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Parameter-free description of orbital magnetic dipole strength
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The low-lying orbital magnetic dipole strength in even-even nuclei is discussed using a sum-rule approach. It is
shown that both the mean excitation energies as well as the summed excitation strengths from the experiment can
be described well in heavy nuclei if the moments of inertia and the g factors are substituted by the parameters of
the ground-state rotational bands. The influence of the high-lying scissors mode is taken into account explicitly,
leading to a successful description of the low-lying mode in heavy deformed nuclei with no free parameters. A
quantitative estimate of the gross features of the high-lying mode is deduced. The application of the sum-rule
approach to medium-mass nuclei is presented, and the discrepancies with the experimental data are discussed.
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I. INTRODUCTION

The past twenty years have seen great experimental and
theoretical efforts to study the orbital magnetic dipole response
over a wide mass region [1–3]. The scissors mode, depicting
the rotational vibration of the proton and neutron bodies
with respect to each other in a deformed nucleus, has been
discovered in high-resolution inelastic electron scattering
experiments at low momentum transfer [4], only a few years
after its theoretical prediction within a semiclassical two-rotor
model [5] and the proton-neutron interacting boson model
[6]. Nuclear resonance fluorescence (NRF) experiments [7]
have measured the fine structure of the mode over the entire
N = 82−126 major shell [8]. The scissors mode was also
found in actinide and fp-shell nuclei [9–12] and in nuclei
with an unpaired proton or neutron, see, e.g., Refs. [13–15].
We note in passing that evidence for the scissors mode in
the quasicontinuum of excited nuclei has been found [16,17];
some discrepancies with the NRF results seem to exist which
we do not discuss here to keep this communication as
concise as possible. Investigations of the dynamics of metal
clusters [18,19] and Bose-Einstein condensates [20–22] have
established this elementary mode as a general phenomenon of
deformed quantum systems.

The study of the deformation dependence of the scissors
mode strength and excitation energy is critical for an under-
standing of the structure of the mode. The excitation energies in
nuclei of the N = 82–126 major shell deduced from the exper-
iments remain approximately constant. This can be attributed
to pairing correlations, as was pointed out by Hamamoto and
Magnusson [23]. An extension [24] of the schematic approach
by Bes and Broglia [25] yields good accord with the data
by an empirical fit of the moments of inertia. The second
major experimental observation was that the total B(M1)
values of the scissors mode are proportional to the square of
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the deformation parameter [26]. The proportionality between
the scissors mode strength and the square of the nuclear
deformation parameter could be understood by an analysis
of Lo Iudice and Richter [27] based on a phenomenological
sum-rule approach with a fixed set of parameters proposed by
Lipparini and Stringari [28,29]. A similarly good description
was found within the interacting-boson model [30]. It also
has been parametrized by a fit to the experimental data [31].
In another sum-rule analysis [32], it was shown that one can
account simultaneously for the strength and the energy of the
low-lying orbital M1 mode simply by using the moments of
inertia and g factors of the ground-state rotational bands using
one single scaling parameter. In the present communication,
we want to work out the consequences of this finding in detail,
and we show that the scaling parameter emerges quantitatively
correctly from giant resonance parameters. We also investigate
the applicability of the sum-rule approach to nuclei outside the
N = 82−126 major shell.

Microscopic models show different results concerning
deformation dependence, fragmentation, and collectivity of
the mode, and they depend sensitively on the parameters of the
mean field, the residual interaction, and the inclusion of the
pairing interaction. We refer to Refs. [1–3] for an overview of
the topic and for further references. Most calculations [33–36]
predict another orbital magnetic dipole mode at high excitation
energy, which should occur at energies above 20 MeV and is
associated with the K = 1 component of the isovector giant
quadrupole resonance (IVGQR). In contrast to its low-energy
counterpart, experimental knowledge about the high-lying
scissors mode is very limited [1]. The coupled dynamics of
the low- and the high-lying mode has been studied recently in
a solvable model by Balbutsev and Schuck [37]; this approach,
however, fails to describe the data presented below, as pairing
is not taken into account.

We present the database in Sec. II, and the sum-rule
approach is introduced in Sec. III. The motivation of the
moments of inertia of the scissors mode in Sec. IV is followed
by the discussion of the results on energy and strength (Sec. V)
using the comparison to data in the N = 82−126 major shell.
A general discussion chapter (Sec. VI) follows.
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II. DATABASE

A. The N = 82−126 major shell

For the analysis of the systematics, the mean excitation
energies and summed M1 strengths have to be extracted from
the measured dipole strength distributions. For the present
analysis, an excitation energy interval of 2.5–4.0 MeV is
chosen in the entire N = 82−126 mass region, and we restrict
ourselves to even-mass nuclei in this publication. At lower
excitation energy, the existence of particle-hole excitations
is known [38], whereas for energies above 4 MeV, spin-M1
strength dominates [39,40].

