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Nuclear structure calculations and modern nucleon-nucleon potentials
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We study ground-state properties of the doubly magic nuclei 4He, 16O, and 40Ca employing the Goldstone
expansion and using as input four different high-quality nucleon-nucleon (NN) potentials. The short-range
repulsion of these potentials is renormalized by constructing a smooth low-momentum potential Vlow-k. This
is used directly in a Hartree-Fock approach, and corrections up to third order in the Goldstone expansion are
evaluated. Comparison of the results shows that they are only slightly dependent on the choice of the NN potential.
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I. INTRODUCTION

In recent years, the study of the properties of nuclear
systems starting from a free nucleon-nucleon (NN) potential
VNN has attracted considerable attention. This interest has been
stimulated by the substantial progress made during the past
decade in the development of NN potentials that reproduce with
high precision the NN scattering data and deuteron properties
[1–4]. However, the fact that these potentials predict almost
identical phase shifts does not imply, owing to their different
offshell behavior, that they should give the same results
when employed in nuclear many-body calculations. It is
therefore of great interest to investigate the extent to which
nuclear structure results depend on the NN potential one starts
with, and more specifically to try to assess the relevance of
the offshell effects in microscopic nuclear structure calcula-
tions.

The differences between various NN potentials in describ-
ing properties of nuclear matter have been investigated by
several authors, the main aim being to try to assess the role of
the various components of the nuclear force. In this context,
we may mention Refs. [5–8], where attention has been focused
on modern phase-shift equivalent NN potentials.

For the study of finite nuclei, although a rather large number
of realistic nuclear structure calculations have been carried
out in the past few years, only a few attempts have been
made, in the framework of the shell model [9–11], to study
the extent to which these calculations depend on the NN
potential used as input. It should be mentioned that different
high-precision NN potentials have been considered in some
studies of few-body systems [12,13], where exact calculations
have been performed. In a recent paper [14], we performed
realistic calculations of the ground-state properties of some
doubly magic nuclei within the framework of the Goldstone
expansion approach and showed that the rate of convergence
is very satisfactory. We feel that this is a good “laboratory” for
a comparative study of the effects of NN potentials in finite
nuclei. In the present paper, we make use of the Goldstone
expansion to calculate the binding energies and rms charge
radii of 4He, 16O, and 40Ca for different phase-shift equivalent
NN potentials. We consider the four high-quality NN potentials

Nijmegen II [1], Argonne V18 [2], CD-Bonn [3], and N3LO
[4].

As is well known, to perform nuclear structure calculations
with realistic NN potentials one has to deal with the strong
repulsive behavior of such potentials in the high-momentum
regime. Recently, a new method to renormalize the bare NN
interaction has been proposed [15,16], which is proving to
be an advantageous alternative to the use of the Brueckner
G matrix [16–19]. It consists in deriving from VNN a low-
momentum potential Vlow-k defined within a cutoff momentum
�. This is a smooth potential that preserves exactly the onshell
properties of the original VNN and is suitable for being used
directly in nuclear structure calculations.

As in our earlier work [14], we construct the Vlow-k for
each of the four above-mentioned NN potentials. The various
Vlow-k’s are then used directly in Hartree-Fock calculations.
Once the self-consistent basis is obtained, we calculate the
Goldstone expansion including diagrams up to third order in
Vlow-k.

It is worth emphasizing that one of the main advantages
of the Vlow-k renormalization method, with respect to the
G-matrix one, is to preserve the phase-shift equivalence of the
original NN potentials. Thus, it is particularly interesting to
compare the results obtained in nuclear structure calculations
employing onshell equivalent Vlow-k’s.

The paper is organized as follows. In Sec. II we give a
brief description of the main features of the four phase-shift
equivalent NN potentials considered in our study. In Sec. III we
give an outline of the derivation of Vlow-k and some details of
our calculations. In Sec. IV we present and discuss our results.
Some concluding remarks are given in Sec. V.

