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I. INTRODUCTION

The interest in the study of the validity of the quasiparticle
random phase approximation (QRPA) has been continuously
renewed because it was proposed, long ago, by M. Baranger
[1]. The QRPA is, perhaps, the best known bosonization
method [2]. It is a rather friendly formalism that exploits
the correspondence between a fermionic hamiltonian and its
harmonic representation [3]. The QRPA is a suitable formalism
to describe spherical and deformed nuclei [4]. Basically, it is
a theory of small vibrations around spherical or deformed
mean field minima. Various extensions of the QRPA method
have been developed in the past to account for correlations
among unlike (proton-neutron) quasiparticles [5]. Nearly two
decades ago the issue of particle-particle correlations was
raised [6] to explain the strong cancellation of the matrix
elements that govern certain exotic electroweak processes,
such as the nuclear double beta decay [7,8]. The question
about the validity of these extensions persists, and from
time to time a new proposal emerges as a cure to some of
the apparent failures of the QRPA approach. Among these
extensions, the renormalized QRPA (RQRPA) of Refs. [9–11]
was presented as a suitable alternative to the standard QRPA.
However, the violation of the Ikeda sum rule found in the
RQRPA [11] raised strong doubts about its validity [12]. The
renormalization procedure is rather well established, but it
introduces correlations that exceed the order of approximation
required by the QRPA, as it has been shown in [12]. Moreover,
the results of [13,14] show that the RQRPA is not able to
reproduce the trend of the exact solution in a very schematic
and solvable situation. This is a matter of concern, because the
validity of the RQRPA in realistic situations may be hampered
by the fact that it does not work in a simple, schematic, and
solvable model [12]. Unfortunately, this point has been ignored
by some authors, and different recipes have been imposed on
top of the RQRPA [15]. Some of these recipes are just ad
hoc procedures [16]. In this article, we focus our attention
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on a latest attempt known as fully renormalized quasiparticle
random phase approximation (FRQRPA) [17,18]. Therein it
is claimed that the difficulties of the RQRPA, concerning the
conservation of the Ikeda sum rule, have been solved. As we
show in this article, the claim of [17,18] may not be supported
by the results of a test of the formalism. In performing this test
we have followed the steps of the FRQRPA and searched for
nontrivial solutions of it. As we show later, the solutions of the
FRQRPA reduces trivially to the ones of the QRPA. Thus, the
FRQRPA does not seem to be a real improvement as respect
to the QRPA, contrary to the claims of [17,18].

II. FORMALISM

For the sake of completeness we briefly review the basic
notions of the QRPA. Let us considerer a very schematic
situation consisting of protons and neutrons in a single j shell.
They are interacting via monopole pairing forces, separately
for protons and neutrons, and charge dependent two body
forces of the Fermi type. The Hamiltonian is written [19] as
follows:

H = epnp − GpS†
pSp + ennn − GnS

†
nSn

+ 2χβ−β+ − 2κP −P +, (1)

where

ni =
∑
mi

a†
mi

ami
,

Si =
∑
mi

a†
mi

a
†
mi

, i = p, n,

(2)
β− =

∑
mp=mn

a†
mp

amn
,

P − =
∑

mp=−mn

a†
mp

a
†
mn

,

are the number operator, the monopole pair operator, the
one-particle charge-exchange operator, and the two-particle
charge-exchange operator, respectively. Proton and neutron
single-particle orbits are denoted by the subindexes (p) and
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(n) and a
†
p = a

†
jpmp

is a particle creation operator and a
†
p =

(−)jp−mpa
†
jp −mp

is its time reversal. The symmetry group of
H is the SO(5) group [19]. By performing the transformation
of the particle-creation and annihilation operators to the quasi-
particle representation, for protons and neutrons separately,
the resulting Hamiltonian is written as follows:

H = EpNp + EnNn + λ1A
†A + λ2(A†A† + AA)