The parities of the excited states are determined via the K

quantum number using the Alaga rules [41]

RK=1 = B(σ1; J ; K = 1; 1 → 2; 0)

B(σ1; J ; K = 1; 1 → 0; 0)
= 0.5, (1)

RK=0 = B(σ1; J ; K = 1; 0 → 2; 0)

B(σ1; J ; K = 1; 0 → 0; 0)
= 2.0, (2)

where K denotes the projection of the total angular momentum
J on the symmetry axis of the deformed nucleus, and σ1
represents the multipole character (M1, E1). Measurements of
the linear polarization of the scattered radiation support �K =
0 for nearly all electric dipole transitions into the ground
state (g.s.). Similarly, practically all M1 transitions depopulate
states with K = 1. Therefore, in the present analysis, states
with experimental values of R � 1 are attributed positive parity
and those with R > 1 negative parity if no direct measurement
of the parity was available. States without a decay branch to
the ground-state rotational band (R = 0) are excluded from
the analysis because no conclusion can be made about their
structure and parity. In the nuclei 194,196Pt, the states with
R = 0 have been included, as γ -soft nuclei are expected to
exhibit a behavior different from axially symmetric deformed
nuclei.

In 164Dy, spin contributions have been found by Frekers and
coworkers [39] around 3 MeV. Those are subtracted from the
total strength assuming constructive interference. The nucleus
164Er is omitted because for the experiment [42] no highly
enriched target material was available and the deduced strength
represents a lower limit only. For 154Gd electron scattering,
data by Hartmann et al. [43] have been used. As a conservative
estimate, a linear propagation of errors is assumed since both
statistical and systematic errors are important.

The summed M1 strengths as well as the mean excitation
energies

ωM1 =
∑

i Ex,i Bi(M1)↑∑
i Bi(M1)↑ , (3)

which have been extracted from this data set, are given in
Table I and displayed in Fig. 1. As is evident from Fig. 1(a),
the mean excitation energy varies only little over the entire
mass range from A = 140 through A = 200. The strengths
systematics [Fig. 1(b)] reflects the deformation dependence of
the scissors mode.

TABLE I. Mean excitation energies ωM1 and summed M1
strengths of the scissors mode for nuclei in the N = 82−126 major
shell. Also given is the deformation parameter δ.

Nuclide δ ωM1

∑
B(M1) Ref.

(MeV) (µ2
N )

142
58 Ce84 0.110 3.00 0.55(4) [44]
144
60 Nd84 0.115 3.15 0.72(5) [45]
146
60 Nd86 0.132 3.46 0.94(17) [46]
148
60 Nd88 0.171 3.49 1.05(24) [46]
150
60 Nd90 0.233 3.12 1.83(27) [46]
148
62 Sm86 0.124 3.07 0.51(12) [47]
150
62 Sm88 0.165 3.18 0.97(17) [47]
152
62 Sm90 0.249 2.97 2.41(33) [47]
154
62 Sm92 0.273 3.26 2.44(38) [47]
154
64 Gd90 0.253 2.91 2.99(62) [43]
156
64 Gd92 0.271 3.06 2.73(56) [48]
158
64 Gd94 0.278 3.10 3.71(59) [48]
160
64 Gd96 0.282 3.11 3.26(51) [49]
160
66 Dy94 0.271 2.87 2.42(30) [50]
162
66 Dy96 0.274 2.93 2.85(22) [51]
164
66 Dy98 0.278 2.97 3.25(43) [51]
166
68 Er98 0.274 2.99 2.55(48) [42]
168
68 Er100 0.274 3.24 3.68(48) [42]
170
68 Er102 0.274 3.22 3.42(69) [42]
172
70 Yb102 0.265 3.03 1.83(49) [52]
174
70 Yb104 0.262 3.15 2.70(88) [52]
176
70 Yb106 0.249 3.33 2.56(97) [52]
176
72 Hf104 0.241 3.28 3.11(27) [53]
178
72 Hf106 0.230 3.21 2.38(36) [54]
180
72 Hf108 0.225 3.19 2.04(28) [54]
182
74 W108 0.208 3.25 1.34(23) [55]
184
74 W110 0.196 3.37 1.04(33) [55]
186
74 W112 0.188 3.19 0.82(21) [55]
190
76 Os114 0.151 2.87 0.85(11) [56]
192
76 Os116 0.143 3.00 0.93(6) [56]
194
78 Pt116 0.125 3.25 1.38(25) [57]
196
78 Pt118 0.115 3.01 0.81(16) [58,59]