II. REALISTIC NUCLEON-NUCLEON POTENTIALS

As reported in the Introduction, we employ the Nijmegen
II [1], Argonne V18 [2], CD-Bonn [3], and chiral N3LO [4]
NN potentials, which have all been fitted to the Nijmegen
phase-shift analysis as well as the proton-proton and neutron-
proton data below 350 MeV [20]. It is well known that these
potentials, even if they reproduce the NN data with almost
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FIG. 1. (Color online) Matrix elements VNN (k0, k) for the 3S1

partial wave for the CD-Bonn (green line), Nijmegen II (red line),
Argonne V18 (black line), and N3LO (blue line) potentials. The
diagonal matrix elements k0 = 1.34 fm−1 are marked by an asterisk.
The corresponding T -matrix element is marked by a filled circle (see
text for more details).

the same accuracy, may have a rather different mathematical
structure. The Nijmegen II and the Argonne V18 potentials
are nonrelativistic and defined in terms of local functions,
which are multiplied by a set of spin, isospin, and angular
momentum operators. The CD-Bonn potential, based on
relativistic meson field theory, is represented in terms of the
covariant Feynman amplitudes for one-boson exchange, which
are nonlocal [21]. The N3LO potential is based upon a chiral
effective Lagrangian. The model includes one- and two-pion
exchange contributions and so-called contact terms up to chiral
order four, some of which are nonlocal. All the above NN
interactions reproduce equally well the same phase-shifts, so
the corresponding onshell matrix elements of the reaction
matrix T are the same as well. However, this does not imply
that the interactions are identical. The T matrix is obtained
from the Lippmann-Schwinger equation

T (k′, k, k2) = VNN (k′, k) + P
∫ ∞

0
q2dqVNN (k′, q)

× 1

k2 − q2
T (q, k, k2), (1)

where k, k′, and q stand for the relative momenta. Notice
that the T matrix is the sum of two terms: the Born term
and an integral term. Even though the sum is the same, the
individual terms may still be quite different. For example,
in Fig. 1 we show the values of the 3S1 T -matrix elements
for Klab = 150 MeV and k = k′ = k0 = 1.34 fm−1. They are
indicated by the filled circle and are practically identical
for the four NN potentials we have employed. In Fig. 1 we
also display the matrix elements VNN (k0, k) as a function
of k for the four potentials. The asterisks stand for the
diagonal matrix elements VNN (k0, k0), which represent the
Born approximation to T . From the inspection of Fig. 1, it is
clear that even if different VNN ’s reproduce the same T -matrix
element, the latter is obtained by summing two terms that are
significantly different for each potential. More precisely, it
is evident that the Nijmegen II potential is quite “hard”, its
diagonal matrix element being very repulsive. So, in order to
reproduce correctly the onshell T -matrix element, it needs a

large attractive contribution from the integral term of Eq. (1),
the latter being related to the tensor component of the NN
force and to its offshell behavior (see Ref. [22] for a closer
examination). On the other hand, the N3LO interaction is a
rather “soft” potential, implying a smaller contribution from
the integral term.

Similar features may also be observed in the other partial
waves; however, the differences among the potentials decrease
for larger values of the orbital angular momentum.

III. METHOD OF CALCULATION

A traditional approach to the renormalization of the strong
repulsive behavior of realistic NN potentials, when dealing
with doubly closed-shell nuclei, is the Brueckner-Goldstone
(BG) theory (see, for instance, Refs. [23,24]), where the
Goldstone perturbative expansion is reordered summing to
all orders only the ladder diagrams. Consequently, the bare
interaction (VNN ) vertices are replaced by the reaction matrix
(G). This framework leads to the well known Brueckner-
Hartree-Fock (BHF) theory, when the self-consistent definition
is adopted for the single-particle (SP) auxiliary potential and
only the first-order contribution in the BG expansion is taken
into account. So, the BHF approximation gives a mean field
description of the ground state of nuclei in terms of the G

matrix, the latter taking into account the correlations between
pairs of nucleons. However, this procedure is not without
difficulties, because of the energy dependence of G.

As already mentioned in the Introduction, we renormalize
the short-range repulsion of the bare NN potential by integrat-
ing out its high-momentum components [15,16]. The resulting
low-momentum potential, Vlow-k, is a smooth potential, whose
vertices can be used directly to sum up the Goldstone
expansion diagrams.

According to the general definition of a renormalization
group transformation, Vlow-k must be such that the low-energy
observables calculated in the full theory are preserved exactly
by the effective theory.

For the nucleon-nucleon problem in vacuum, we require
that the deuteron binding energy, low-energy phase shifts, and
low-momentum half-onshell T matrix calculated from VNN

must be reproduced by Vlow-k. The effective low-momentum
T matrix is defined by

Tlow-k(p′, p, p2) = Vlow-k(p′, p) + P
∫ �

0
q2dqVlow-k(p′, q)

× 1

p2 − q2
Tlow-k(q, p, p2). (2)

Note that for Tlow-k the intermediate states are integrated up
to �.

