means
that the two processes of LP and IMF emission get separated
at � ≈ 18h̄, and the decay process stops at the � = �c value (at
least for the LPs in the present calculations). The IMF cross
section starts to contribute only for � > 18h̄ and is maximum
at � = �c. Furthermore, if the � coordinate is extended up
to, say, �fus (not shown in the figure), the contribution to LP
emission remains zero but the IMF cross section continues to
increase as � increases. This means that if the decay process
continues beyond � ≈ �c, only σIMF contributes to σTotal. In
other words, in the DCM, �max = �c seems to be an automatic
choice, fixed by the initial conditions of the experiment, as in
Eq. (23). Alternatively one could choose �max at an � value
where σLP → 0, as is discussed in the following.

The individual contributions of IMFs are illustrated in
Fig. 7, for 8Be emission and 28Si emission. We notice that the
contributions of the lighter IMFs toward σIMF are much larger
than those for heavier IMFs. This result is consistent with
the observation of an asymmetric mass distribution, which
is favored. It is interesting to note that the same results (as
presented in Figs. 6 and 7) can be obtained in the statistical
fission model calculations for this reaction (see, for example,
Fig. 14 in [6]). The noticeable difference is that, in the
statistical fission model [6,16], σfission (≡σIMF) also reduces
to zero at � = �c, owing to the chosen phase space (the sharp
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cutoff approximation) in that model. Another point of interest
to note in the DCM is that the so-called promptly emitted LPs
are really not that prompt but they do overlap considerably with
the binary-decay process (of cluster emission) for the higher
� values. This is also consistent with the statistical fission
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32S + 24Mg reaction at Ec.m. = 51.6 MeV, calculated with DCM, as in
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FIG. 8. The same as Fig. 6, but for use of different �R values for
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model of [6,16]. It is true that LP emission starts early but
continues along with the emission of IMFs till the decay
process itself stops for � > �c.

Before giving the quantitative comparison of σLP and σIMF

calculations with experimental data, we study here the role of a
changing �R value and the nature of emitted light particle(s).
Figure 8 shows the results of the DCM using different
�R-values for the LPs and IMFs, taking �R = 0.41 fm
for LPs, but keeping the same �R = 1.28 fm (as in Fig. 6) for
IMFs. We notice that the magnitude of (total �-summed) σLP

reduces considerably (by a factor of about 2) whereas σIMF

remains nearly the same (with an observed increase of about
20%). Furthermore, if we also change the proton emission to
neutron emission, as in Fig. 9, the �c value remains the same,
but the magnitude of σLP reduces further to about 60%, keeping
the σIMF almost unchanged. These results in Figs. 8 and 9 are
to be compared with the respective measured values of σLP =
1050 mb and σIMF = 60 mb. The agreement for σIMF can be
further improved if the � values are summed only up to the point
where σLP → 0; then the calculated σIMF = 103 mb or 106 mb
in Fig. 8 or Fig. 9, respectively. Note that the drastic reduction
of σLP in Fig. 9 occurs because the lower � values (��3h̄) also
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compared with two other model calculations, EHFM and TSM of
Refs. [3] and [6], respectively, and the experimental data [6,16] for
AL�12 IMFs.

do not contribute to the LP emission cross section. It is known
for experiments that it is more difficult to evaporate a neutron
than a proton, as is also shown to be energetically the case
in Fig. 2. However, we do not make a search for the exact
emission of LPs, since we do not attempt a one-to-one com-
parison with the data. Nonetheless, these results demonstrate
for the first time the general success of the DCM in giving the
LP emission in a nonstatistical formalism.

The total cross section σ = ∑
σ� for decay of 56Ni∗ at

Ec.m. = 51.6 MeV to light fragments AL (for both the LPs
and even-A, N = Z IMFs) is plotted in Fig. 10 for the case
of Fig. 8 and for another �c value (=36h̄). These results are
compared with other available calculations based either on
the saddle-point transition-state model (TSM), taken from [6],
or on the scission-point model, the so-called EHFM scission-
point model, taken from [3], and the available experimental
data [6,16] for AL�12 IMFs.