− λ3(A†B + B†A) − λ4(A†B† + BA) + λ5B
†B

+ λ6(B†B† + BB), (3)

where Ep and En are the quasiparticle energies and the
operators and matrix elements of Eq. (3) are defined by the
following:

Nq =
∑
mq

α
†
jqmq

αjqmq
, q = n, p,

A† = [
α†

p ⊗ α†
n

]J=0

M=0
,

B† = [
α†

p ⊗ αn

]J=0

M=0
,

λ1 = 4�
[
χ
(
u2

pv2
n + v2

pu2
n

) − κ
(
u2

pu2
n + v2

pv2
n

)]
,

λ2 = 4�(χ + κ)upvpunvn, (4)

λ3 = 4�(χ + κ)unvn

(
u2

p − v2
p

)
,

λ4 = 4�(χ + κ)upvp

(
u2

n − v2
n

)
,

λ5 = 4�
[
χ
(
u2

pu2
n + v2

pv2
n

) − κ
(
u2

pv2
n + v2

pu2
n

)]
,

λ6 = − λ2.

In the single-shell space, the quasiparticle energies are given
by the following expressions:

Ep = �G

2
, En = �G

2
, (5)

and the corresponding occupation factors are as follows:

vp =
√

Np

2�
, up =

√
1 − v2

p, (6)

vn =
√

Nn

2�
, un =

√
1 − v2

n. (7)

The Hamiltonian expressed in Eq. (3) contains all the terms
generated by the transformation to the quasiparticle basis. In
the context of the BCS approximation, the expectation value
of the commutator

[A,A†] = 1 − 1

2�
(Np + Nn), (8)

is

〈[A,A†]〉 = 1, (9)

because the quasiparticle vacuum is annihilated by the oper-
ators Nq . In other words, up to this point the mapping of the
initial Hamiltonian expressed in Eq. (1) to the quasiparticle
basis expressed in Eq. (3) is exact.

A. pn-QRPA

The linearization procedure (pn-QRPA) allows us to write
the pair contribution of the quasiparticle Hamiltonian in
Eq. (3) as follows:

Hpn-pairs = (Ep + En)A†A + λ1A
†A + λ2(A†A† + AA),

(10)
in the harmonic form

Hpn-QRPA = ω�†�, (11)

where

�† = XA† − YA (12)

is the one phonon creation operator. The new vacuum,
|0pn-QRPA〉, is annihilated by the operator �

� |0pn-QRPA〉 = 0, (13)

and

[�,�†] = 1. (14)

The equation of motion

[Hpn-QRPA, �†] = ω�†, (15)

fixes the eigenvalue ω, and the amplitudes X and Y are
normalized as follows:

X2 − Y 2 = 1, (16)

as a consequence of Eq. (14). The equation of motion
[Eq. (15)] can be written in matrix form by commuting with
� to the left, leading to the following:(

A B
B A

)(
X

Y

)
= ω

(
1 0
0 −1

)(
X

Y

)
, (17)

The matrix elements A,B are defined by the following:

A = 〈[A, [Hpn-pairs, A
†]]〉,

= Ep + En + λ1,
(18)

B = −〈[A, [Hpn-pairs, A]]〉,
= 2λ2.

Equation (17) is valid under two conditions:

(a) the interaction does not include exchange terms and
(b) the expectation value of the quasiparticle number operator,

on the pn-QRPA vacuum, vanishes.

The following eigenvalue:

ωpn-QRPA =
√

(Ep + En + λ1)2 − 4λ2
2, (19)

vanishes for

κ
pn-QRPA
ω=0 = (G/4) + χ (upvn − vpun)2

(upun + vpvn)2 . (20)

The strong dependence of ω on κ , shown by the pn-QRPA
solution, is similar to the dependence exhibited by the
exact solution [19]. Also, the overall agreement among the
exact solution, the quasiparticle solution, and the pn-QRPA
is noticeable [19]. From the agreement found in Ref. [19], it
is evident that the pn-QRPA method gives the correct value
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of ω at leading order and that the agreement with the exact
solution improves with the inclusion of the remaining terms
of the Hamiltonian. This is the case of the solution labeled the
quasiparticle solution in Ref. [19].