It is required that, for p and p′ both belonging to P

(p, p′ � �), T (p′, p, p2) = Tlow-k(p′, p, p2). In Refs. [15,16]
it has been shown that the above requirements are satisfied
when Vlow-k is given by the folded-diagram series

Vlow-k = Q̂ − Q̂′
∫

Q̂ + Q̂′
∫

Q̂

∫
Q̂

− Q̂′
∫

Q̂

∫
Q̂

∫
Q̂ + · · · , (3)
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TABLE I. Deuteron binding energy (MeV) and np 1S0 phase
shifts (deg) as predicted by full CD-Bonn and its Vlow-k (� =
2.0 fm−1). The laboratory energy Elab is in MeV.

CD-Bonn Vlow-k Experiment

Bd 2.224 2.224 2.224

Phase shifts
Elab

1 62.1 62.1 62.1
10 60.0 60.0 60.0
25 50.9 50.9 50.9
50 40.5 40.5 40.5

100 26.4 26.4 26.8
150 16.3 16.3 16.9
200 8.3 8.3 8.9
250 1.6 1.6 2.0
300 −4.3 −4.3 −4.5

where Q̂ is an irreducible vertex function, in the sense that its
intermediate states must be outside the model space P . The
integral sign represents a generalized folding operation [25],
and Q̂′ is obtained from Q̂ by removing terms of first order in
the interaction.

The above Vlow-k can be calculated by means of iterative
techniques. We have used here an iteration method proposed
in Ref. [26], which is particularly suitable for nondegener-
ate model spaces. This method, which we refer to as the
Andreozzi-Lee-Suzuki (ALS) method, is an iterative method
of the Lee-Suzuki type [27].

To exemplify how Vlow-k preserves low-energy observables,
we report in Table I the deuteron binding energy, and the
neutron-proton 1S0 phase shifts calculated both with the full
CD-Bonn potential and its Vlow-k (with a cutoff momentum
� = 2.0 fm−1).

An important question in this approach is what value one
should use for the cutoff momentum. A discussion of this
point as well as a criterion for the choice of � can be found
in Ref. [16]. According to this criterion, we have used here
� = 2.1 fm−1.

After having renormalized the various NN potentials, we
use the corresponding Vlow-k’s directly in a HF calculation. The

HF equations are then solved for 4He, 16O, and 40Ca, making
use of a harmonic-oscillator basis. The details of the HF
procedure are reported in Ref. [14]. As a major improvement,
in this work we remove the spurious center-of-mass kinetic
energy, writing the kinetic energy operator T as

T = 1

2Am

∑
i<j

(pi − pj )2. (4)

Similarly, we define the mean square radius operator as

r2 = 1

A2

∑
i<j

(ri − rj )2. (5)

A complete review of center-of-mass correction in self-
consistent theories may be found in Ref. [28].

In our calculations, the HF SP states are expanded in
a finite series of N = 5 harmonic-oscillator wave functions
for 16O and 40Ca, and N = 6 for 4He. This truncation is
sufficient to ensure that the HF results do not significantly
depend on the variation of the oscillator constant h̄ω, as we
showed in Ref. [14]. The values of h̄ω adopted here have been
derived from the expression h̄ω = 45A−1/3 − 25A−2/3 [29],
which reproduces the rms radii in an independent-particle
approximation with harmonic-oscillator wave functions. This
expression gives h̄ω = 18, 14, and 11 MeV for 4He, 16O, and
40Ca, respectively.

We use the HF basis to sum both the Goldstone expansion
and the diagrams for the mean square charge radius 〈r2〉,
including contributions up to third order in Vlow-k. Figure 2
shows first-, second-, and third-order diagrams [30] of the
Goldstone expansion.

IV. RESULTS

In Table II we show for 4He, 16O, and 40Ca the calculated
binding energy per nucleon and the rms charge radius obtained
using different phase-shift equivalent NN potentials and
compare them with the experimental data [31–33].

A detailed analysis about the convergence properties of
the perturbative series can be found in Ref. [14], where it is
shown that the convergence is fairly rapid and higher-order
contributions are negligible.
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FIG. 2. First-, second-, and third-order dia-
grams in the Goldstone expansion.
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TABLE II. Comparison of the calculated binding energies per nucleon (MeV/nucleon) and rms radii (fm)
for different VNN with the experimental data for 4He, 16O, and 40Ca. We take into account the finite dimensions
of the proton using an estimate of its rms charge radius

√
〈r2

p〉 = 0.8 fm [32].

