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Backbending phenomena in 132,134,136Ce with a pair-truncated shell model
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The backbending phenomena observed in Ce isotopes, 132,134,136Ce are investigated in terms of a pair-truncated
shell model, a fully microscopic theory that conserves the nucleon number and the total spin. The model
reproduces the backbending phenomena quite well, where the experimental bending point of 132Ce is spin 12 and
those of 134Ce and 136Ce are spin 10. In addition to high spin states, the theory provides a successful description of
energy levels for low-lying collective states as well as those electromagnetic properties, such as B(E2) branching
ratios and g factors.
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I. INTRODUCTION

Many of the nuclei around mass A = 130 have an irregular
yrast sequence in high-spin states, i.e., the backbending phe-
nomenon. Its basic mechanism is understood as a band crossing
between the ground-state band and the s band originating from
the alignment of two neutrons in 0h11/2 orbitals. As a result,
sudden decrease of level spacing and B(E2) values around the
10+

1 states is observed [1–8]. The nuclei in this mass region
show another interesting characteristic feature known as the γ

instability or weak triaxiality, which becomes manifest in the
energy staggering of even-odd spin states in quasi-γ bands and
in some forbidden transition rates between yrast and quasi-γ
bands.

During the past 20 years, many theoretical studies in the
mass A ∼ 130 region were carried out in terms of various
models. A widely used theory for describing even-even nuclei
is the interacting boson model (IBM) [9–21]. The low-lying
collective states were extensively studied in terms of the model.
The low-lying collective states were extensively studied, and
the complicated level schemes and electromagnetic properties
were well approximated in terms of the O(6) dynamical sym-
metry of the IBM Hamiltonian. A recent phenomenological
study [21], however, indicated that the nuclei around this
region might have an intermediate structure between the U(5)
and SU(3) limits. Whether the A ∼ 130 nuclei are described
by the O(6) limit or by the U(5)-SU(3) limits remains an
open question. A similar study was made using the fermion
dynamical symmetry model [22–24], where the even-even
nuclear states were constructed by angular momenta zero (S)
and two (D) collective pairs. This approach also reproduced
some properties of the low-lying states. However, the model
has deficiencies that structure of pairs is fixed irrespective of
dynamics and that the contribution of single-particle energies
is a constant.
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There exist other theoretical investigations, such as the SD

version of the pair-truncated shell model (PTSM) [25–30] and
the nucleon-pair shell model (NPSM) [31]. In Refs. [32–34],
the NPSM was applied to even-even nuclei around A = 130,
and the result agrees well with the experimental energy levels
and electromagnetic properties. Recently, systematic studies
have been carried out for the A ∼ 130 nuclei in the context of
the PTSM [30]. In this study, the effective interaction consists
of single particle energies and the monopole and quadrupole
pairing plus quadrupole-quadrupole (P + QQ) interactions,
whose strengths are assumed to be smoothly changed as
functions of the number of valence neutrons and/or protons.
Spectra of both yrast and quasi-γ bands for even-even Xe,
Ba, Ce, and Nd isotopes were reproduced very well, along
with intraband and interband B(E2) values. The same set of
interactions was simply applied to odd-mass nuclei, and an
excellent agreement with experiment for both energy spectra
and magnetic moments was given.

The most approaches for analyzing the backbending phe-
nomena in well-deformed rare-earth nuclei are based on mean
field frameworks. Various Hartree-Fock-Bogoliubov (HFB)
calculations using the P + QQ interactions described the
backbending phenomena successfully [35–38]. Conversely, in
the A ∼ 130 region there was no study in terms of the mean
field theories, because these approaches cannot adequately
describe the transitional nuclei. Thus, very few theoretical
approaches were made for the A ∼ 130 nuclei. For example, a
full-fledged shell model calculation for Xe isotopes 130–136Xe
was carried out under the assumption of N = Z = 64 subshell
closure [39]. This was a first attempt to describe both low-
lying collective states and backbending phenomena at high
spin on the same footing using a shell model. Quantum-
number-projected generator coordinate method calculations
for 130,132Xe were also carried out under the same circumstance
as the shell model calculation [40]. The result shows that the γ

degree of freedom plays an important role in describing these
nuclei, especially for the quasi-γ bands.