B. Actinide nuclei

Three actinide nuclei, 226Th, 236U, and 238U, have been
studied in photon scattering experiments; see Refs. [10,11] as
well. The same identification scheme holds as for the nuclei
with 82 < N < 126, but the energy window has been chosen
to be 2–3 MeV to account for the lower energy of the scissors
mode in the actinides. Table II summarizes the experimental
data.

C. Nuclei with A < 140

In various nuclei with A < 140, low-lying M1 strength
was detected too. For some fp-shell nuclei, electron
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FIG. 1. Mean excitation energies (a) and summed M1 strengths
(b) of the scissors mode for nuclei in the N = 82−126 major shell.

scattering and proton scattering experiments exist that iden-
tify the scissors-mode states in an energy interval close to
4 MeV [60] and allow the spin contributions to be subtracted.
Constructive interference has been assumed, which is based
on the shell-model description of the scissors mode in the
fp-shell nuclei; within this approach, the mode results from
recoupling as proposed by Zamick [61]. One might argue about
the reliability of extracting the spin strength from the proton
scattering data. The uncertainties given in the compilation
have been obtained from the values quoted in Refs. [9,60].
For 56Fe no spin contributions have been subtracted as no
intermediate-energy forward-angle proton scattering data exist
and theory assumes spin contributions to the low-lying M1
strength to be comparably small [62].

The decay pattern of specific states can be used to single
out mixed-symmetry 1+ states in nuclei from Zn to 108Cd
from a comparison to shell-model or interacting-boson-model
predictions. These states typically lie between 3 and 4 MeV.
To date, there are no experimental results about possible spin
contributions to the M1 strength in these nuclei. In the other

TABLE II. Mean excitation energies ωM1 and summed M1
strengths of the scissors mode for actinide nuclei. Also given is
the deformation parameter δ.

Nuclide δ ωM1

∑
B(M1) Ref.

(MeV) (µ2
N )

232
90 Th142 0.216 2.14 2.59(25) [10]
236
92 U144 0.225 2.37 3.53(53) [11]
238
92 U146 0.234 2.26 3.19(23) [10]

TABLE III. Mean excitation energies ωM1 and summed M1
strengths of the scissors mode for nuclei with A < 140. Also given
is the deformation parameter δ.

Nuclide δ ωM1

∑
B(M1) Ref.

(MeV) (µ2
N )

46
22Ti24 0.256 4.32 0.41(8) [9,12]
48
22Ti26 0.221 4.00 0.19(6) [12,60,64]
50
24Cr26 0.239 3.63 0.11(2) [60,65]
56
26Fe30 0.200 3.45 0.49(8) [62,66]
66
30Zn36 0.183 4.30 0.21(6) [67]
92
40Zr52 0.092 3.47 0.28(2) [68]
94
42Mo52 0.131 3.13 0.48(3) [69]
108
48 Cd60 0.151 3.45 0.07(2) [70]
112
48 Cd64 0.159 3.05 0.21(6) [71]
114
48 Cd66 0.162 2.87 0.18(3) [72]
122
52 Te70 0.158 3.20 0.83(45) [73]
124
52 Te72 0.146 3.24 0.35(8) [74]
126
52 Te74 0.133 3.25 0.67(14) [73]
130
52 Te78 0.105 3.12 0.13(9) [73]
134
56 Ba78 0.139 2.99 0.56(9) [75]
136
56 Ba80 0.111 3.26 0.20(2) [76]

cadmium, the tellurium, and the open-shell barium isotopes,
we have included all dipole excitations between 2.5 and
4.0 MeV where a magnetic character cannot be excluded
from measurement or from the systematics of quadrupole-
octupole-coupled 1− states (see, e.g., [63]). The maximum
energy in this case is limited by the minimum endpoint energy
of the bremsstrahlung spectra used in the NRF experiments.
Table III summarizes the values deduced from the experiments
in nuclei with A < 140.

As is evident from the above description, this last data
set is not as homogeneous as for the heavier nuclei, and
sensitivity, energy region, and identification scheme vary
between the different nuclei in this mass region. However,
we tried to perform the data selection in as unbiased a way as
possible.

