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Deformation of C isotopes
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Systematic analysis of the deformations of proton and neutron densities in even-even C isotopes was performed
based on a method of antisymmetrized molecular dynamics. E2 transition strengths were discussed in relation
to the deformations. We analyzed the B(E2; 2+

1 → 0+
1 ) in 16C, which has been found to be abnormally small in

the recent measurement. The results suggest a difference between proton and neutron shapes in the neutron-rich
C isotopes. It was found that the stable proton structure in C isotopes plays an important role in the enhancement
of the neutron skin structure as well as in the systematics of B(E2) in the neutron-rich C.
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I. INTRODUCTION

In light unstable nuclei, exotic phenomena such as neutron
halo and neutron skin structures were discovered owing to
advancements in experimental technique. These phenomena
contradict traditional understanding of stable nuclei, where the
proton and neutron densities are consistent with each other in a
nucleus. These phenomena imply that the exotic features may
appear in unstable nuclei due to the difference between proton
and neutron densities. The difference in the deformations of
proton and neutron densities is also interesting. For example,
opposite deformations in proton and neutron shapes in proton-
rich C isotopes have been theoretically suggested [1].

Recently, the lifetime of the 2+
1 state of 16C has been

measured [2]. It indicates the abnormally small E2 transition
strength as B(E2; 2+

1 → 0+
1 ) = 0.63 e2fm4 in 16C, compared

with those for other C isotopes (10C, 12C, and 14C). As
well known, B(E2) is related to the intrinsic deformation
of the nucleus. Considering the excitation energy Ex(2+

1 ) =
1.766 MeV of 16C, it is expected that this nucleus is not
spherical but has a deformed structure. In the case of normal
stable nuclei, B(E2) values tend to be large in the deformed
nuclei. This means that the hindrance of the B(E2; 2+

1 → 0+
1 )

in 16C seems to contradict the large deformation expected
from the excitation energy (Ex(2+

1 )). The neutron and proton
transition matrix elements Mn and Mp have been derived
from the 208Pb+16C inelastic scattering [3], which implies that
the neutron excitation is dominant in the 2+

1 state of 16C. In
the context of collective rotation, these experimental results
suggest a possible difference between proton and neutron
shapes in 16C. Similar behavior of the lowest 2+ states, which
have a low excitation energy and small B(E2) values, is also
seen in certain neutron-rich nuclei in the heavier mass number
region. Such unusual properties of the first 2+ states in 68Ni
and Te isotopes (A ∼ 132) have been theoretically described
by the neutron dominance in the 2+ excitation [4,5].

In theoretical work on the proton-rich C isotopes [1], it
was suggested that the different shapes of proton and neutron
densities may cause the suppression of B(E2). In this work
[1], the difference between the proton and neutron shapes
was also predicted for the neutron-rich C isotopes as well
as for the proton-rich side. It is natural to consider that the
systematic analysis of the proton and neutron deformations in

connection to the B(E2) is key to understanding the properties
of the neutron-rich C isotopes. Moreover, it may lead to further
predictions of exotic phenomena in unstable nuclei.

In this paper, we study deformations of proton and neutron
densities in C isotopes based on theoretical calculations
with antisymmetrized molecular dynamics (AMD). The AMD
method is a useful approach for the structure study of stable
and unstable nuclei. The applicability of this method in the
systematic analysis of the light nuclei has been proven in many
works [6–10]. In particular, this method has an advantage in
the description of the deformation and clustering aspect in light
nuclei. For example, an oblate deformation with a 3α-cluster
structure in the ground state of 12C has been described [7,11].
Although shell model calculations are useful for investigating
the level structure of light nuclei, they are not suitable for direct
discussion of the deformations of proton and neutron densities
because electric moments are calculated with effective charges,
which still have an ambiguity in the region of unstable nuclei
in the framework. In order to extract a naive picture of the
proton and neutron shapes, we apply the simplest version of
AMD, based on a single AMD wave function. By using the
AMD method, we analyze the systematics of the deformations
and E2 transition strengths in neutron-rich C isotopes. The
hindrance of the E2 transition strength in 16C is discussed.
The theoretical predictions for the deformation and B(E2)
values in additional neutron-rich isotopes, 18C and 20C, are
also reported.

