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One nucleon transfer operator and nuclear supersymmetry
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The appropriate use of the interacting boson-fermion model one nucleon transfer operator in connection
with nuclear supersymmetries is discussed. We emphasize that care must be taken in using the same coupling
order, either /-s or s-/, in the odd particle creation operator appearing in the one nucleon transfer operator
and in the wave function of the odd-A nucleus. As an example, we have recalculated consistently the one
nucleon transfer strengths for the Pt — 3Pt one neutron pickup reaction which is the best known example of
dynamical nuclear supersymmetry. In addition, we present for the same reaction the results of several calculations
considering different truncations in the boson-fermion expansion of the fermion creation operator.
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I. INTRODUCTION

The occurrence of supersymmetry in nuclei (n-SUSY)
[1-3] has been a matter of interest during the last 20 years
[4-6]. During this time the theoretical and experimental effort
for identifying some nuclei as examples of the realization of
n-SUSY was mainly concentrated in the comparison of the
predicted and observed level schemes. Recently, however, new
experimental facilities have allowed detailed measurements of
nuclear properties in the Pt region [7-10], particularly one
nucleon transfer intensities. These experimental data have
allowed more stringent testing of the idea of n-SUSY and
have provided strong evidence of its existence in nature.
Consequently, the interest in the exploration of n-SUSY has
been renewed.

There are two kinds of n-SUSY schemes depending on
whether the proton-neutron degree of freedom is explicitly
considered or not. In the simpler second case, two neighboring
even-even and odd-even nuclei are described simultaneously
with the same Hamiltonian [1,11]. In the richer, and more
interesting, first case a quadruplet of neighboring nuclei,
even-even, odd-even, even-odd, and odd-odd, are described
with the same Hamiltonian. The corresponding n-SUSY is
called extended n-SUSY [3]. The possibility of describing so
many experimental data with a reduced number of parameters
has encouraged nuclear physicists to look for examples of
nuclei that approximate the n-SUSY scheme. In addition,
since dynamical n-SUSY's are exactly solvable, the help given
in the understanding of nuclear structure is invaluable. For
this reason, there is continuous feedback between theory and
experiment. Incidentally, the dynamical n-SUSY description
can also be used as a starting point for getting better fits to
experimental data in perturbed calculations [12].

As mentioned above, there is presently strong evidence of
the realization of n-SUSY in the Pt-Au nuclei. In this region the
fermion space can be truncated to the 3pi /2, 3p3/2, and 2 f5,»
orbitals for the neutrons and to the 2d3, orbital for the protons.
Consequently, the appropriate extended dynamical n-SUSY is
U,(6/12) Q U,(6/4). In it one considers the coupling of a
neutron, which can occupy j, = 1/2,3/2, and 5/2 orbits, and
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a jr = 3/2protonto an O(6) core. In this paper we concentrate
on the evaluation of one neutron transfer strengths within
n-SUSY and the interacting boson-fermion approximation
(IBFA) model [11] since they give valuable information about
the wave functions of the states involved. In Sec. Il we address
the importance of being consistent in the coupling order
adopted, both in the operators and in the wave functions, for the
orbital and spin angular momenta of the odd particle. The use
of different coupling orders in operators and wave functions
gives rise to relative phases that make the calculation incorrect.
We illustrate this point with a simple example and present the
correct results for the spectroscopic strengths for the '*°Pt —
195Pt one neutron pickup reaction. In Sec. III we present the
evaluation of one nucleon transfer spectroscopic strengths for
the same reaction using three different truncations of the
boson-fermion image of the one nucleon transfer operator
(the associated fermionic shell-model operator). We consider
first the aj. operator. The second operator used is the one
usually proposed in IBFA that includes the next term in the
boson-fermion expansion. Finally, the third one includes one
additional term in the expansion, as proposed recently [13].
The calculations performed with this last operator are the
first actual application of the formalism presented in Ref.
[13]. Comparison of these results with experimental data
shows the importance of including higher order terms in the
boson-fermion image of the one nucleon transfer operator to
improve the agreement with the data. Finally, Sec. IV presents
the conclusions of this work.