III. SUM-RULE APPROACH

In this section, we introduce a sum-rule approach in order
to describe the excitation energy and strength of the scissors
mode. We use the results of the Lipparini and Stringari analysis
[28,29]. Sum rules provide insight into special properties of
quantum systems by exploiting commutation relations. A sum
rule Sj is defined as the sum of products of the transition
strengths [Bi(σλ)] by the j th power of the corresponding
excitation energies, i.e.,

Sj [M(σλ)] =
∑

i

Bi(σλ) ω
j

i , (4)

where M(σλ) denotes the field operator characterizing
the excitation with multipolarity σλ. This information can
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be obtained directly from the measured spectra. If both the
structure of the operator as well as the Hamiltonian H are
known, Sj can be calculated from g.s. expectation values of
commutators

S+1(M) = 1
2 〈0| [M, [H,M]] |0〉 (5)

S−1(M) = 1
2 〈0|[[X†,H],X ]|0〉, (6)

where X denotes the solution of [H,X ] = M. By combining
Eqs. (5) and (6), the energy and strength can be predicted in
terms of the sum rules S+1 and S−1 as

ω =
√

S+1

S−1

(7)

∑
i

Bi(σλ) =
√

S+1S−1 . (8)

We note that these equations only agree with the experimental
summed strength and mean excitation energy [Eq. (3)] when
fragmentation can be neglected or in the case where the
fragments are distributed symmetrically around the distribu-
tion’s centroid. The data sets should reasonably fulfill these
conditions.

The isovector rotational motion associated with the scissors
mode defines the operator

M(M1Sc.) ∝
∑

i

J x
i τ̂ 3

i (9)

whose commutation relations have been worked out by
Lipparini and Stringari [28,29] using a Skyrme-type Hamilto-
nian. Here, the angular momentum operator perpendicular to
the symmetry axis is given by J x , and the isospin projection
is denoted by τ̂ 3. As shown in Ref. [28], the inverse energy-
weighted sum rule can be related to an isovector moment
of inertia, and the linearly energy-weighted sum rule can be
related to the excitation energy of the isovector giant dipole
resonance (IVGDR). Thus, one obtains for the inversely and
linearly energy-weighted sum rules

S+1 = ωM1 B(M1)

= 3

20π
r2

0 A5/3 δ2 ω2
D mN (gp − gn)2 [

µ2
N MeV

]
(10)

S−1 = B(M1)

ωM1

= 3

16π
	IV (gp − gn)2

[
µ2

N MeV−1
]
. (11)

In these equations, r0 = 1.15 fm denotes the nuclear radius
constant, A is the mass number, δ is the deformation parameter,
and ωD is the centroid energy of the IVGDR. Furthermore,
mN represents the nucleon mass, and gp and gn are the
orbital gyromagnetic ratios of the deformed proton and neutron
valence bodies. The moment of inertia 	IV originates from the
isovector motion.

IV. MOMENTS OF INERTIA AND g FACTORS

In Eqs. (10) and (11) nearly all quantities are fixed for the
individual nucleus by measurements or can be obtained from
systematic analyses. However, it is not a priori clear which
values should be used for the isovector moment of inertia and
the orbital g factors. We shall, for that purpose, inspect the
inverse energy-weighted sum rule (11), which is proportional
to the product 	IV(gp − gn)2, to gain further insight into these
quantities. The investigation of this single sum rule enables us
to identify the moments and then to predict the properties of the
scissors mode from both S+1 and S−1. Since the low-energy
spectrum contributes dominantly to S−1, the moments (gp −
gn) and 	IV can be determined from the experimental data on
the low-energy scissors mode without further assumptions.

Within a collective model approach, the g factor of the
ground-state (isoscalar) rotational band, gIS, can be expressed
in terms of gp and gn by [77]

gIS = 1

2
(gp + gn) = µ(J )

J
, (12)

where µ(J ) represents the magnetic moment of a rotational
state with angular momentum J . Similarly, one can define a g

factor for an isovector rotation as

gIV := 1
2 (gp − gn) . (13)

One further concludes gIV � gIS if the magnetic properties
of collective rotations are mainly due to protons, and the
contributions of neutrons can be neglected, i.e., gn ≈ 0.

While neutrons are not expected to contribute to the orbital
magnetic properties of a nuclear collective state, subnucleonic
degrees of freedom, such as mesonic exchange currents, might
generate a finite contribution. The enhancement of the E1
strength beyond the Thomas-Reiche-Kuhn (TRK) sum rule
has recently been shown by Bentz and Arima [78] to be
proportional to the difference gp − gn within a Landau-Migdal
approach for nuclear matter. Using the IVGDR parameters of
the compilation by Dietrich and Berman [79], one finds that
the enhancement of gp − gn is at most on the order of 10–15%.
We neglect this correction in the following.