This paper is organized as follows. In Sec. II, the
formulation of AMD is briefly explained. We show the
energies, radii, and B(E2) values obtained by the simple
version of AMD and compare them with the experimental data
in Sec. IV. In Sec. V, the intrinsic deformations of proton and
neutron densities are analyzed in connection to observables
such as the E2 and radii. In Sec. VI, we show the results
of 16C obtained by an extended version of AMD. Finally, a
summary is given in Sec. VII.

II. FORMULATION

The detailed formulation of AMD for nuclear structure
studies is described in [6,8,11]. Here, we briefly explain the
formulation of the present calculations.
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The wave function of a system with mass number A is
written by a superposition of AMD wave functions �AMD. An
AMD wave function is given by a single Slater determinant of
Gaussian wave packets as

�AMD(Z) = 1√
A!

A{ϕ1, ϕ2, . . . , ϕA}, (1)

where the i-th single-particle wave function is written as

ϕi = φXi
χiτi, (2)

φXi
(rj ) ∝ exp

{
−ν

(
rj − Xi√

ν

)2
}

, (3)

χi =
(

1

2
+ ξi

)
χ↑ +

(
1

2
− ξi

)
χ↓. (4)

In the AMD wave function, the spatial part is represented
by complex variational parameters, X1i , X2i , X3i , which
indicate the center of the Gaussian wave packet. The
orientation of the intrinsic spin is expressed by a variational
complex parameter ξi , and the isospin function is fixed
to be up(proton) or down(neutron). Thus, an AMD wave
function is expressed by a set of variation parameters: Z ≡
{X1, X2, · · · , XA, ξ1, ξ2, · · · , ξA}.

In order to obtain a naive understanding of the systematics
of intrinsic deformations, we use the simplest version of the
AMD method, which was applied to Li, Be, and B isotopes
in Ref. [6]. Namely, we perform energy variation with respect
to a parity-eigen state, P ±�AMD ≡ �±

AMD, projected from an
AMD wave function. We consider the AMD wave function
obtained by the energy variation as the intrinsic state, and the
total-angular-momentum projection (P J

MK ) is done after the
variation to evaluate observables such as the energies, radii,
and transition strength. Thus the variation is done after the
parity projection, but the total-angular-momentum projection
is performed after the variation. This method is called VBP
(variation before projection) in the present paper. For further
investigation of the level scheme of 16C, we also perform the
VAP (variation after full projection) calculation with respect to
both the parity and total-angular-momentum projection in the
same way as done in Refs. [11,12]. In the VBP calculations,
we fix the orientation of the intrinsic spin ξi to be up or down.
In the VAP calculations, ξi’s are treated as free variational
parameters.

III. INTERACTIONS

The effective nuclear interactions adopted in the present
work consist of the central force, the spin-orbit force, and the
Coulomb force. We adopt the MV1 force [13] as the central
force. This central force contains a zero-range three-body
force as a density-dependent term in addition to the two-body
interaction. The Bartlett and Heisenberg terms are chosen
to be b = h = 0. We use the parameter set of case 3 of the
MV1 force with the Majorana parameter as m = 0.576, which
was adopted in Ref. [6]. Concerning the spin-orbit force,
the same form of the two-range Gaussian as of the G3RS
force [14] is adopted. The strengths of the spin-orbit force—

TABLE I. The adopted width parameters (ν) of the AMD
wave functions for C isotopes.

10C 12C 14C 16C 18C 20C

ν (fm−2) 0.185 0.190 0.180 0.175 0.170 0.165

(a) u1s ≡ uI = −uII = 900, and (b) 1500 MeV—are used.
In the VAP calculations, we also use the same interaction
parameters as those used in Ref. [11]: (c) case 1 of the
MV1 force with m = 0.62, and the spin-orbit force with uls =
3000 MeV.