In light systems, where the saddle and scission configu-
rations are known to be very close to each other, and only
a very little damping is expected as the reaction between
the two nuclei proceeds, there is hardly any reason to
expect a significant difference between the TSM and EHFM
calculations made, respectively, at the saddle point and scission
point, compared to the cases of heavier systems where
damping can occur [1]. Indeed, the calculations based on
the saddle-point and scission-point models in Fig. 10 (also in
Fig. 13) are found to give equivalent results. Both TSM [7] and
EHFM [3] calculations start with the CN formation hypothesis
and then follow the system by first chance binary fission or
light charged-particle emission and subsequent light-particle,
neutron, and/or photon emission. The calculations with TSM
[7] are based upon the transition-state theory for which the
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fission width is assumed to depend on the available phase space
of the saddle point. Here the mass-asymmetry dependence
of the fission barrier favors the decay into mass-asymmetric
exit channels. The EHFM [3] corresponds essentially to an
extension of the Hauser-Feshbach formalism, which treats
γ -ray emission, light-particle (n, p, and α) evaporation, and
IMF decay as the possible decay channels in a single and
equivalent way. The EHFM assumes that the fission probability
is proportional to the available phase space at the scission
point. The input parameters of TSM and EHFM are basically
the same. In each case, the diffuse cutoff approximation
was assumed for the fusion partial wave distribution using a
diffuseness parameter of δ� = 1h̄ and an �c value as calculated
from the experimental total fusion cross section. A constant
level-density parameter value of a = A/8 in Eq. (2) has
been chosen for both the models in view of the, respective,
experimental and theoretical results of Refs. [63] and [64]
for the light heavy-ion systems. The transmission coefficients
obtained in the optical model (OM) calculations are used,
where the potential parameters have smooth dependences on
the mass number and are essentially standard in all statistical
model calculations [65]. A more complete comparison of the
transition-state and extended Hauser-Feshbach models and a
detailed discussion of the input parameters in statistical model
calculations, are given in the review by Sanders et al. [1].

In Fig. 10, the EHFM calculations for IMFs in [3] are done
for AL�12 fragments and are thus joined straight from AL = 4
to AL = 12. Only even-A fragments are plotted since the IMF
spectra at Ec.m. = 51.6 MeV are measured for only even-A
fragments [6,16]. The TSM calculations for LPs in [6] are
performed within the HF formalism, and hence they are shown
to be the same for the EHFM model [3]. As already stated,
for the LP emission at this energy, the measured (fusion or
evaporation residue) cross section is available (σLP = 1050 ±
100 mb) but the separate yields for each emitted LP is not
given for a possible direct comparison between experiment
and model calculations.

Notice in Fig. 10 that the known discontinuity at the point
between AL = 4 and 6 in both TSM and EHFM calculations,
owing to the use of the HF formalism for LPs (A�4), is no
longer present in the current DCM calculations. The DCM
treats both the LP and IMF emissions in a similar manner,
although the present calculations (corresponding to the case
of Fig. 8) overestimate σLP by a factor of more than 2. This
discrepancy in the DCM is mainly due to the contribution of
a mass-one particle, here the proton. For example, replacing
the proton with a neutron (Fig. 9) yields a calculated σLP in
better agreement with the data. Apparently, for the calculation
of the evaporation residue cross section σLP or σLP + σIMF,
knowledge of the specific contributing particles (i.e., their
multiplicities) is crucial for comparisons with experiments.
Note further that the HF analysis gives nearly equal cross
sections for each of the four emitted particles (AL = 1–4),
whereas a decreasing function of the light-particle mass is
obtained in the DCM. It will be of great interest to measure
the trends of LP cross sections in the near future.

For the IMFs, in Fig. 10, the general comparison between
the experimental data and the DCM for �c = 32h̄ is of the
same quality as for the TSM or EHFM, at least for AL�22. For
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FIG. 11. Variation of the first turning point Ra with light fragment
mass AL, for Ra = Ct , Ra = Ct + �R(=1.28 fm), and the actually
calculated Ra from V (Ra) = Qeff (T ), � = 0, for the decay of 56Ni at
T = 3.39 MeV. Note that the actually calculated Ra from V (Ra) =
Qeff (T ), � = 0, can be written as Ra = Ct + �R(η), where �R(η)
is found to be, in general, positive. For some light fragments (AL =
1–5, 8), we use � > 0 since calculated Qeff (T ) is larger than the
barrier for the � = 0 case.