B. pn-RQRPA

Because the commutator [Eq. (8)] contains the proton
and neutron quasiparticle number operators, it seems natural
to accommodate them in the matrix equation [Eq. (17)] by
replacing the definition of the quasiparticle pair operators
such that they do commute to unity. The replacement of the
expectation value of the commutator, as done in the standard
QRPA, by the commutator itself is done by performing a
renormalization of the pair operators [9–11] as follows:

Ã† = D−1/2A†,

Ã = D−1/2A,
(21)

〈[Ã, Ã†]〉 = 1,

D = 〈[A,A†]〉 = 1 −
〈
Np + Nn

2�

〉
.

The expectation value that appears in the definition of D is
taken by a new vacuum. To construct the set of equations of
the renormalized proton-neutron QRPA, one introduces the
following phonon creation operator:

�
†
R = XRÃ† − YRÃ, (22)

where

X2
R − Y 2

R = 1. (23)

Thus, a new matrix equation is obtained as follows:(
A B
B A

)
R

(
X

Y

)
R

= ω

(
1 0
0 −1

)(
X

Y

)
R

, (24)

with

AR = 〈[A, [Hpn-pairs, A
†]]〉,

= Ep + En + λ1D,
(25)

BR = −〈[A, [Hpn-pairs, A]]〉,
= 2λ2D.

The factor D is determined by the following condition:

D = 1 − 〈0pn-RQRPA|Np + Nn

2�
|0pn-RQRPA〉

(26)

= 1

1 + Y 2
R

�

.

and it is a function of the amplitude Y .
Equation (26) is a direct consequence of Eq. (21), and it can

be viewed as the vacuum condition of the pn-RQRPA. In fact,
because the Hamiltonian is the same for the pn-QRPA and
pn-RQRPA, the renormalization implied by Eq. (25) should
come only from the definition of the vacuum. Otherwise, the
renormalization factor D should be equal to unity. It means
that there is not a gradual transition from the pn-RQRPA to
the pn-QRPA or vice versa. They are different approximations

and have been obtained under different assumptions. The
pn-QRPA is a valid approximation within a domain of small
amplitude vibrations and the pn-RQRPA is a procedure that
aims at crossing a phase transition without changing the
Hamiltonian. The drawbacks of the pn-RQRPA procedure
have been discussed extensively in Refs. [12,20]. We refer
the reader to these references for further details concerning
the comparison of the pn-QRPA and the pn-RQRPA.

The comparison between the results of the pn-QRPA, for
the matrix elements of AR and BR, with the results of the
previous equations, A and B, shows that the renormalization,
represented by D, is a plain renormalization of the couplings
λ1 and λ2. This renormalization should be consistent with
the requirement that the corrections introduced by considering
nonvanishing vacuum expectation values of Np and Nn should
be of the order 1/� with respect to leading-order terms
included in the Hamiltonian. Otherwise one has to consider
the full Hamiltonian and not only the pair part of it. The
renormalization of the couplings shifts the point where the
eigenvalue vanishes, but this does not necessarily preserve
the structure of the eigenfunction. In fact, the value of κ for
which the eigenvalue vanishes is as follows:

κ
pn-RQRPA
ω=0 = (G/4D) + χ (upvn − vpun)2

(upun + vpvn)2 . (27)

Near ω = 0 the value of D is approximately D ≈ 0.80, and it
leads to the following estimate:

κ
pn-RQRPA
ω=0 > κ

pn-QRPA
ω=0 . (28)

The comparison with the exact results [12,14] shows that
the pn-RQRPA and exact wave functions differ significantly.
This indicates that the renormalization procedure violates the
consistency of the QRPA approach severely. The asymmetric
treatment of the QRPA matrix and of the QRPA norm reflects
on the wave function. The obvious consequence of it is the
violation of the sum rule

[β+, β−] = N − Z, (29)

which in the pn-RQRPA takes the following form:

[β+, β−] = D(N − Z). (30)

This means that, because D �= 1, the oscillator sum rule (Ikeda
Sum Rule) is inevitably violated. This has been shown by a
comparison between exact and pn-RQRPA wave functions in
Ref. [14] and by the comparison between the matrix elements
of the operators β− and β+, calculated in the pn-QRPA and
the pn-RQRPA in Ref. [12]. We return to the discussion of
these features later.