IV. RESULTS OF VBP CALCULATIONS

The structure of positive parity states of even-even C
isotopes are studied using VBP calculations within the
framework of AMD. In this section, we present theoretical
results, such as the energies, radii, and E2 transitions, and
compare them with the experimental data. The optimum width
parameter ν in Eq. (3) is chosen to minimize the energy
of the system for each nucleus. The adopted ν parameters
are listed in Table I. After the variation, we perform the
total-angular-momentum projection P J

MK and diagonalize the
Hamiltonian and norm matrices, 〈P J

MK ′�
±
AMD|H |P J

MK ′′�
±
AMD〉

and 〈P J
MK ′�

±
AMD|P J

MK ′′�
±
AMD〉, with respect to the K-quantum

(K ′,K ′′). In each C isotope, we obtain the 0+
1 and 2+

1 states,
which can be regarded as belonging to the ground Kπ = 0+
band. In the cases of 10C, 16C, and 18C, the second 2+ state in
the Kπ = 2+ band arises because of the axial asymmetry.

The binding energies and the excitation energies of the low-
lying positive-parity states are shown in Fig. 1 and Table II,
respectively. The binding energies of C isotopes are reasonably
reproduced by the present calculations (Fig. 1). The agreement
of the binding energy will be improved by finely tuning the
interaction parameters such as Bartlett and Heisenberg terms,
though it should make no drastic change of properties other
than the binding energies. As mentioned above, the second
2+ state, which belongs to the sideband Kπ = 2+, is found in
addition to the 2+

1 state, in 10C, 16C, and 18C (Table II).
The excitation energies Ex of the 2+

1 states tend to
be underestimated by the calculations, especially in the
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FIG. 1. Binding energies of C isotopes. Solid (dotted) line
indicates the VBP calculations with m = 0.576 and uls =
1500 (900) MeV. The squares denote the experimental data.
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TABLE II. Excitation energies of 2+ states of C isotopes obtained by the VBP calculations.

10C 12C 14C 16C 18C 20C

Cal. (ls = 900 MeV) Ex(2+
1 ) (MeV) 1.80 1.45 1.69 0.40 0.61 0.57

Ex(2+
2 ) (MeV) 2.60 — — 1.53 0.83 —

Cal. (ls = 1500 MeV) Ex(2+
1 ) (MeV) 1.95 1.66 3.75 0.65 0.87 0.88

Ex(2+
2 ) (MeV) 3.75 — — 2.82 1.32 —

Exp. Ex(2+
1 ) (MeV) 3.354 4.439 7.012 1.766 1.59a 1.59a

Ex(2+
2 ) (MeV) 6.58 — — — — —

aThe data are from Ref. [15].

neutron-rich C isotopes. This is a general tendency of the
VBP calculations where the 0+

1 and 2+
1 states are obtained by

the total-angular-momentum projection from a single intrinsic
wave function. This tendency is considered to be because the
wave function obtained in the VBP may be optimized for the
2+

1 state rather than for the 0+
1 state; therefore, the energy

of the 0+
1 state may be relatively higher. The quantitative

reproduction of Ex(2+
1 ) is improved by VAP calculations. The

level structure of 16C is discussed again in Sec. VI based on
the VBP and VAP calculations.

Figure 2 shows the results for the root-mean-square radii
compared with the experimental ones derived from the
interaction cross sections. In the systematics of the matter radii
in the even-even C isotopes, there is a gap between 14C and
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FIG. 2. Root-mean-square radii of C isotopes. The matter radii
are displayed in the upper panel (a). The solid (dotted) line with
symbols “+(×)’ indicates the VBP calculations with m = 0.576 and
uls = 1500(900) MeV. The experimental data, which are derived from
the interaction cross sections [16], are shown by open squares. The
point-like proton and neutron radii calculated with m = 0.576 and
uls = 1500 MeV are shown in the lower panel (b).

16C. This behavior is reproduced by the present calculations
and can be described by the large deformation in 16C and the
spherical shape due to the shell closure in 14C. The details are
discussed in the next section.

The results for the E2 transition strength are listed in
Table III. In the calculations, it is found that B(E2; 2+

1 → 0+
1 )

drastically changes with the increase of neutron number in
C isotopes. The theoretical E2 transition strength in 16C is
very small, which is consistent with the recent measurement
of the abnormally small B(E2) in 16C [2]. The present results
predict that B(E2; 2+

1 → 0+
1 ) in 18C is also very small and of

the same order as that in 16C. It is interesting that the calculated
E2 transition strength in 20C is not as small as those in 16C
and 18C. The systematic change of the B(E2; 2+

1 → 0+
1 ) can be

understood by the deformations of proton and neutron densities
in the intrinsic states, as described in the next section.