Nucleus Nijmegen II AV18 CD-Bonn N3LO Experiment

4He
BE/A 6.88 6.85 6.95 6.61 7.07
〈r2〉1/2 1.68 1.69 1.63 1.75 1.67 ± 0.01

16O
BE/A 8.26 8.26 8.30 8.11 7.98
〈r2〉1/2 2.58 2.59 2.49 2.66 2.73 ± 0.02

40Ca
BE/A 9.66 9.53 9.93 9.50 8.55
〈r2〉1/2 3.20 3.22 3.10 3.29 3.485 ± 0.003

From Table II, we see that the calculated quantities are
scarcely sensitive to the choice of the NN potential.

As a matter of fact, the binding energies per nucleon and the
rms charge radii calculated using the various potentials differ at
most by 0.43 MeV and 0.19 fm, respectively. This insensitivity
may be traced back to the fact that when renormalizing the
short-range repulsion of the various potentials, the differences
between their offshell properties are attenuated. It is well
known (see, for instance, [22]) that the offshell behavior of
a potential, and in particular its offshell tensor force strength,
is related to the D-state probability of the deuteron PD; this
is why when comparing NN potentials, offshell differences
are seen in PD differences. For this reason, we report in
Table III the predicted PD’s for each of the potentials under
consideration and compare them with those calculated with
the corresponding Vlow-k’s. We see that while the PD’s given
by the full potentials are substantially different, ranging from
4.5 to 5.8%, they become quite similar after renormalization.
This is an indication that the “onshell equivalent” potentials
we have used are made almost “offshell equivalent” by the
renormalization procedure. This finding is more evident when
comparing our calculated 4He binding energies with the results
of exact calculations, based on the Faddeev-Yakubovsky
procedure [13,34] (see Table IV). As a matter of fact, the
difference between the exact results, which is at most 2 MeV,
is reduced to 1.3 MeV in our calculations. It has to be observed
that larger differences between our results and the exact ones
are obtained when employing high-PD potentials, such as
Nijmegen II and Argonne V18. Smaller differences occur
for the N3LO (1 MeV) and CD-Bonn (1.5 MeV) potentials,
whose tensor force strengths are smaller than those of the
two other potentials. This reflects the fact that for these two
potentials the renormalization procedure modifies the original

TABLE III. Calculated PD’s with different NN potentials and
with the corresponding Vlow-k’s.

Nijmegen II AV18 CD-Bonn N3LO

Full potential 5.63 5.76 4.85 4.51
Vlow-k 4.32 4.37 4.04 4.32

PD to a limited extent, whereas a stronger change occurs for
the Nijmegen II and Argonne V18 potentials. Table IV also
shows that in all cases we get more binding than the exact
calculations, as a consequence of the renormalization of the
repulsive components of the potentials.

V. SUMMARY AND CONCLUSIONS

The aim of this work has been to compare the results of
microscopic nuclear structure calculations, starting from four
different phase-shift equivalent NN potentials, Nijmegen II,
Argonne V18, CD-Bonn, and N3LO. To this end, we have
calculated ground-state properties of the doubly closed nuclei
4He, 16O, and 40Ca by way of the Goldstone expansion. This
has been done within the framework of the so-called Vlow-k

approach [15,16] to the renormalization of the short-range
repulsion of the NN potentials, wherein a low-momentum
potential is derived, which preserves the low-energy physics
of the original potential.

The analysis of the results obtained shows that the cal-
culated properties are only weakly dependent on the NN
potential used as input. This result may be traced back to the
renormalization procedure of the short-range repulsion. As a
matter of fact, we have shown that the renormalized potentials
are characterized by a reduced offshell tensor force strength,
as compared with that of the original potential. Moreover,
the PD’s of the different potentials become quite similar, this
quantity being related to the balance between the central and
tensor components of the nuclear force.

It is worthwhile to point out that when dealing with the
N3LO chiral potential, the renormalization procedure, which
by design preserves exactly the onshell properties up to the

TABLE IV. Comparison of the 4He calculated binding energies
(MeV) for different VNN obtained using the Goldstone expansion (I)
and the Faddeev-Yakubovsky procedure (II).

BE Nijmegen II AV18 CD-Bonn N3LO

(I) 27.523 27.409 27.799 26.440
(II) 24.560 24.280 26.260 25.410
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cutoff momentum, scarcely modifies the offshell behavior.
This feature, which is related to the fact that chiral perturbation
theory is a low-momentum expansion, may make this kind
of NN potential particularly suited for microscopic nuclear
structure calculations.
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