II. CONSISTENT COUPLING ORDER IN OPERATORS
AND STATES

In this section we want to draw attention to the care that
must be taken to avoid inconsistencies in the coupling order
of angular momenta in general. In particular, we are going to
focus on the case of the evaluation of spectroscopic strengths
when using an n-SUSY scheme.

To obtain the n-SUSY wave functions, one has to specify
from the beginning the coupling order of orbital / and spin s
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angular momenta in the fermion creation operator. The choice
of this order is irrelevant as long as one keeps it consistent
throughout the calculation. In the calculations presented in
[9,10] the wave functions were obtained from n-SUSY while
the transfer operator was taken from the IBFA. For this reason,
one should make sure that the aj chosen have been obtained
using the same coupling criteria as in the n-SUSY wave
functions. This consistency is difficult to know just by looking
at the expressions of wave functions and operators since the
only label commonly used is the total angular momentum ;.
No track is usually conserved on the /-s or s-/ intermediate
coupling.

Let us illustrate our point by discussing the use of
the semimicroscopically derived IBFA one nucleon transfer
operator [14,15] in connection with the n-SUSY wave
functions. The IBFA image of the shell-model one fermion

creation operator c’L is in general an infinite expansion in terms

of the boson operators st, d" and an “ideal” fermion operator

a; acting in the boson-fermion space. A truncation of this

expansion T; was proposed in Ref. [14] using the generalized
seniority scheme and considering terms including up to one
d-boson which change generalized seniority v in one unit.
Under these conditions, the IBFA image of the one fermion
creation operator for transfer reactions conserving the boson
number is obtained [14,15] within a scheme called IBFA-2[11]
in which the neutron-proton degree of freedom is explicitly
taken into account (the simpler version of the IBFA model
which does not include explicitly the neutron-proton degree of
freedom is known as IBFA-1) as

t\(BFA-2) _ | & 10 ‘
(), = {u,a,» _; @j+ N "

o Qiiujvy + Uju]’)ST(gaj/)(j)} W
p

Ng

where p stands for neutron or proton (depending on the nature
of the transferred particle), the u; are related to the occupation
probabilities, N, is the total number of p bosons, Q ;; are the
matrix elements of the quadrupole operator between states j’,

Jjand Ng = (32, B3;)* with

Bjj = Qjjujvy +vjuj).

Usually the odd-nucleon creation operator a; has only
one label j, with the corresponding / and s hidden in some
way. The coupling scheme is unimportant when the explicit
expression for Q ; is not stated. However, when the fermion
quadrupole operator ¢'® is written in terms of the actual shell-
model one fermion creation and annihilation operators cT and
cjas

1

(2)_ZQ11 Az <2>_Z<l,2]

J’

y®

1 J>( )2

(2)
and Q; = (I'3j/||Y®||13 /), then, I- scouphng is adopted for

c} and C; ; and, consequently, for the a! in the IBFA transfer

operator. One could choose alternatively the s-/ coupling just
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by taking Q;; = (31'j'[|Y®||31j). The difference between
the two elections of Q;; is a phase factor (—1)/~/" which
is +1 when one considers just a single j case but introduces
relative phases if there are several open orbits as in the case of
the U, (6/12) ® U, (6/4) n-SUSY.

On the other hand, when one expresses the n-SUSY wave
functions in the coupled notation for U,(6/12) Q) U,(6/4)
one has to select at the beginning /-5 or §-/ coupling in the
a operator to define the generators of the different algebras
1nv01ved [16], where [ and § indicate pseudo-orbital and
pseudospin angular momenta, respectively. In the coupled
notation, the different components of the wave functions are
labeled, in addition to the boson labels, by the odd fermion
label j that in fact includes the coupling order. In Ref.
[16], I-5 coupling was selected and [-s coupling is implied
automatically.