V. DISCUSSION

In this section, we analyze the intrinsic deformations of
proton and neutron densities and discuss their effects on the
observables such as the E2 transitions and radii.

A. Intrinsic deformation

In Fig. 3, we display the deformation parameters (β, γ )
for the proton and neutron densities, which are defined by
the moments 〈x2〉, 〈y2〉, and 〈z2〉 of the intrinsic AMD wave
function as

〈x2〉1/2

(〈x2〉〈y2〉〈z2〉)1/6
≡ exp

[√
5

4π
β cos

(
γ + 2π

3

)]
, (5)

〈y2〉1/2

(〈x2〉〈y2〉〈z2〉)1/6
≡ exp

[√
5

4π
β cos

(
γ − 2π

3

)]
, (6)

〈z2〉1/2

(〈x2〉〈y2〉〈z2〉)1/6
≡ exp

[√
5

4π
β cos γ

]
. (7)

Here, the x, y, and z directions are chosen so as to satisfy
〈x2〉 � 〈y2〉 � 〈z2〉 and 〈xy〉 = 〈yz〉 = 〈zx〉 = 0. As can be
seen in Fig. 3, we find a drastic change of neutron deformation
in C isotopes with an increase in the neutron number. The
neutron deformations are prolate, oblate, and spherical in
10C, 12C, and 14C, respectively. In the neutron-rich region, it
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TABLE III. E2 transition strengths (e2fm4) in C isotopes calculated by the VBP. The experimental data for 16C are from
Ref. [2] and those for the other C isotopes are from Ref. [17].

10C 12C 14C 16C 18C 20C

Cal. (ls = 900 MeV) B(E2; 2+
1 → 0+

1 ) 5.7 7.2 6.9 1.9 2.1 5.3

B(E2; 2+
2 → 0+

1 ) 4.3 — — 4.7 3.8 —

Cal. (ls = 1500 MeV) B(E2; 2+
1 → 0+

1 ) 5.4 6.8 5.9 1.4 0.6 5.0

B(E2; 2+
2 → 0+

1 ) 3.4 — — 4.1 4.9 —

Exp. B(E2; 2+
1 → 0+

1 ) 12.4 ± 0.2 8.2 ± 0.1 3.74 ± 0.5 0.63 — —

becomes prolate again in 16C, and they are triaxial and oblate
in 18C and 20C, respectively. In contrast to the variation of
the neutron deformations, the proton deformations are rather
stable. The deformation parameters for the proton densities lie
in the oblate region γ ∼ π/3. This behavior is the same as the
results found in Ref. [1].

By analyzing the component of the K-projected states
(P J

MK�±
AMD) in the 2+

1 , it is found that the 2+
1 state can be

approximately written by a single K = 0 state when we choose
a proper axis. Then, we can define the (approximate) principal
axis Z in the body-fixed frame and form the ground K = 0
band with the 0+

1 and 2+
1 states in each C isotope. In the systems

12C, 14C, and 20C, with the oblate or spherical neutron shapes,
the principal axis Z is the same as the symmetric axis x which
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FIG. 3. Deformation parameters β, γ of the intrinsic states
calculated with m = 0.576 and uls = 900 MeV (a, b) and 1500 MeV
(c, d). The mass numbers A are written by the corresponding points.
The left and right panels are (β, γ ) for proton and neutron densities,
respectively.

has the smallest moment 〈x2〉 as shown in Fig. 4(b). In other
words, the dominant component of the excited state 2+

1 is the
JZ=x = K = 0 state with respect to the symmetric axis x. It is
consistent with a naive expectation for the collective rotation.
It is notable that, in 10C, 16C, and 18C, the deformations
are different between proton and neutron densities. In these
nuclei, the symmetric axis for the proton shape differs from
that for neutron density. Namely, the symmetric axis of the
oblate proton density orients toward the x direction, while
that of the prolate neutron is in the z direction. A schematic
figure for the proton and neutron shapes in 16C is illustrated
in Fig. 4(a). Such a configuration of the proton and neutron
shapes is energetically favored because it has the maximum
overlap between the proton and neutron densities. Because of
the coexistence of the different proton and neutron shapes,
the second 2+ state appears, due to the triaxiality of the total
system. With the analysis of the component of the P J