C. pn-FRQRPA

The fully renormalized pn-QRPA of Refs. [17,18] goes
beyond the renormalization scheme of the pn-RQRPA. It is
an ad hoc procedure that postulates the use of all the terms
resulting from the transformation of a

†
pan to the quasiparticle

basis in the definition of the phonon. Then:

Ã† = D−1/2(A† + αB† + βB),
(31)

Ã = (Ã†)
†
,
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with

α = − unvn

v2
p − v2

n

,

β = upvp

v2
p − v2

n

. (32)

The corresponding phonon creation operator is written as
follows:

�
†
FR = XFRÃ† − YFRÃ. (33)

The commutator between the operators Ã† and Ã is taken as
unity,

〈[Ã, Ã†]〉 = 1, (34)

a condition that is enforced by the choice of the renormaliza-
tion factor D such that

DFR = 〈[A + αB + βB†, A† + αB† + βB]〉
≈ 1 −

〈
Np + Nn

2�

〉
+ (α2 − β2)

〈
Nn − Np

2�

〉
.

(35)

The above expression is valid if the quasineutron-quasiproton
correlations are created by the action of pair of A† operators.
Attempts to build the vacuum associated with the operator �

†
FR

fail badly, even at the level of the boson approximation (see
the next section). The normalization of the phonon operator is
therefore given by the following:

X2
FR − Y 2

FR = 1, (36)

as in the previous cases. The eigenvalue problem is written in
matrix form as follows:(

A B
B A

)
FR

(
X

Y

)
FR

= ω

(
1 0
0 −1

)(
X

Y

)
FR

, (37)

with

(DA)FR = 〈[Ã, [H, Ã†]]〉,
= (Ep + En)f1 + (Ep − En)(α2 + β2)f2

+ λ1f
2
1 − λ32αf1f2 + λ42βf1f2

+ λ5(α2 + β2)f 2
2 + λ64αβf 2

2 ,
(38)

(DB)FR = −〈[Ã, [H, Ã]]〉,
= (Ep − En)αβf2 + λ22f 2

1 + λ32βf1f2

− λ42αf1f2 − λ5αβf 2
2 + λ6(α2 + β2)f 2

2 .

The factors fi are given by the following expressions:

f1 = 〈0pn-FRQRPA|
(

1 − Np + Nn

2�

)
|0pn-FRQRPA〉

≈ 1 − D−2
FR Y 2

FR

2�
(
1 + Y 2

FR

)
(

2 − 2 − (α2 + β2)

2�

)
,

(39)

f2 = 〈0pn-FRQRPA|Nn − Np

2�
|0pn-FRQRPA〉

≈ D−2
FR Y 2

FR

2�
(
1 + Y 2

FR

) α2 − β2

2�
.

The leading-order expression for D yields the following:

DFR = 〈0pn-FRQRPA|
(

1 − Np + Nn

2�

+ (α2 − β2)
Nn − Np

2�

)
|0pn-FRQRPA〉

≈ f1 + (α2 − β2)f2. (40)

These factors are functions of the BCS parameters u and v, the
couplings χ and κ , and the quantities α and β of Eq. (32).