To illustrate our point, we refer to the calculation shown in
the appendix of Ref. [9]. The operator chosen in Ref. [9] to
analytically calculate the transfer matrix element T7; (07 —
1/25) between 196pt and %3Pt is given in Eq. (4) of that paper,
apart from a global factor, as

Z 10N,
(2j + N2 “i

« (7] r® Halﬁ;“.ivw + vj“./”)sf(éia},)(”. 3)

(IBFA) _
(r})

This operator is obtained from Eq. (1) when the hole nature
of the odd neutron and the projection from IBFA-2 to IBFA-1
(through a multiplying factor N,/N in the second term of
the right-hand side) are taken into account and using Q; =
(3 l/]/||Y(2)|| 1j). Consequently, the “hidden” coupling is s-I,

T al
1 = 1 .
¢ a; =y 2 daj = Gy

The 1/2; state reads (Table XV in Ref. [16])

1- 3 :
’52>: @[I[NJ<N><1>2> x i)
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T
b
before calculating matrix elements of the transfer operator (3)
between states in the even-even nucleus and this n-SUSY state
(4) in the odd-even nucleus we have to change the coupling
order either in the operator or in the state. For the change in
the transfer operator (3) it is enough to include in the second
term of the right-hand side of Eq. (3) a phase (—1)/"~/ which
makes the operator suitable to be used with the wave functions
obtained in Ref. [16]. To perform a consistent calculation of
T;i(0] — 1/25) the quantity to be evaluated according to
Eq. (A3) in Ref. [9] is

B

where the a; are a as stated in Ref. [16]. Then we see that

1910
(SIE

LA
2 6
If we use the occupation probabilities provided by the n-SUSY
(7] @, =0.0,03, =12, =06). fy =—/2p31 and
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TABLE I. Summary of experimental results [9] for ' Pt from transfer experiments compared to the results of our theoretical calculation.

Expt. Theory
Energy (keV) JT G (1072) Energy (keV) JT Gj; (1072 G}’j (1072)
0.0 1/2~ 78.12(22) 0.0 1/2~ 69.72 95.26
99.5(6) 3/27 88.72(28) 162.0 3/27 133.01 109.33
129.5(6) 5/2° 209.2(6) 179.0 5/2~ 226.97 186.58
199.2(6) 3/2° 12.76(12) 244.2 3/27 0.00 0.00
212.4(6) 3/2° 20.60(12) 253.0 3/27 34.25 53.63
223.5(7) 1/2~ 14.6(8) 234.0 1/2~ 0.00 0.00
238.7(6) 5/2° 34.98(24) 270.0 5/27 58.56 91.55
259.4(6) 13/2* 356(25)
389.5(7) 5/2° 1.44(6) 317.2 5/2~ 0.00 0.00
419.5(7) 3/27 0.76(4) 475.8 3/27 0.00 4.98
432.7(6) 9/2+ 44.8(4)
450.0(7) 7/2~ 1.52(16) 341.0 7/2°
455.6(7) 5/27 1.50(12) 492.8 5/27 0.00 8.47
507.9(6) 7/2~ 51.12(24) 595.0 7/2
524.6(6) 3/2° 0.76(4) 566.8 3/2° 0.00 2.66
543.9(6) 5/27 2.76(6) 583.8 5/27 0.00 4.54
562.6(7) 9/2~ 31.4(7) 625.6 9/2~
590.896(5)° 3/2° 558.0 3/2° 0.00 0.00
612.0(6) 7/2~ 51.36(24) 686.0 /2~
628.8(7) 1/2~ 0.60(4) 547.8 1/2~ 0.00 0.00
632.1(5)° 1/27,3/2~ 580.4 3/2° 0.00 0.00
664.2(6) 5/27 10.92(12) 597.4 5/27 0.00 0.00
667.1(5)° 9/27) 716.6 9/2~
678.4(8) 5/2° 0.79(6) 631.0 5/2° 0.00 0.00
695.3(6) 7/2~ 10.64(16) 654.8 /2~
739.5(6) 1/2~ 11.04(6) 668.6 1/2~ 34.11 12.72
766.7(6) 7/2° 14.80(16) 699.6 7/2
794.5(6) 13/2* 130.9(11)
793.0(10)° 3/2° 850.4 1/2~ 0.00 0.00
814.9(6) 9/2~ 119.3(14) 730.2 9/2~
821.9(12) 5/2* 0.96(6)
873.8(6) 7/27 14.21(16) 968.6 7/27
895.0(9) 9/2~ 6.10(40) 786.2 9/2~
916.0(6) 7/2~ 24.16(16) 1013.4 7/2°
927.9(6) 3/2° 7.92(8) 921.6 3/2° 5.94 1.93
930.71°¢ 9/2~ 1044.0 9/2~
970.6(6) 7/2~ 29.76(16) 1059.6 /2
1010.4(7) 5/2° 5.34(12) 938.6 5/2~ 10.14 3.33
1047.1(7) 40.80(24) 1104.4 /2~
1068.8(7) 9/2~ 20.4(8) 1135.0 9/2~
1079.7(7) 5/2° 6.18(12) 1015.8 5/2~ 0.00 0.00
1095.5(7) 3/2° 34.44(12) 976.4 3/2° 0.00 0.00
1111.2(7) 7/2 2.72(16) 1073.2 7/2~
1132.3(7) 1/2~ 3.30(4) 966.2 1/2~ 0.00 0.00
1150.0(8) 9/2* 1.2(6)
1155.7(8) 5/27 8.58(24) 1049.4 5/27 0.00 0.00
1160.38¢ 1/27,3/2~ 998.8 3/2° 0.00 0.00
1175.5(8) 7/2~ 9.28(16) 1118.0 7/2
1271.2(9) 3/2° 3.40(4) 1235.4 3/27 0.00 0.60
1288.3(9) 1/2~ 2.56(8) 1350.4 1/2~ 7.68 0.00
1288.3(9) 5/2° 8.22(30) 1252.4 5/27 0.00 1.06
1314.1(10) 5/27 5.76(12) 1360.6 5/27 0.00 0.15
1321.0(10) 3/2° 0.64(4) 1343.6 3/2° 0.00 0.07
1328.1(10) 13/2* 33.7(10)
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TABLE 1. (Continued.)