The sd-IBM, which has only s and d bosons as ingredients,
cannot describe the backbending phenomena, because they
have no room to take the spin-aligned two-quasiparticle
configurations into account. A few studies were made using
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an extended IBM, where one of the IBM bosons is replaced by
a pair of nucleons at high spin [41–44]. For the same reason,
the SD version of the PTSM is inadequate for a description
of high spin states. Thus, the SD + H version of the PTSM
was proposed to describe both low-lying collective states and
backbending phenomena at high spin on the same footing [45],
where the SD pair truncation scheme is extended to include the
H -pair, which is made of two 0h11/2 nucleons. The model was
applied to 132Ba, and the results were in excellent agreement
with experiment. Recently the PTSM has been extended for an
application to odd-odd nuclei. The model has denied the notion
of chiral bands appearing in low-lying states and revealed that
the yrast and yrare bands are not chiral partners [46].

The isotopic chain of Ce isotopes with N � 82 is of great
interest in nuclear structure physics because of the following
reasons. Both low-lying collective states and backbending
phenomena were studied experimentally in an extensive way.
The backbending occurs at spin 10 in 134,136Ce and at spin
12 in 132Ce. Furthermore, the magnetic rotation bands are
observed in 134,136Ce [7,47,48] and the superdeformed bands
in 132Ce [49,50]. A lot of theoretical investigations were also
carried out on these isotopes. There were some studies on the
low-lying states for Ce isotopes in terms of the IBM [11,12],
the NPSM within the SD subspace [33], and the SD version
of the PTSM [30], as mentioned above. For a description of
the backbending phenomena, the extended IBM calculation
was also made [42]. The superdeformed bands of 132Ce were
studied by use of the cranked HFB model [36], and energy
levels and electromagnetic properties were well investigated.

In this paper, we use the SD + H version of the PTSM to
calculate the energy spectra for 132,134,136Ce using the P + QQ

interaction as an effective interaction. The E2 transition rates
are calculated to give the results which are almost identical to
the O(6) limit of the IBM and g factors are also calculated and
predicted. The paper is organized as follows. In Sec. II, the
framework of the PTSM and its model space are described. In
Sec. III, the PTSM calculations are carried out for 132,134,136Ce.
The results are summarized in Sec. IV.

II. THEORETICAL FRAMEWORK

The nuclear shell model remains one of the most funda-
mental approaches for a microscopic description of nuclear
structure. It has been very successful to understand the
structure of light nuclei. Conversely, the model cannot be
immediately applied to medium and heavy nuclei except a
few nuclei lying near a shell closure. The main difficulty is the
uncontrollable problem of dimension explosion. To avoid this
problem, we must accept some kind of truncation schemes.
In the SD version of the PTSM, the shell model basis is
restricted to the SD subspace with S and D being collective
pairs. The S and D pair-creation operators are defined as
follows:

S† =
∑

j

αjA
†(0)
0 (jj ), (1)

D
†
M =

∑
j1j2

βj1j2A
†(2)
M (j1j2), (2)

where the structure coefficients α and β are obtained by means
of the variational procedure in the present approach. The
creation operator of a pair of nucleons in orbitals j1 and j2

with total angular momentum J and its projection M is given
by the following:

A
†(J )
M (j1j2) = [

c
†
j1
c
†
j2

](J )
M

, (3)

where c
†
j represents either a neutron-hole creation operator or a

proton-particle creation operator in an orbital j . The collective
states of even-even nuclei are created by applying the S and D

pair-creation operators to the closed-shell core |−〉 as follows:

|�(Iη)〉 = (S†)ns (D†)nd |−〉, (4)

where I is a total spin of the nuclear state and η an additional
quantum number required to uniquely specify the state. Here,
the necessary angular momentum coupling is exactly carried
out but abbreviated for notational simplicity. The number of
valence nucleon pairs, ns + nd , is fixed constant for a specific
nucleus, representing half the number of valence nucleons.
The validity of the SD subspace approximation has been
thoroughly investigated in Refs. [25–30].