MK�±
AMD

states in the 2+
1 and 2+

2 states, we found that the 0+
1 and 2+

1
states form the Kπ = 0+

1 band while the 2+
2 state is classified

as the band-head state of the sideband Kπ = 2+ when we
regard the longitudinal z axis as the principal axis Z as shown
in Fig. 4(a). It is important that the principal axis Z is not the
same as the symmetric axis x for the proton deformation but
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z
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FIG. 4. Schematic figures for intrinsic deformations of the proton
and neutron densities. (a) The oblate proton and prolate neutron
shapes in 16C, and (b) the oblate proton and oblate neutron densities
in 20C. The x, y, and z axes are chosen to be 〈x2〉 � 〈y2〉 ≤ 〈z2〉. The
principal axis Z for the ground band JZ = Kπ = 0 is also displayed.
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is perpendicular to the x axis in these nuclei. The existence
of the sideband (Kπ = 2+) in 16C and 18C has not been
experimentally confirmed yet. Concerning 10C, the triaxiality
of the mirror nucleus 10Be is discussed in Ref. [18], and the
known 2+

2 state in 10Be is actually assigned to be the band-head
state of the sideband Kπ = 2+ [12,18].

We compare the matter deformation of the present results
with a HF+BCS calculation with Skyrme force by Tajima
et al. [19]. In the HF+BCS calculation, the C isotopes have
spherical shapes in the A � 14 region, in contradiction to the
usual finding that 12C is oblately deformed. It is natural because
the mean-field calculation is not necessarily valid for very
light nuclei. In the neutron-rich C, the calculated quadrupole
deformation parameter is positive in 16C and 18C, and negative
in 20C according to the HF+BCS calculation. The general
behavior of the quadrupole deformation for the matter density
in neutron-rich C seems to be similar to that in the present
results, though the difference in shape between proton and
neutron hardly appears in the HF calculations.

B. E2 transition

The intrinsic deformation is closely related to the E2
transition strength. Since the present results indicate that the
proton radius does not drastically change with the increase
of the neutron number in C isotopes as shown in Fig. 2, the
B(E2) is dominantly determined by the deformations.

As mentioned above, the 0+
1 and 2+

1 states belong to the
ground Kπ = 0+ band, where the x axis is regarded as
the principal axis Z in 12C, 14C, and 20C, while the z axis
corresponds to the Z axis in 10C, 16C, and 18C. In order to link
the intrinsic deformations with the B(E2) values, we remind
the reader of the well known approximate relation between the
B(E2) values and the intrinsic quadrupole moment Q0:

B
(
E2; 2+

1 → 0+
1

) = 1

16π
e2Q2

0. (8)

Here, the intrinsic quadrupole moment Q0 of protons is defined
with respect to the principal axis Z as Q0 = 2〈Z2〉 − 〈X2〉 −
〈Y 2〉 and is related to the deformation parameter βp, γp for the
proton shape. In 12C, 14C, and 20C with Z ≈ x and γ ≈ π/3,
Q0 is approximated as

Q0 = 2〈x2〉 − 〈y2〉 − 〈z2〉 ≈ −
√

5

4π
Npeβpr2

e , (9)

where Np and re are the proton number and the root-mean-
square charge radius, respectively.

In 10C, 16C, and 18C with Z ≈ z, Q0 depends on the
deformation parameter γp, as

Q0 = 2〈z2〉 − 〈x2〉 − 〈y2〉 ≈
√

5

4π
Npeβp cos γpr2

e . (10)

The important point is that the effect of the proton deformation
on the Q0 decreases in these nuclei because of the factor
cos γp. Especially in 16C and 18C, the deformation parameter
γp ∼ π/3 makes the Q0 very small. This is the reason for
the unusually small B(E2; 2+

1 → 0+
1 ) in 16C and 18C shown

in Table III. In other words, the B(E2; 2+
1 → 0+

1 ) values in

16C and 18C are reduced because the principal axis Z for the
rotation of the total system deviates from the symmetric axis
x for the proton density. The origin of the deviation is the
difference in shape between proton and neutron densities. On
the other hand, it is interesting that the larger B(E2 : 2+

1 →
0+

1 ) is predicted in 20C because it has the oblate proton and
neutron shapes, and therefore the principal axis aligns to the
symmetric axis x as shown in Fig. 4(b).