Expt. Theory
Energy (keV) Jr Gyj (1072) Energy (keV) JT G}‘j (1072) G}’j (107%)
1334.7(4)¢ 1/27,3/2~ 1417.2 3/2° 0.00 0.00
1342.4(13) 5/27,7/2~ 0.96(8) 1434.2 5/2~ 0.00 0.00
1348.2(11) 5/2% 1.14(6)
1371.9(12) 3/2° 1.48(4) 1425.8 3/2° 0.00 0.00
1380.3(12) 13/2* 57.1(11)
1405.0(13) 13/2% 50.7(10)
1426.6(14) 7/2~ 1.52(8) 1354.6 7/2~
1437.7(14) 1/2~ 1.28(4) 1415.6 1/2~ 0.00 0.00
1445.9(14) 3/2° 1.72(4) 1499 4 3/2° 0.00 0.00
1455.9(14) 7/2~ 0.56(8)
1464.7(15) 5/2~ 1.86(12) 1498.8 5/2~ 0.00 0.00
1473.2(15) 3/2° 0.48(4)

*The strength G; is calculated using as transfer operator only the a; term.
The strength G, ; is calculated using the transfer operator given in Eq. (3) with the inclusion of a phase (=1)/~7 in the second
term of the right-hand side in order to have the same coupling order in the operator and in the wave functions.

“Data from [18] because they were not resolved in [9].

according to (A3) of [9] T, (01+ — %_) = 0 and not the value
calculated in [9]. This value is obtained when, incorrectly, the
Bj; are calculated from the Q;/; associated to s-/ coupling.
It is worth noting that in Ref. [9] the occupation probabilities
are obtained from a least square fit to the experimental data
and are not those provided by n-SUSY. Nevertheless the
above relation for the n’s B is approximately satisfied and
the value obtained for T'y; (0;r — 1/25) is of the order of 1074
(and the corresponding spectroscopic strength is of the order
of 1079).

In Table I we present the results for the spectroscopic
strengths obtained in a consistent way using /-s coupling along
with the experimental data of Ref. [9] for the %Pt — %Pt
reaction. The calculations are performed using the wave
functions provided by the n-SUSY for '°°Pt and '*>Pt as in
Refs. [9,10] and the occupation probabilities provided by
n-SUSY as mentioned above. The SUSY labels assigned to
each state are the same as in Ref. [9]. In Table I we include
two calculations for the spectroscopic strength G;, the first one
(in the sixth column) was obtained using as transfer operator
only the a; term. It can be observed that already this simple
operator gives the main characteristics of the strengths. The
second calculation (in the seventh column) was obtained using
the complete operator of Eq. (3) but with the mentioned phase
in order to have the same coupling in the operator and in
the state. In both cases, the theoretical spectroscopic strengths
have been normalized for each j to the experimental sum
rules.