The argument for the moment of inertia is analogous to that
of the g factors: Let

	IS = J (J + 1)

2ωJ

� 3h̄2

ωE2
(14)

be the moment of inertia of the ground-state rotational band,
with ωJ the excitation energy of a rotational state with angular
momentum J , and ωE2 the excitation energy of the 2+

1 state
[80]. The difference between this isoscalar rotation and an
isovector motion can be expressed [27] by

	IV = 4NZ

A2
	IS, (15)

where Z, N , and A are the proton, neutron, and mass number of
the nucleus, respectively. The factor 4NZ/A2 is approximately
constant for all nuclei of the N = 82−126 major shell and
amounts to about 0.96.

If the low-lying M1 strength detected in the experiments
corresponds to an isovector rotation, the following relation
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FIG. 2. Comparison of the physical parameters in the description
of the scissors mode. Shown are the values for the isovector
parameters 	IVg2

IV deduced from the inversely energy-weighted sum
rule (solid circles), the product 4NZ/A2 · 	ISg

2
IS (open squares),

and the rigid-body values 4NZ/A2 · 	rig(Z/A)2 (dashed line). The
isovector and isoscalar values agree for most nuclei within the
experimental errors.

should hold:

4π

3
S−1 � 4NZ

A2
	IS g2

IS. (16)

Figure 2 shows the product g2	 from S−1, i.e., the isovector
quantities extracted from the NRF experiments (solid circles)
and the measured moments of inertia and g factors for the
ground-state band (open squares), multiplied by 4NZ/A2.
We have concentrated here on the N = 82−126 major shell,
as the identification of the scissors mode fragments is most
robust. The g factors have been taken from Ref. [81]. The
dashed line shows the expectation for a rigid rotor 	rig =
2/5 mNA5/3—also multiplied by the factor 4NZ/A2—with a
homogeneous magnetization density grig = Z/A. While the
rigid rotor limit clearly overestimates the data, Eq. (16) holds
on a 10% level for most nuclei. Some deviations between
the sum-rule expectations and the g.s. band are visible in
the transitional regions, where the very simple experimental
identification scheme is naturally less reliable.

V. PARAMETER-FREE DESCRIPTION OF
THE SCISSORS MODE

A. Separation of the high-lying orbital M1 strength

Since all quantities in the sum rules are fixed, we now
attempt to describe the mean excitation energy and summed
excitation strength of the mode. However, when dealing with
S+1 one has to take into account that here contributions from
the K = 1 component of the IVGQR will dominate and have to
be removed in order to compare the parameter-free description
to experimental data. We use here the result given by Lipparini
and Stringari [28] and define

M(M1Sc.) ∝
∑

i

J x
i τ̂ 3

i + α
∑

i

(
ŷi p̂

z
i + ẑi p̂

y

i

)
τ̂ 3
i .

(17)

The operator is now split into a term from the isovector rotation
and a term from the IVGQR containing momenta p̂y, p̂z and
coordinates ŷ, ẑ for the quadrupole vibration.

Evaluating the commutation relations and choosing α in
such a way that the low-lying mode is selected [28], S+1 takes
the form

S+1 = 3

5π
r2

0 A5/3 δ2 ω2
D mN g2

IS

ω2
Q

ω2
Q + 2ω2

D

. (18)

Here, ωQ stands for the centroid of the isoscalar giant
quadrupole resonance (ISGQR). Equation (18) corresponds
to Eq. (10) except for the factor

ξ := ω2
Q

ω2
Q + 2ω2

D

, (19)

which describes the contribution from the IVGQR, using
Eq. (13) with gIV � gIS.

B. Excitation energy

Combining Eqs. (7), (11), and (18) one obtains for the mean
excitation energy of the low-lying scissors mode

ωM1 = 2√
15

r0 A5/6

√
A2

4NZ
ωD

√
mN ωE2 ξ δ. (20)

The systematics of the centroid energies are given by Berman
and Fultz [82] for the IVGDR and by van der Woude [83] for
the ISGQR, correcting for shifts of the K = 0 components due
to deformation given by Jang [84]. One finds

ωD � (31.2A−1/3 + 20.6A−1/6) (1 − 0.61δ) MeV, (21)

ωQ � 64.7A−1/3 (1 − 0.3δ) MeV. (22)

Figure 3 shows the mean excitation energies extracted from
the experiments (solid circles) in comparison to the values
(open triangles) predicted by Eq. (20). The agreement is very
good; on the average the deviations amount to about 5%. The