The hindrance of the B(E2 : 2+
1 → 0+

1 ) in 16C can also be
described from the point of view of the collective rotation.
The 2+

1 state of 16C is roughly regarded as the 2+ state with
Jz = K = 0. The J = 2, Jz = 0 state is given by a linear
combination of a Jx = 2 state and a Jy = 2 state, which are
rotating around the x and y axes, respectively. The rotational
motion around the x axis causes no proton excitation and
therefore does not contribute to the E2 transition strength,
because x is the symmetric axis of proton density. As a result,
the Jx = 2 component reduces the B(E2 : 2+

1 → 0+
1 ) value. In

contrast to the small B(E2 : 2+
1 → 0+

1 ), the B(E2 : 2+
2 → 0+

1 )
in the sideband is predicted to be large because the 2+

2 state
is dominated by a Jz = 2 state, which contains the proton
excitations rather than the neutron excitations.

As mentioned above, the abnormally small B(E2 : 2+
1 →

0+
1 ) in 16C can be understood by the difference between oblate

proton and prolate neutron shapes. Even if the proton shape in
16C is spherical or slightly prolate, the small B(E2 : 2+

1 → 0+
1 )

can also be described. Therefore, we cannot conclude that the
small B(E2) is evidence of an oblate proton shape. However,
we would like to stress that a characteristic of the present
result is the stable proton structure in the series of C isotopes,
which leads to the appearance of the second 2+ state with
large B(E2) appears in the sideband. In order to determine
the intrinsic shapes of proton and neutron densities, we need
further experimental information such as the systematics of
B(E2) in other neutron-rich nuclei and some probes for the
sideband in 16C.

C. Radii

In Fig. 2, we present the calculated results of matter, proton,
and neutron radii of C isotopes while comparing them with the
experimental radii which are derived from the interaction cross
sections [16]. With the increase of neutron number, the proton
radius does not drastically change, while the neutron radius
increases rapidly in the neutron-rich A � 16 region. It is found
that the gap of the matter radii between 14C and 16C originates
in the neutron radii. The reason for the gap is described by the
change of the neutron shape as follows. The neutron density
is compact in 14C because it has a spherical shape due to the
neutron shell closure. On the other hand, in 16C, the neutron
radii is large because of the prolate deformation.

The calculated matter radii systematically reproduce the
experimental data. The large matter radii in the neutron-rich
region originate from the enhancement of the neutron radii. In
contrast to the variation of the neutron radii, the proton radius is
stable and is compact in general. As a result of the stable proton
structure, the neutron skin structure is enhanced in the neutron-
rich C isotopes. The present finding of the development of
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FIG. 5. Level scheme of the low-lying states of 16C. The
theoretical results obtained by the VAP and VBP calculations with the
interaction parameter set (b) as in case 3 of MV1 with m = 0.576,
uls = 1500 MeV and parameter set (c) as in case 1 of MV1 with
m = 0.62, uls = 3000 MeV are illustrated with the experimental data.

neutron skin in the C isotopes is consistent with those of the
mean-field calculations [19]. In the calculations by Thiamova
et al. [10] with AMD+GCM (generator coordinate method),
the radii of neutron-rich C are somehow underestimated. This
is considered to be because of the lack of the three-body term
in the effective force in their calculations.

VI. RESULTS OF VAP CALCULATION

So far, we discuss the structure of C isotopes based on
the VBP calculations. As mentioned above, the quantitative
reproduction of the excitation energy Ex(2+

1 ) in the VBP
calculations is not satisfactory in the neutron-rich C. Instead,
the VAP calculation [11,12] is more useful to describe the
detail of the level spacing. We perform energy variation after
the spin-parity projection for the 0+

1 , 2+
1 , and 2+

2 states of 16C
and obtain three independent AMD wave functions, each of
which is optimized for the corresponding spin-parity states.
We evaluate the observables by diagonalizing the Hamiltonian
and norm matrices with respect to the three wave functions, as
done in Refs. [11,12].