All known states up to around 1500 keV are included in
the table. The differences observed between the results shown
in the last column in Table I and the ones of Ref. [10] are
due to inconsistencies in the code IBFFMTR [19] between the
coupling order used in the transfer operator and the one used in
the wave functions. Changes due to the different election of the
occupation probabilities are tiny. The biggest changes occur
for the 3/27 states, especially for the third one at 253 keV;

but one also notices a sizable reduction of fragmentation
compared to Ref. [10].

III. Y*Pt — Pt DESCRIBED WITH n-SUSY

In this section we keep our interest in studying one
nucleon transfer spectroscopic strengths by using n-SUSY
wave functions and the IBFA transfer operator. Our aim is to
look into the differences of the one nucleon transfer strengths
induced by different truncations of the transfer operator. We

start with the simplest one (a;) and then add higher order terms
(only the ones that change generalized seniority in one unit)
in the boson-fermion expansion.

Again, we consider the reaction Pt — !*3Pt. To calculate
spectroscopic strengths for this one neutron transfer reaction,
we described the nuclei involved with the usual n-SUSY
Hamiltonian [3] as

H = AG[UP(6)] + BC,[ 02 (6)] + CC,[ 08 (5)]

T T

+ DC,[0%(3)] + EC,[Spin(3)], (5)

T

where C,[G] is the quadratic Casimir operator of the group
G belonging to the group chain U, (6/12) @ U,(6/4) cho-
sen to describe these nuclei. The parameters appearing in
Eq. (5) have been taken from [9] for both nuclei. The choice
of the parameters in the Hamiltonian is not important for the
calculation of spectroscopic strengths since the eigenstates
are given by the quantum numbers labeling the irreducible
representations (irreps) of the chain of groups chosen, and they
are the same for any choice of parameters. For this reason, any
set of parameters given in the literature [7,9] for the description
of these nuclei will be good for our calculations. Although the
energies will be different for each set, the structure of the wave
functions is given by the n-SUSY scheme.

Once the states are fixed with the choice of the Hamiltonian,
one has to choose the transfer operator. This operator, for boson
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j=12
2 T - FIG. 1. Spectroscopic strengths for the reaction
- 10'1;: 1 : 196pt — 195pt for j = 1/2 transfers. The experimental data
£ 10'3 L = have been taken from Ref. [9]. The different panels show
S E T 1 calculations truncating the boson-fermion expansion of the
% 107'F 2 = fermion creation operator at different orders. The labels
o 10.3 : : T, T>, and T; indicate the number of terms retained in the
a transfer operator (6) as explained in the text. States with
8 10.1%': T3 : spectroscopic strengths smaller that 10~* are included in
8 3r | = the bottom line of 753 and Exp. panels as open circles so
-E 10 E o) I o oo 73 as to present the complete experimental and calculated
8_ <F EXp.E spectroscopy. Experimental states at 632, 1160, and
[77) 10 : ’ : 1334 keV observed in Ref. [18] have the uncertain
103F IV} I«vw w | = assignment 1/27,3/27; they have been included in both
0.0 0!5 110 1!5 Figs. 1 and 2 as open triangles (V).
E (MeV)
number conserving reactions, is an expansion of the type [14] includes only the first term in the series (6). We present here
, L calculations with three different truncations of the operator
c;=A jaj +y Z B_,_j/sT(da;/)(J ) (6). The first one keeps just the first term. The second includes
I the first and the second terms. Finally, the third calculation
o~ ) is performed with all the terms given explicitly in (6). B
+3 Z Crjj [(djd)(L)a;’] gt (6) corIr)lparing the results of different tgruncatioﬁs, wg will be ablz
Ly to see the relative importance of the various terms and the
The coefficients A; and B;;» were determined in Ref. [14]. relevance of the choice of the transfer operator in describing
The determination of the expansion coefficients C7;; can be  nuclei in the very restricted dynamical n-SUSY scheme.
done in principle by an extension of the method presented ~ Parameters y and § are included in (6) in order to weigh
in [14,15]. This calculation is cumbersome since fermion states the relative importance of the different terms. We have fitted
with generalized seniority ¥ = 3 are involved and the mapping them to get the best agreement with the experimental data.
from the fermion space to the IBFA space is not trivial. The results of the three different calculations for the
Nevertheless, this calculation has been presented recently spectroscopic strengths, along with the experimental data,
[12,13] and the values of C;;; can be deduced from the ¢fj, are presented in Figs. 1-3 (for j =1/2,3/2, and 5/2,
of Ref. [13]. In [12,13] it was shown that the addition of the respectively). The logarithmic scales used in the figures are
> 1y CLj jr[(d'rd)(L)a;,](j ) terms gives rise to sizable changesin ~ needed because the spectroscopic strengths vary over orders
the spectroscopic strengths in the three limits studied. For this of magnitude. In each figure, 71, 75, and T3 indicate that
reason, it is important to use the extended operator, especially the transfer operator used includes the first term of the
in a reaction used to test the occurrence of n-SUSY. expansion, the first two terms, and the first three terms,
Up to now, most calculations in the n-SUSY scheme have  respectively. In the calculation including the first two terms
been performed taking the simplest transfer operator, which in the transfer operator, the parameter y is taken as 1. In the
j=32
0| T 3
S sF E
g0k =
L 10°F | E
g' - T. FIG. 2. Same as Fig. 1, but for j = 3/2 transfers.
g 10'F | 3 3
E 5
% 10°F 14 I,l @ 8 o ™
2 f | f | L | Exp
T i
10°F S I PR I P I Y
0.0 1.0 1.5
E (MeV)
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j=5/2
JF T, 4
c 10'F 14
- .3 3 E
210 :
o 3 T, 1
& 107E 2 A
2107 3
o 4 T - FIG. 3. Same as Fig. 1, but for j = 5/2 transfers.
o 1 E 3 5
8 10 F E
E 3
swfp ||, | 4 oo
-SY S R A : \/ Exp.3
& 10'F O ) 1 E
el g
— T T T 1 T T
0.0 0 1.5