The above two equations, Eqs. (39) and (40), are the
equivalent of Eq. (26) (see Sec. II B). Notice that to reobtain the
results of Sec. II B, one should use the values α = β = 0, for
which f2 = 0. By keeping the lowest order approximation in
1/�, in the expression of f1, one gets f1 → D. However, there
is a conceptual difference between the pn-RQRPA and the pn-
FRQRPA. In the pn-RQRPA the quasiparticle pair operators
are the standard pair operators A† and A of Eq. (4), and the
vacuum is changed while keeping the Hamiltonian unchanged.
In the pn-FRQRPA, to the contrary, both the vacuum and the
Hamiltonian are changed because the quasiparticle pairs of
Eq. (31), differ from the quasiparticle pairs of both the
pn-QRPA and pn-RQRPA. The difference is the inclusion of
the one quasiparticle operators B and B† in Eq. (31).

The value of κ for which ω = 0 is then as follows:

κFR
ω=0 ≈ (G/4f1) + χ (upvn − vpun)2

(upun + vpvn)2 . (41)

Because f1 of Eq. (40) goes to 1, as a function of 1/�, faster
than DFR [see also Eq. (40)], the value of κFR

ω=0 of Eq. (41)
is closer to κ

pn-QRPA
ω=0 than to κ

pn-RQRPA
ω=0 . We return to this

comparison under Sec. III.
To illustrate the scope and differences between the pn-

QRPA, pn-RQRPA, and pn-FRQRPA we test them, under
Sec. II D, by means of the calculation of the strength of
charge-dependent operators.

D. Transitions

We now proceed with the study of Fermi transitions for
each of the considered approximations. The Fermi operator is
given by the following:

β− =
∑

mp=mn

a†
mp

amn
, (42)

and after it is transformed to the quasiparticle basis, it reads as
follows:

β− =
√

2�(unupB† − vnvpB − upvnA
† − unvpA). (43)

This expression includes quasiparticle-pair terms

β−
pair =

√
2�(−upvnA

† − unvpA) (44)

and scattering terms

β−
scattering =

√
2�(unupB† − vnvpB). (45)

The transformation of the pair terms to the phonon basis yields

β−
pair = −(upvnX + unvpY )�† − (upvnY + unvpX)�.

(46)
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The commutator [
β+

pair, β
−
pair

]
, (47)

is independent of the transformation to the phonon basis.
Because the combination of products of the amplitudes X

and Y disappears from Eq. (47) because of the pseudo-
orthogonality of the pn-QRPA basis, and the combination
of factors u and v reduces to quadratic factors, the vacuum
expectation value of Eq. (47), is the same in the quasiparticle
and in the phonon basis〈[

β+
pair, β

−
pair

]〉 = N − Z. (48)

This result is the Ikeda Sum Rule. The standard pn-QRPA
fulfills it exactly, as we have shown before.

In the pn-RQRPA this sum rule is not obeyed, because in
this approximation〈[

β+
pair, β

−
pair

]
R

〉 = D(N − Z), (49)

a result that is trivially obtained from Eq. (47) by replacing �†

with �
†
R .

In the case of the pn-FRQRPA the sum rule has the
following value:

〈[β+, β−]FR〉 = 2�v2
n + (

u2
n − v2

n

)
Nn

− 2�v2
p + (

u2
p − v2

p

)
Np, (50)

and this result coincides with the Ikeda Sum Rule (N − Z) if
the following conditions are satisfied:

N = 2�v2
n + (

u2
n − v2

n

)
Nn,

(51)
Z = 2�v2

p + (
u2

p − v2
p

)
Np,

with

Nn = 〈0pn-FRQRPA|Nn|0pn-FRQRPA〉,
(52)

Np = 〈0pn-FRQRPA|Np|0pn-FRQRPA〉.
Notice that Eq. (51) implies the finding of new values u2 and
v2, which in turn will change the structure of the |0pn-FQRPA〉
vacuum by the change of the backward-going amplitude Y .
Thus, the pn-FRQRPA would differ from the pn-QRPA and
pn-RQRPA if the nontrivial solutions (Nn �= 0, Np �= 0) of
Eq. (52) are found. Before performing the test of consistency
of the pn-FRQRPA numerically (see Sec. III), we show, by
using boson mapping, that Eqs. (51) and (52) do not lead to
nontrivial solutions.