Figure 5 shows the level scheme of the low-lying states of
16C obtained by the VBP and VAP calculations with interaction
parameter set (b) as in MV1 (case 3) with m = 0.576, uls =
1500 MeV. We also show the VAP results obtained by the
other parameter set (c) as in MV1 (case 1) with m = 0.62,
uls = 3000 MeV, which were adopted in Ref. [11] to reproduce
well the level structure of 12C. The level spacing between the
0+

1 and 2+
1 states is well reproduced by the VAP calculations.

The excitation energies of the sideband Kπ = 2+ states rise
compared to those with VBP. Specifically, in the VAP with the
interaction parameter set (c), the 2+

2 state becomes relatively
high because of the strong spin-orbit force.

The results of the E2 transition strength in 16C are listed
in Table IV. Comparing the theoretical values with the
experimental data, the VAP calculations tend to overestimate
B(E2; 2+

1 → 0+
1 ). In the results of 16C, it should be noted that

the beta deformation βp for the proton density in the VAP(b)
is almost the same as that in the VBP(b); however, the

TABLE IV. The E2 transition strength in 16C. The theoretical
results are obtained by the VAP and VBP calculations with the
interaction parameter set (b) of m = 0.576, uls = 1500 MeV and
set (c) of m = 0.62, uls = 3000 MeV. The unit is e2fm4.

Exp. VBP(b) VAP(b) VAP(c)

B(E2; 2+
1 → 0+

1 ) 0.63 1.4 3.7 2.7
B(E2; 2+

r → 0+
1 ) — 4.1 2.0 2.6

γ deformation γp in the VAP(b) differs from that in the
VBP(b). Namely, the triaxial shape γp ∼ π/6 of the proton
density is found in the VAP results, whereas it is oblate,
as γp ∼ π/3, in the VBP results. This is the reason for the
larger B(E2; 2+

1 → 0+
1 ) in VAP than in VBP because the factor

βp cos γp in Eq. (10) increases due to the triaxial deformation.
Instead, the E2 transition in the sideband, B(E2; 2+

2 → 0+
1 ),

is smaller in the VAP than in the VBP because of the triaxiality
of the proton shape.

As already mentioned in Sec. IV, the VBP calculations
underestimate the excitation energy Ex(2+

1 ), whereas the
reproduction of Ex(2+

1 ) is improved in the VAP calculations.
In the 2+

1 state of 16C, the neutron excitation is found to
be dominant in both the VBP and VAP calculations. Since
the deformation parameter βn for the neutron density in the
VAP(b) is consistent with that in the VBP(b), the discrepancy
of the Ex(2+

1 ) between the VBP and VAP cannot be simply
explained in terms of the intrinsic deformations. The reason for
the underestimation of Ex(2+

1 ) in the VBP is considered to be
that the wave function may be better optimized for the 2+

1 state
than for the 0+

1 state within the VBP framework, where the
spin-eigen states are obtained by the total-angular-momentum
projection from a single intrinsic wave function after the
variation. By comparing the energies of the 0+

1 and 2+
1 states

between VAP and VBP, it is found that the energy gain from
VBP to VAP is larger in the 0+

1 state than in the 2+
1 state as the

gains are 5.4 and 3.3 MeV for the 0+
1 and 2+

1 states, respectively.
Since the VBP calculations relatively overestimate the energy
of the 0+

1 state, they give a small level spacing between the
2+

1 and 0+
1 states. The experimental Ex(2+

1 ) is well reproduced
by VAP calculations, where the wave function is optimized
for each spin-parity state. We would like to comment that,
although the level spacing of the VBP in 16C does not
quantitatively agree with that of the VAP, the wave functions
for the 0+

1 , 2+
1 , and 4+

1 obtained by the VAP(b) still have large
overlap with the VBP(b) wave functions as 72%, 77%, and
86%, respectively.

In the present VAP calculations of 16C, the 0+
1 and 2+

1
level spacing is well reproduced, while the reproduction of
the small B(E2; 2+

1 → 0+
1 ) is not satisfactory. We note that the

AMD+GCM calculations with the Volkov force reproduce the
Ex(2+

1 ) of C isotopes [10], although the radii of the neutron-
rich C are underestimated with this interaction. When we use
the present interaction parameter set (b) where m = 0.576 and
uls = 1500(900) MeV, the results of Ex(2+

1 ) and B(E2) for 16C
obtained by a AMD+GCM method [20] are similar to those of
the VBP calculations. In order to gain insight into the structure
of 16C, we need to improve wave functions by producing them
in more detail. Moreover, further experimental information for
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other excited states will be helpful in determining the proton
shape in 16C.