FIG. 3. Mean excitation energy of the scissors mode: experimen-
tal values (solid circles) and parameter-free prediction of the sum-rule
analysis (open triangles). Error bars are smaller than the symbol size.
The deformation dependence of the nuclear moment of inertia leads
to the proportionality of the excitation energies of the scissors mode
and the IVGDR as indicated by the dashed line.
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approximate deformation independence of the energy is well
reproduced. This can be understood if one recalls [77] that
the nuclear moment of inertia 	IS is roughly proportional to,
but significantly larger than, the liquid-drop moment of inertia
	liq

A2

4NZ
	IV � 	IS � ϒ 	liq � ϒ 	rig δ2, (23)

so that ωE2 can be expressed in terms of δ. The average of
ϒ in the mass region considered here is 7.9 with typical
deviations of about 10% (standard deviation). This implies
that the excitation energy of the scissors mode is directly
proportional to the centroid of the IVGDR and—neglecting the
weak variation of ξ with δ—independent from the deformation
parameter

ωM1 ≈
√

2

ϒ
ξ · ωD, (24)

where we have also suppressed the (4NZ/A2) term. The good
agreement of Eq. (24), shown as a dashed line in Fig. 3, with
the experimental data is evident.

C. Transition strength

The low-lying M1 strength is derived from

∑
B(M1) = 3

π

√
3

20
r0 A5/6

√
4NZ

A2
ωD

√
ξ mN

ωE2
δ g2

IS,

(25)
where we have used Eqs. (16) and (18). Figure 4 depicts the
agreement of this sum-rule prediction (open triangles) with the
experimental results (solid circles). The strong deformation
dependence is generated by the interplay of ωE2 and δ. This
again becomes clear when inserting Eq. (23) so that

∑
B(M1) = 3

π

√
ϒ

50
r2

0 A5/3 ωD

√
4NZ

A2
mN

√
ξ g2

IS δ2.

(26)
One obtains the approximate δ2 dependence of the scissors
mode strength originally established in the samarium isotopes
by Ziegler et al. [26]. The mass dependence (roughly ∝ A4/3

including the contribution from the excitation energy of the

FIG. 4. Summed M1 strength of the low-lying orbital magnetic
dipole excitations: experimental values (solid circles) and parameter-
free description of the sum-rule analysis (open triangles).

IVGDR) was too weak to be visible in the data of Ref. [26],
which refer to small variations of A only.

Since the g.s. nuclear deformation is related to the excitation
strength of the 2+

1 state of the g.s. rotational band, one can
deduce from Eq. (26) a proportionality constant between the
M1 and E2 strengths in single-particle units

∑
B(M1)[W.u.] � 81

100π

√
ϒ

50
r2

0 A5/3 ωD

×mN

√
4NZ

A2

√
ξ g2

IS

× B(E2)[W.u.]

Z2
. (27)

Averaging over the entire mass region, one obtains∑
B(M1)[W.u.] � 11.3(7)

B(E2)[W.u.]

Z2
, (28)

consistent with an empirical fit to the data [31] finding
B(M1) = 10.6 B(E2)/Z2. The uncertainty in the constant of
Eq. (28) has been taken to be the standard deviation of the data
set, and for the calculation of the average the experimental
uncertainties of the g factors and the deformation parameters
have been included.

VI. DISCUSSION

A. The N = 82−126 major shell

In the following we critically examine the results obtained
in the previous sections and some conclusions that can be
drawn from them. One problem is the possibility of low-energy
orbital M1 strength lying above 4 MeV. However, the most
recent microscopic calculations from the Tübingen and Dubna
groups [35,85] predict only a small fraction of the strength in
the energy interval between about 4 and 6 MeV. This would
affect the sum rules on a 10% level, well within typical
uncertainties of the present approach. In the mass region
approaching γ softness, the Alaga rules and their (empirical)
relation to the parity of the excited states are certainly less
reliable, so the somewhat larger discrepancies between the
experimental summed B(M1) strengths and the present results
should not be overemphasized.

The good overall agreement of both the predicted energies
and strengths with the experimentally observed low-lying
magnetic dipole excitations permits us to draw an important
conclusion for the parameters: Since ωM1 depends on 	IV only,
but

∑
B(M1) depends on both gIV and 	IV, it is evident that

the identity of isoscalar and isovector parameters holds not
only for the product 	ISg

2
IS � 	IVg2

IV but also individually,
i.e., 	IS � 	IV and gIS � gIV, where we have neglected the
factor 4NZ/A2, which is close to unity.