E. Boson mapping

The quasiparticle creation and annihilation operators α
†
p,

αp, α
†
n, αn can be arranged in the following set of pairs:

α†
pα†

p, αpαp,

α†
nα

†
n, αnαn,

α†
pαp, α†

nαn, (53)

α†
pα†

n, αnαp,

α†
pαn, α†

nαp.

These 10 operators and their commutators form the SO(5)
algebra. The Hamiltonian of Eq. (3) is indeed a bilinear form

(sum of products of pairs) of them. The boson image of
Eq. (3) can be obtained by applying Holstein-Primakoff boson
mapping [21,22]. The images of the 10 pairs of quasiparticle
operators are as follows:

A†
pp = 1√

�
b†p(� − np − nf )1/2,

App = (
A†

p

)†
,

Np = 2np + nf ,

A†
nn = 1√

�
b†n(� − nn − nf )1/2,

Ann = (
A†

n

)†
,

Nn = 2nn + nf , (54)

A†
pn = 1√

2�
b
†
f (� − nn − nf )1/2(� − np − nf )1/2	(nf )

− 1√
2�

	(nf )b†pb†nbf ,

Apn = (
A†

pn

)†
,

B†
pn = 1√

2�
b
†
f 	(nf )(� − np − nf )1/2bn

+ 1√
2�

b†p(� − nn − nf )1/2	(nf )bf ,

Bpn = (
B†

pn

)†
,

where b
†
p, b†n, and b

†
f are bosons and np, nn and nf are number

operators defined as follows:

np = b†pbp,

nn = b†nbn, (55)

nf = b
†
f bf .

0.0 0.3 0.6 0.9 1.2 1.5
0.0

0.5

1.0

1.5

2.0

w

4 κ /G

FIG. 1. Excitation energy as a function of κ . The results displayed
correspond to Nn = 14, Np = 6, � = 10 and χ = 0.0 MeV. Solid
lines correspond to the pn-QRPA approximation, dashed lines cor-
respond to the pn-RQRPA approximation, whereas the pn-FRQRPA
results are shown in dotted lines.
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0.0 0.3 0.6 0.9 1.2 1.5
0.0

0.5

1.0

1.5

2.0

2.5

w

4 κ /G

FIG. 2. The same as Fig. 1, for χ = 0.025 MeV.

The bosons are commuting objects[
bi, b

†
j

] = δij , (56)

and φ(nf ) is the operator

	(nf ) =
[

(2� + 2 − nf )

(� + 1 − nf )(� − nf )

]1/2

. (57)

To leading order in � one obtains the following:

A†
pn = b

†
f ,

Apn = (
A†

pn

)†
,

(58)

B†
pn = 1√

2�

(
b
†
f bn + b†pbf

)
,

Bpn = (
B†

pn

)†
.

0.0 0.3 0.6 0.9 1.2 1.5

-2.0

-1.5

-1.0

-0.5

0.0

Y

4 κ /G

FIG. 3. Backward amplitude as a function of κ . The results dis-
played correspond to Nn = 14, Np = 6, � = 10, and χ = 0.0 MeV.
Solid lines correspond to the pn-QRPA approximation, and dashed
lines correspond to the pn-RQRPA approximation, whereas the
pn-FRQRPA results are shown in dotted lines.

0.0 0.3 0.6 0.9 1.2 1.5

-2.0

-1.5

-1.0

-0.5

0.0

Y

4 κ /G

FIG. 4. The same as Fig. 3, for χ = 0.025 MeV.