As studied in the previous experimental studies [1,2],
the yrast bands of several A ∼ 130 nuclei show anomalous
behavior of level spacing at high spins, which arises due
to the band crossing between the ground-state band and the
aligned neutron (0h11/2)2 band, s band. For the description
of them, we need to extend the SD version of the PTSM so
as to accommodate the low-lying states and the backbending
phenomena, simultaneously. In the SD + H version of the
PTSM, a pair of nucleons in the 0h11/2 orbital is introduced in
addition to the ordinary S and D pairs. This model is regarded
as an improvement of the extended IBM by replacing all the
core bosons with explicit fermionic pairs.

The H -pair creation operator is defined as follows:

H
†
M = [

c
†
11/2c

†
11/2

](10)
M

, (5)

where two nucleons in 0h11/2 orbitals can even couple to
angular momenta other than spin J = 10, but the J = 10 pair
is assumed to be the most important. In contrast to the S and
D pairs, the H pair is noncollective, because it has a unique
structure consisting of 0h11/2 orbitals. Then, the SD + H pair
state is written as follows:

|�(Iη)〉 = (S†)ns (D†)nd (H †)nh |−〉, (6)

where I and η denote the same as before, and 2(ns + nd +
nh) gives the number of valence nucleons. Here angular
momentum coupling is exactly carried out, but it is abbreviated
to denote as before. In the present calculation, the number of
the H pairs is limited to one (i.e., nh = 1) for each kind of
nucleon space. This state contributes to describing nuclear
states of even-even nuclei, in addition to the states given by
Eq. (4). Through the Schmidt ortho-normalization procedure,
states of Eqs. (4) and (6) are ortho-normalized to each other in
neutron or proton space with a total spin I .

In the present study, we employ the P + QQ interaction as
an effective interaction, which is frequently used for medium
and heavy nuclei. The effective shell model Hamiltonian is
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written as follows:

H = Hν + Hπ + Hνπ, (7)

where Hν,Hπ , and Hνπ represent the neutron interaction,
the proton interaction, and the neutron-proton interaction,
respectively. The interaction among like nucleons Hτ (τ = ν or
π ) consists of spherical single-particle energies, the monopole-
pairing (MP ) interaction, the quadrupole-pairing (QP ) inter-
action, and the quadrupole-quadrupole (QQ) interaction:

Hτ =
∑
jm

εjτ c
†
jmτ cjmτ − G0τP

†(0)
τ P (0)

τ

−G2τP
†(2)
τ · P̃ (2)

τ − κτ : Qτ · Qτ :, (8)

where :: denotes normal ordering. Here the monopole-pairng
operator P †(0)

τ , the quadrupole-pairing operators P
†(2)
Mτ , P̃

(2)
Mτ ,

and the quadrupole operator QMτ are defined as follows:

P †(0)
τ =

∑
j

√
2j + 1

2
A

†(0)
0τ (jj ), (9)

P
†(2)
Mτ =

∑
j1j2

Qj1j2A
†(2)
Mτ (j1j2), (10)

P̃
(2)
Mτ = (−)MP

(2)
−Mτ , (11)

QMτ =
∑
j1j2

Qj1j2

[
c
†
j1τ

c̃j2τ

](2)
M

,

(c̃jmτ = (−1)j−mcj−mτ ), (12)

Qj1j2 = −〈j1‖r2Y (2)‖j2〉√
5

, (13)

where A
†(J )
Mτ (j1j2) stands for the creation operator of a pair of

nucleons defined in Eq. (3). We assume that the interaction
between neutrons and protons Hνπ is just given by the QQ

interaction,

Hνπ = −κνπQν · Qπ, (14)

where the neutron quadrupole operator Qν is written in terms
of neutron-hole operators. As for the single-particle basis
states, the harmonic oscillator basis states with the oscillator
parameter b = √

h̄/Mω are employed.

III. NUMERICAL RESULTS

The Ce isotopes of mass A ∼ 130 region have 8 valence
protons outside the closed shell Z = 50 and several neutron
holes with respect to the closed shell N = 82. Because the
valence neutron holes and proton particles occupy the 0g7/2,
1d5/2, 1d3/2, 0h11/2, and 2s1/2 orbitals, we take the full
50 ∼ 82 configuration spaces for both neutrons and protons.
The adopted single-particle energies are listed in Table I,
which are extracted from experimental excitation energies in
Refs. [51–53]. In this study valence neutrons are treated as
holes and valence protons, as particles.