AL > 22 the TSM and EHFM predictions appear to be better,
and the DCM seems to require a larger �c value. However, the
DCM calculations for �c = 36h̄ give poorer fits for the lighter
fragments. Thus, a smaller �R value is suggested for a higher
�c value (see Fig. 12). In any case, in general, in experiments [1]
the CN component is free from deep inelastic “orbiting”
(fully damped collision) yields only for lighter fragments
with A < 24.

Note that in Fig. 10, for DCM calculations, �R =
0.41 fm for LPs and �R = 1.28 fm for IMFs. However,
a closer comparison of DCM calculations with experiments
(Fig. 12) favors the use of a fragment-dependent �R or the
actual �R(η), calculated from Qeff , presented in Fig. 11 for
light mass fragments. We notice in Fig. 11 that �R(η) has
an oscillatory nature, if compared to the smooth variation of
Ct or Ct + �R with η. The maxima in �R(η) correspond
to α-nuclei IMFs and the minima to N = Z non-α-nuclei
IMFs, with the odd-AL fragments lying in between. For light
particles, the �R(η) values increase almost monotonically.
In any case, the division between the LPs and the IMFs is
clearly evident from the variation of �R with η.

Figure 12 shows the DCM calculations using different
average �R values and the actual �R(η) obtained in Fig. 11
from calculated Qeff . These calculations are presented here
only for even-A IMFs. We have also added here the DCM
calculations for �R = 1.28, �c = 32h̄ (from Fig. 10). It is

014601-9



RAJ K.GUPTA et al. PHYSICAL REVIEW C 71, 014601 (2005)

12 16 20 24 28

10-6

10-5

10-4

10-3

10-2

10-1

100

101

DCM

E
c.m.

=51.6 MeV

T=3.39 MeV

c
=32

56Ni*

          ∆R(η) 

      (from Q
eff

 )

0.41

0.71

(∆R)

Expt.

1.10
1.20
1.25
1.28
1.31

C
ro

ss
 S

ec
tio

n 
 σ

  
(m

b)

Fragment Mass Number

FIG. 12. The same as Fig. 10, but for the DCM alone, calculated
for different average �R values and the actual �R(AL) determined
from V (Ra) = Qeff (T , � = 0) (Fig. 11). The DCM calculations are
compared with the experimental data taken from Refs. [6,16].

clear that �R = 1.28 fm gives the optimum fit to IMF data,
though the oscillatory nature of the data is almost smoothed
out, particularly for the heavier IMFs. This oscillatory structure
of the cross section gets restored with the use of actual
�R(η) obtained from calculated Qeff , though the fit with the
data deteriorates. Apparently, an improvement in �R(η) is
required. This calls for an improvement in the calculations of
Qeff and hence in the ground-state and T-dependent binding
energies.

The histograms in Fig. 13 show the comparisons of the
absolute IMF cross sections for the best fit (�R = 1.28),
the experimental data [6,16], and the two alternate model
calculations of TSM (from [6]) and EHFM (from [3]), for
AL�12 at both the available energies. Similarly, Fig. 14 shows
the DCM-calculated excitation functions (cross sections at
different Ec.m.) for the emission of 12C from the excited
56Ni∗ CN. We notice in Fig. 14 that, independent of the
choice of �R value (i.e., a constant or T-dependent value),
the 12C emission cross section, σ (12C), increases as the
incident energy increases and reaches a maximum around
Ec.m. = 90 MeV and then starts to decrease at higher incident
energies. It is interesting to note that similar results are
obtained in the HF calculations, using BUSCO code, for the
emission of 12C from 114−118Ba∗ CN [66]. From Figs. 13
and 14 it is clear that the DCM contains the required
features of the experimental data, as well as of other models
(EHFM [3] and TSM [6]). The striking disagreement for a
mass AL = 14 fragment calls for the not-yet-measured charge
distributions in the reaction 32S + 24Mg. Figure 15 shows our
calculated charge dispersion potentials and the corresponding
fragment preformation probabilities in the DCM for AL = 14
at different � values. Apparently, in DCM calculations, the
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yields (cross sections) are larger (rather largest) if only the
energetically favored fragments are considerd (such as 14N for
AL = 14), as is the case in all the DCM calculations presented
here. However, by allowing for charge dispersion effects,
the average yield as well as the yields for other isobars are
much smaller compared to that for the most favored fragment.
Furthermore, a better treatment of the binding energies and
missing aspects, such as the deformations of the fragments
and neck formation between them, would also ameliorate
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FIG. 14. DCM excitation functions (i.e., cross sections at differ-
ent incident c.m. energies) for emission of a 12C fragment from the
excited 56Ni∗ compound nucleus, calculated for a constant and an
arbitrary T -dependent �R value.
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the predictions of the present model. In view of this, in the
following, we further analyze the comparisons of the DCM
calculations for average TKEs with the experimental data of
Ref. [6].