VII. SUMMARY

We studied the structure of even-even C isotopes with
the AMD method. The systematics of the binding energies,
B(E2), and radii of C isotopes are qualitatively reproduced by
the simplest version of AMD calculations (VBP). Systematic
analysis of the proton and neutron shapes in C isotopes was
done based on the VBP calculations of AMD. The results
indicate that the neutron shape drastically changes with an
increase of neutron number, while the proton shape is rather
stable. It is suggested that the difference between proton and
neutron shapes may appear in 16C and 18C as well as in 10C.
The E2 transition strength, B(E2), was discussed in relation
to the deformation. The unusually small B(E2; 2+

1 → 0+
1 ) in

16C, which has been recently measured, was described by the
coexistence of the oblate proton shape and the prolate neutron
shape. According to the present prediction, the B(E2; 2+

1 →
0+

1 ) in 18C is as small as that in 16C, while the B(E2) is
larger in 20C. The deviation between the proton and neutron
shapes plays an important role in the small B(E2). The present
results show the enhancement of the neutron skin structure in
neutron-rich C. It was found that the stable proton structure in
C isotopes plays an important role in the neutron skin structure
as well as in the systematics of B(E2).

In order to extract a naive picture of the proton and neutron
shapes, we applied the VBP method based on a single AMD
wave function. The quantitative reproduction of the excitation
energy (Ex(2+

1 )) was not satisfactory in the VBP calculations.
We showed that the level structure of 16C is well reproduced
by VAP calculations, although they overestimate the B(E2)
of 16C. We consider that, for further detailed investigations
and better reproductions, it is important to improve the wave
functions by superposing the basis and using appropriate
effective nuclear forces.

Here, we would like to comment on ab initio calculations
based on realistic nucleon-nucleon interactions, which have
recently made remarkable progress. For example, the exact
calculations of the ground state of 12C have been performed
with the Green’s function Monte Carlo method [21]. Another
ab initio approach for this mass number region is the large-
basis no-core shell, which has been applied to 12C [22]. In
the study of cluster structure, Fermionic Molecular Dynamics
(FMD) is a useful method where the effective force derived
from realistic interactions is adopted [23]. In the results of 12C
obtained by FMD, various kinds of 3α-cluster structure were

found in excited states, which are clearly consistent with those
of AMD [11]. The application of these methods to neutron-rich
C isotopes is requested.

In the experiment on 208Pb+16C inelastic scattering, the
contributions of nuclear excitation and Coulomb excitation
from the ground state to the 2+

1 (1.77 MeV) state were analyzed
[3]. The ratio of the neutron and proton transition matrix
elements Mn/Mp implies the neutron excitation is dominant in
the 2+

1 state in 16C. This is consistent with the present results
of oblate proton and prolate neutron shapes. Unfortunately,
with this experimental information for the excitation to the
2+

1 (1.77 MeV), it is difficult to know whether the proton
deformation is oblate or slightly prolate (or slightly triaxial),
because in both cases the sign of the Mp(0+

1 → 2+
1 ) is the

same. Namely, even if the proton density has an oblate shape,
the Mp is not a negative but a positive value because of the
different orientations of the symmetric axes between the proton
and neutron shapes as shown in Q0 given by Eq. (10). A
characteristic of the present result is the stable proton structure
and systematics of B(E2) in the series of C isotopes. If the
16C has the oblate proton shape, the second 2+ state appears.
Whether the proton density is oblate or slightly prolate in 16C,
the small B(E2) implies that the proton deformation must be
inconsistent with the large prolate deformation of the neutron
shape. Therefore, we conclude that the small B(E2) indicates
a difference between proton and neutron shapes in 16C. In
order to understand the details of the intrinsic shapes of proton
and neutron densities, we need more systematic analysis of
C isotopes with the help of further experimental information
such as the B(E2) in other neutron-rich nuclei, 18C and 20C,
and information for the sideband in 16C.
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