In the sum-rule relations given above, both the energy and
the strength of the scissors mode depend only on key quantities
of collective excitations (ωD,ωE2, ωQ, gIS). It is therefore
natural to conclude that the scissors mode is a collective
excitation, a statement that has been disputed [33,35,86].
This conclusion—drawn from the gross properties of the
scissors mode—is in agreement with the results of a recent
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complementary statistical study of the fine structure. In the
latter analysis, Poissonian behavior of uncorrelated level
spacings has been revealed [87]. Similar findings were reported
for collective excitations near the Yrast line in deformed
nuclei [88,89].

B. Actinide nuclei

The g factors for 232Th and 238U are tabulated in the
compilation by Raghavan [81]; in addition, the g factor of
the 2+

1 state of 236U has been determined in [90] relative to
238U. The sum-rule approach corroborates the lowering of the
mean energy of the scissors mode observed in these nuclei. The
centroid of the scissors mode in 232Th and 236,238U is predicted
at 2.5, 2.6, and 2.6 MeV, respectively, and its summed strengths
are expected to be 2.7(5), 5.4(17), and 5.0(8) µ2

N , respectively.
These values need to be compared to the experimental ones
listed in Table II. Without showing detailed figures, we note
that the sum-rule expectations are in general agreement with
the experimental results. Only in 238U is the detected strength
somewhat smaller than predicted.

C. A < 140 nuclei

Figure 5 displays the experimental data as well as the
sum-rule prediction for medium-mass nuclei for both the mean
excitation energy (a) and the summed M1 strength (b). For the
nuclei 92Zr and 94Mo, the g factors for the sum-rule estimate
have been taken from [91] and [92], respectively. Throughout

FIG. 5. Comparison of the experimental values (solid circles)
and sum-rule predictions (open triangles) for the mean excitation
energy (a) and the summed orbital M1 strength (b) in nuclei with
A < 140. The dashed curve indicates again the approximated sum-
rule expectation from a scaling of the IVGDR energy according to
Eq. (24).

the entire mass region, the prediction follows the experimental
mean energies, but the sum rule overestimates the measured
results by a constant value of about 1 MeV with the exception
of 92Zr where the predicted mean energy is actually a little
below the experimental value. This finding could possibly be
attributed—to some degree—to the limited endpoint energy of
part of the photon scattering experiments, and one might argue
that some weaker transitions have been below the detection
threshold in the electron scattering experiments performed
in the lighter masses. The fact that the scaled excitation
energy of the IVGDR according to Eq. (24) is closer to the
experimental data towards heavier masses might support this
assertion (dashed line in Fig. 5).

The predicted summed M1 strengths scatter around the
measured values. While the model roughly follows the
experimental data in the Z > 50 nuclei, lighter masses show
significant deviations: In most nuclei, larger orbital M1
strengths are calculated than are deduced from the experiment.
The N = 52 nuclei 92Zr and 94Mo represent exceptions to this
rule so the low experimental strength cannot be attributed to
missing strength above 4 MeV in general.

In the work by Guliyev and coworkers [93], the deviations
between the experimental data and the results of the sum-rule
approach in the Te isotopic chain are traced back to the g

factors of the 2+
1 states, and it is suggested that they might

not serve as a measure of the orbital magnetic properties of the
scissors mode in weakly deformed nuclei. Such an argument is
consistent with microscopic analyses within the quasiparticle
RPA [93], the quasiparticle-phonon nuclear model [73], and
the interacting-boson model [69].

In lighter nuclei the shell-model calculation of Ref. [62] also
predicts some orbital M1 strength around 6 MeV for 56Fe. If
this strength from the shell-model calculation (KB3G residual
interaction, truncation t = 6) is included, one obtains a total
orbital M1 strength of about 0.5 µ2

N and a mean excitation
energy of 5.2 MeV.

D. Odd-mass nuclei

Another important extension of the present approach would
be to include odd-mass nuclei. The extraction of the intrinsic
parameters from the measured spectroscopic quantitites for
the sum rule approach is, however, challenging. A sum rule
within the interacting boson-fermion model by Ginocchio
and Leviatan [94] predicts a summed orbital M1 strength
in deformed odd-A nuclei comparable to that in the even-
mass neighbors. So far, complete strength distributions have
been reported only for a few cases [14,15,95,96] with some
simplifying assumptions to deduce the rough amount of
strength hidden in the experimental background of the highly
complex NRF spectra. Although the analysis proves to be
robust with respect to different experimental data, it appears
to fail for cases with comparably little fragmentation of the
observed dipole strength as found in 163Dy by Nord et al. [15].