E (MeV)

calculation including the three terms in the transfer operator,
the parameters y and § have been fitted using a x fit. The
values obtained are y = 0.1157 and § = 2.1454, showing that
in order to describe the experimental data the relative weight
of the third term is important.

In Figs. 1-3, we can see that the simplest operator already
gives the main observed features but is unable to reproduce the
fragmentation observed in the experimental data. The selection
rules associated to this operator are very tight. The addition
of higher order terms in the expansion (6) improves the
description of the spectroscopic strengths. The best results are
obtained when the three terms are included. The fragmentation
observed experimentally is well reproduced for the three
possible j transferred. Still, a detailed observation of Table I
suggests that the description could be improved if some
changes were made in the assignation of the quantum numbers.
Unfortunately, for these states there is not enough information
on electromagnetic properties to support these changes. This
information would be highly desirable.

The calculations shown in this section have been per-
formed using the IBFA-2 codes ODDPAR, ODDSPEC [20], and
ODDSPEC+ [21]. They could have been performed with IBFA-1
codes as well, since the bosonic part of the wave functions
involved is fully symmetric. In that case a projected transfer
operator would have been used, as in Ref. [9].

IV. CONCLUSIONS

This paper has shown the importance of keeping the
coupling orders of the orbital and spin angular momenta

consistent in all stages of a calculation. In our case, we
focused on the calculation of one nucleon transfer reactions
in the context of the extended n-SUSY. A careful check of
the consistent coupling order of the “hidden” / and s angular
momenta in wave functions and operators should be done at
all stages of the calculation. If not, phases will appear that will
make results incorrect and they will not even fulfill selection
rules.

The comparison of the results obtained in a dynamical
n-SUSY scheme for the spectroscopic strengths in the '°°Pt —
195Pt reaction, using the boson-fermion expansion of the one
nucleon transfer operator and truncating at different orders,
shows the importance of going to higher order terms to describe
experimental data, mainly in a scheme as restrictive as the
dynamical n-SUSY.

We have performed the first comparison with experimental
data of the results obtained using an IBFA boson number
conserving image of the one nucleon transfer operator that
includes the third term in the boson-fermion expansion and
have shown that it produces good results for describing the
experimental data of the %Pt — Pt one neutron pickup
reaction.
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