Figure 16 shows the DCM-calculated average total kinetic
energy

TKE(AL) =
�max∑
�=0

σ�(AL)

σ (AL)
TKE(�,AL),

compared with the experimental data for the 32S + 24Mg
reaction [6] leading to hot 56Ni∗ at the two chosen energies.
Here, for each fragment, the TKE for each � is averaged over
its corresponding production cross section σ� with respect to
the total cross section σ (AL) = ∑�max

�=0 σ�(AL). We have also
calculated the total kinetic energy TKE(AL) for a best fit to the
� value. Apparently, the comparisons with data are reasonably
good for both the calculations and it is difficult to distinguish
between the calculated TKE and TKE. The maximum � value is
nearly the same in both cases. However, it is not clear why this
maximum � value is much less than the �c value. The simple
model dependence used for handling the deformations of the
fragments and neck formation between them need further
improvements.

IV. SUMMARY

We have further developed the DCM for the decay of a
hot and rotating CN, formed in light heavy-ion reactions,
into multiple LP evaporation and IMF emission. The LP
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FIG. 16. The measured [6] and DCM-calculated average total
kinetic energy (TKE) for the reaction 32S + 24Mg →56 Ni∗ → AL +
AH , at two incident energies Ec.m. = 51.6 MeV and 60.5 MeV. The
total kinetic energy TKE for the best fit to the � value is also plotted.
The average �R = 1.28 fm and 1.29 fm, respectively, for the two
energies.

emission (evaporation residue) cross section σLP constitutes
the CN fusion cross section σfus for a negligible emission of
IMFs, since σfus = σLP + σIMF (also referred to as σTotal). The
statistical equilibrated CN evaporation process, successful for
the emission of LPs, could not explain the IMF emission.
Alternatively, the IMF emission alone could be understood
as the statistical fission process in the saddle-point [6] or
scission-point model [3]. However, in the DCM, both the LPs
and IMFs are treated identically as the dynamical collective
mass motion of preformed fragments or clusters through
a barrier (i.e., quantum mechanical tunneling of clusters
that are considered pre born with different probabilities
before they actually penetrate the barrier). Thus, the cluster
preformation probabilities contain the structure effects of the
CN, which are found to be important in the description of
the measured excitation functions of large-angle elastic and
inelastic scattering yields in the experiments under study.

The DCM is worked out in terms of only one parameter,
the neck-length parameter, which depends on the total kinetic
energy of the fragments TKE(T) at the given temperature T of
the CN, which itself is defined for the first time in terms of
the binding energies of the emitted fragments in their ground
states and the binding energy of the hot CN. The hot CN is
considered to achieve its ground state by giving away its extra
binding energy to the emitted LPs, which is shown to leave
the emitted IMFs in their respective ground states with total
kinetic energy TKE(T = 0). The remaining (excitation) energy
TXE(T ) must go into the emission of secondary light particles
from the IMFs, which are otherwise already in their ground
states in the radial motion. Such an emission of secondary light
particles is not included here in the DCM; rather the model
predictions are compared with the primary IMF experimental
data [6], corrected for such an emission.
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The DCM is applied here to the decay of 56Ni∗, formed
in the 32S + 24Mg reaction at two incident energies, Ec.m. =
51.6 MeV and 60.5 MeV, where both the LP cross section and
IMF spectra, as well as the total average kinetic energy (TKE)
for only the favored α-nucleus fragments, are measured [6].
The interesting result of the DCM is that both the preformation
factors and penetrabilities, as a function of angular momentum,
behave differently for the LPs and the IMFs. In other words,
there is an explicit division at the mass-four fragment between
the LPs and IMFs, with 4He belonging clearly to the LP regime.
The preformation factor is shown to contribute more to the
observed behavior of the IMF cross section σIMF, which can be
compared with the experimental data reasonably well, favoring
an asymmetric distribution. Furthermore, the variation of both
σLP and σIMF with angular momentum, as well as the individual
contributions of IMFs to σIMF, and the excitation functions
of the emitted IMFs, match exactly the predictions of the
statistical fission model and the HF analysis. Since, unlike
fission models, the DCM does not depend on the chosen phase
space, it has the advantage that the �max value is fixed by
the initial conditions of the experiment via �c, rather than by
the available phase space. This distinguishing feature is evident