The equivalent of the pn-FRQRPA approximation, in this
boson mapping, is given by the following replacement:

Ã† = D−1/2

(
b
†
f + α

1√
2�

(
b
†
f bn + b†pbf

)

+β
1√
2�

(
b†nbf + b

†
f bp

))
. (59)

If we now define the phonon creation operator as done in (33),
transform the operator Ã† and Ã to the boson basis, and request
the condition

�FR |0pn-FRQRPA〉 = 0, (60)

we obtain

�FR |0pn-FRQRPA〉 ≈ D−1/2(D−1 − 1)yb
†
f |0pn-FRQRPA〉

+ D−3/2 y

4x�
(x(α2 + β2) − 2yαβ)b†f |0pn-FRQRPA〉

+ D−3/2 y2

2x
b
†
f

3 |0pn-FRQRPA〉

0.0 0.3 0.6 0.9 1.2 1.5

0.7

0.8

0.9

1.0

D
(Y

)

4 κ /G

FIG. 5. Parameter D as a function of κ . The results displayed
correspond to Nn = 14, Np = 6, � = 10, and χ = 0.0 MeV. Dashed
lines correspond to the pn-RQRPA approximation, whereas the
pn-FRQRPA results are shown in dotted lines.
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FIG. 6. The same as Fig. 5, for χ = 0.025 MeV.

+ D−3/2 y

2x

1√
2�

(2xα − 3yβ)b†nb
†
f |0pn-FRQRPA〉

+ D−3/2 y

2x

1√
2�

(2xβ − 3yα)b†pb
†
f |0pn-FRQRPA〉

= 0. (61)

To fulfill this condition, (i) D should be equal to unity,
regardless of the values of α and β, or (ii) y = 0.

Clearly, the boson picture of the pn-FRQRPA fails
the consistency test of the method, because the solution
(i), for which D = 1, means that one is working with the
standard QRPA, and the solution (ii) implies zero-ground-state
correlations.

In the next section we explore, numerically, the consistency
of the pn-FRQRPA.

III. RESULTS AND DISCUSSION

In this section we present and discuss the results of the
calculations we have performed by applying the formalism of
the previous sections. The model space consists of a single
shell with � = 10, both for protons and neutrons, with Nn =
14 and Np = 6, neutrons and protons, respectively. For the
coupling constant χ we have taken the values χ = 0.0 and
χ = 0.025 MeV. The coupling constant κ was varied between

0.0 and 1.5 G/4. Figures 1 and 2 show the dependence of the
eigenvalue ω on 4 κ/G, for χ = 0.0 and χ = 0.025 MeV,
respectively, for the pn-QRPA, the pn-RRPA and the pn-
FRQRPA. As shown in these figures, the value of κ

pn-FRQRPA
ω=0

differs slightly with respect to the value κ
pn-QRPA
ω=0 , for both

values of χ . Because the solution of the pn-FRQRPA was
searched for consistently, the results of Figs. 1 and 2 indicate
the absence of nontrivial values of Eqs. (51) and (52). Figures 3
and 4 show the values of the backward-going amplitude Y ,
also as a function of 4 κ/G, and for the same two values of
χ of Figs. 1 and 2. Again for this quantity the difference
between the results of the pn-QRPA and the pn-FRQRPA is
very small. Finally, Figs. 5 and 6 show the value of D for the
pn-RQRPA and for pn-FRQRPA. These figures show that the
pn-FRQRPA equations cannot be computed passed the value
where ω vanishes. Again, this is a consequence of Eqs. (51)
and (52), which do not yield nontrivial values of f1 and f2 [see
Eq. (39)].

IV. CONCLUSIONS

In this work, we have discussed the validity of the
pn-FRQRPA of Refs. [17,18] for the case of a schematic
Hamiltonian in a simple but nontrivial limit. The comparison
of the results obtained by using the standard pn-QRPA and the
pn-FRQRPA shows that:

(a) In spite of the complications that are inherent to the
pn-FRQRPA formalism, its results are almost indistin-
guishable from the pn-QRPA ones in the region of
collapse.

(b) The pn-FRQRPA cannot surpass the collapse point, as the
pn-RQRPA does, if one imposes consistency between the
approximations and the structure of the vacuum.

This has been shown both numerically and analytically.
The results obtained by applying a boson expansion method
support the present claim about the failure of the pn-FRQRPA
approximation.
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