E. Implications on the high-lying scissors mode strength

The high-lying strength was decoupled explicitly from the
low-lying M1 excitations by the introduction of the factor ξ
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which was deduced from the centroids of the IVGDR and
the ISGQR. Within a two-state model this factor permits
an estimate of the magnitude of the high-lying strength. If
Bl, ωl and Bh, ωh denote the strengths and energies of the
low- and high-lying scissors modes, respectively, the linearly
and inversely energy-weighted sum rules can be approximated
by

S+1 � Bh · ωh, S−1 � Bl

ωl

, (29)

where S+1 denotes the full linear energy-weighted sum rule
according to Eq. (10). However, including the correction
introduced in Eq. (18), one finds with

ωl �
√

Bh

Bl

ωh ωl ξ (30)

a relation for the energy-weighted sums

Bh ωh ≈ 1

ξ
Bl ωl. (31)

As already mentioned by Zawischa [2], the energy-weighted
sum rule for the high-lying strength was predicted to be a factor
of four higher than it is for the low-lying strength. This is also
in line with the schematic RPA calculations by Lo Iudice [36]
if values for the isovector coupling constant are assumed not
to be too large. Using our expressions for the centroid and
strength of the low-lying mode, one obtains

Bh ≈ 3

5π
r2

0 A5/3 mN

ω2
D

ωh

δ2 g2
IS . (32)

The excitation energy of the high-lying strength is taken from
the systematics of the IVGQR centroid, ωh � 130 A−1/3 MeV
[83]. A deformation dependence similar to that of the 0h̄ω

mode is predicted. Within this simple approach one can extract
a summed M1 strength of Bh ≈ 2 µ2

N at high energies for
a well deformed nucleus in the N = 82−126 mass region.
This is about 50% of the strength predicted by microscopic
calculations [33–35,85], which tend to yield higher values for
the low-lying strength as well, but it agrees with the analysis
of Ref. [36].

The strengths of both the high-lying and the low-lying mode
are proportional to the square of the deformation parameter.
But the relation for Bh is independent of both ϒ and ξ , i.e.,
the high-lying strength is unaffected by pairing correlations
and admixtures from low-lying states. Due to the absence of
ϒ and the strict δ2 dependence, one can formulate the energy-
weighted sum for the high-lying strength using the liquid-
drop (irrotational) moment of inertia as the mass parameter.
This has been pointed out by Lo Iudice and Richter [3,34].
Like the low-lying mode, Bh scales roughly with A4/3. This

suggests that experiments searching for Bh are most likely to
be successful in the strongly deformed lanthanide or actinide
nuclei. The experimental task of measuring the high-energy
mode is very challenging, as it will be highly fragmented.
An analysis of polarized proton scattering on the deformed
nucleus 154Sm indicates the presence of the IVGQR [97], from
which a strength of Bh � 3.5(6) µ2

N was derived on the basis
of the approach of Ref. [34] in reasonable agreement with
microscopic calculations as well as the present model. The
centroid of the IVGQR in that nucleus was found to be [1]
at 23.4(6) MeV. It was also pointed out in Ref. [1] that from
the measured isovector E2 strength exhausting 76(11)% of the
isovector E2 sum rule, the energy-weighted low-energy sum
rule of Moya de Guerra and Zamick [98] is exhausted on an
∼80% level.

VII. CONCLUSION

In summary, we have presented a phenomenological analy-
sis of the scissors mode in even-even nuclei based on sum-rule
techniques. Our analysis indicates the near equality of isoscalar
and isovector moments of inertia and gyromagnetic ratios for
the scissors mode and the ground-state band. By means of this
analysis, parameter-free relations for the mean energy and the
summed strength have been deduced that are in good accord
with the experimental findings in the N = 82−126 neutron
major shell and in the actinides. It is concluded that the scissors
mode is a collective excitation because its description depends
on collective quantities only.

An application of the sum-rule prediction to scissors
mode states in lighter nuclei with mostly smaller deformation
parameters is presented. We obtain in most cases larger values
for both the mean excitation energy and the summed strength
than those detected in the experiments.

Within a two-state model, some simple relations for the
predicted high-lying strength have been deduced. From the
sum rules, using the same parameters as for the low-energy
mode, one expects about 50% of the strength predicted
by microscopic model calculations. Experimental efforts to
establish the K = 1 magnetic dipole component of the IVGQR
are needed to finally reach a complete picture of the orbital
magnetic dipole strength in nuclei.
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