in σIMF not going to zero when σLP goes to zero at �max = �c.
The comparison of σLP, however, depends strongly on the
type of particles involved and their multiplicities, as expected.
The calculated TKE also reproduces the experimental data,
though at an � that is less than the �c value, which perhaps
has to do with the way the deformations of the fragments are
included here simply through the same neck-length parameter
that accounts for the temperature effects. The model is being
improved for both the neglected deformation effects and neck
formation between them as well as the binding energies used
to calculate this neck-length parameter.

ACKNOWLEDGMENTS

The financial support from the Department of Science and
Technology (DST) and the Department of Atomic Energy
(DAE), Government of India, in terms of research projects,
is gratefully acknowledged. One of us (C.B.) would like to
thank J. P. Wieleczko and W. von Oertzen for interesting
discussions on different aspects of the dynamical cluster-decay
model.

[1] S. J. Sanders, A. Szanto de Toledo, and C. Beck, Phys. Rep. 311,
487 (1999).

[2] J. Gomez del Campo, R. L. Auble, J. R. Beene, M. L. Halbert,
H. J. Kim, A. D’Onofrio, and J. L. Charvet, Phys. Rev. C 43,
2689 (1991); Phys. Rev. Lett. 61, 290 (1988).

[3] T. Matsuse, C. Beck, R. Nouicer, and D. Mahboub, Phys. Rev.
C 55, 1380 (1997).

[4] R. J. Charity, M. A. McMahan, G. J. Wozniak, R. J. McDonald,
L. G. Moretto, D. G. Sarantites, L. G. Sobotka, G. Guarino,
A. Pantaleo, F. Fiore, A. Gobbi, and K. D. Hildenbrand, Nucl.
Phys. A483, 43 (1988).

[5] L. G. Moretto, Nucl. Phys. A247, 211 (1975).
[6] S. J. Sanders, D. G. Kovar, B. B. Back, C. Beck, D. J. Henderson,

R. V. F. Janssens, T. F. Wang, and B. D. Wilkins, Phys. Rev. C
40, 2091 (1989).

[7] S. J. Sanders, Phys. Rev. C 44, 2676 (1991).
[8] R. Nouicer, C. Beck, R. M. Freeman, F. Haas, N. Aissaoui,

T. Bellot, G. de France, D. Disdier, G. Duchêne, A. Elanique, A.
Hachem, F. Hoellinger, D. Mahboub, V. Rauch, S. J. Sanders,
A. Dummer, F. W. Prosser, A. Szanto de Toledo, Sl. Cavallaro,
E. Uegaki, and Y. Abe, Phys. Rev. C 60, 041303 (1999).

[9] G. Royer, C. Bonilla, and R. A. Gherghescu, Phys. Rev. C 65,
067304 (2002).

[10] R. A. Gherghescu and G. Royer, Phys. Rev. C 68, 014315 (2003).
[11] G. Royer, C. Bonilla, and R. A. Gherghescu, Phys. Rev. C 67,

034315 (2003).
[12] C. Beck, Y. Abe, N. Aissaoui, B. Djerroud, and F. Haas, Phys.

Rev. C 49, 2618 (1994).
[13] C. Beck, Y. Abe, N. Aissaoui, B. Djerroud, and F. Haas, Nucl.

Phys. A583, 269 (1995).
[14] C. Beck, R. Nouicer, D. Disdier, G. Duchêne, G. de France,
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