The adopted strengths of the MP , QP , and QQ inter-
actions are shown in Table II. These interaction strengths
are adjusted so as to reproduce the experimental excitation

TABLE I. Adopted single-particle energies for neutron holes
and proton particles, which are extracted from experiment [51–53]
(in MeV).

j 2s1/2 0h11/2 1d3/2 1d5/2 0g7/2

εν 0.332 0.242 0.000 1.655 2.434
επ 2.990 2.793 2.708 0.962 0.000

energies of the 2+
1 , 4+

1 , 6+
1 , 8+

1 , 10+
1 and 12+

1 states in the
yrast band and the 2+

2 , 3+
1 , 4+

2 and 5+
1 states in the quasi-γ

band. Here we neglect the levels that are not experimentally
confirmed. Furthermore, the force strengths, G0τ , G2τ , κτ , and
κνπ , are assumed to have a linear dependence on the number of
valence nucleons. Although the force strengths of the neutron
MP interaction G0ν are the same for all the Ce isotopes,
those of the proton MP interaction G0π and both neutron
and proton QP interaction G2ν and G2π are changed as
functions of the neutron number. This dependence is necessary
to obtain a better agreement between the theoretical energy
levels and experimental data for Ce isotopes. As discussed
later, proton quadrupole excitations play important roles in the
low-lying structure of these nuclei. To describe complicated
level schemes for each nucleus, we need to slightly change the
force strengths of the proton MP interaction.

The SD + H version of the PTSM was first applied
to 132Ba, where the backbending phenomenon was well
reproduced [45]. The MP interactions of the present study are
smaller than those used in 132Ba, where (in MeV) G0ν = 0.150
and G0π = 0.170 were used. As compared to other previous
studies [33,54], the force strengths of the MP interaction are
also smaller. For instance, the NPSM calculation in the SD

space [33] uses G0ν = 0.180 and G0π = 0.131. In Ref. [54],
the values G0ν = G0π = 23/A MeV were used for nuclei in
the A ∼ 130 region. If we use such larger strengths of the MP

interactions, our theory cannot reproduce both experimental
energy spectra and some electromagnetic transition rates,
simultaneously.

The energy spectra obtained by the PTSM are shown on
the right side in Figs. 1–3. On the left side are experimental
levels taken from Refs. [4,7,11,56–59]. For construction of the
level scheme of the quasi-γ band, we take the state with spin
I , which has the largest E2 transition rate to the state with
spin I − 2. In 136Ce, the level spacing between the yrast 8+
and 10+ states is very small in experiment (140 keV [7]).
Our theoretical energy levels match the irregularity of the
experimental data (19.1 keV). Although the theoretical level
spacing between the 2+

2 and 3+
1 states on the quasi-γ band is a

bit larger than that in the experiment, the relative positions of

TABLE II. Adopted strengths of the MP interactions (in MeV)
and QP and QQ interactions (both in MeV/b4) for 132,134,136Ce.

Nucleus G0ν G2ν κν G0π G2π κπ κνπ

132Ce 0.150 0.048 0.110 0.110 0.030 0.035 −0.110
134Ce 0.150 0.044 0.110 0.115 0.025 0.035 −0.110
136Ce 0.150 0.040 0.110 0.120 0.020 0.035 −0.110
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FIG. 1. Comparison of experimental energy spectrum (expt.) with
the PTSM results (PTSM) for 136Ce. The experimental data are taken
from Ref. [7,56].

the 2+
2 and 3+

1 states to the yrast states are well described. Our
theoretical result shows the energy staggering of even-odd spin
states on the quasi-γ band, which indicates the γ instability
in low-lying states. In 134Ce, the even-spin yrast sequence is
well reproduced except for the 12+ state, which is lower than
that in the experiment. The calculated quasi-γ band appears
somewhat lower in energy than that in the experiment, but the
5+

1 and 6+
2 states are higher in energy. However, our results

give a good description of the staggering seen in 2+
2 , 3+

1 , 4+
2 ,

and 5+
1 states in the quasi-γ band. In 132Ce, the experimental

level spacing between the 8+
1 and 10+

1 states becomes large.
On the contrary the spacing between the 10+

1 and 12+
1 states

becomes small, which is in contrast with the cases for 136Ce
and 134Ce. In spite of the differences in energy levels between
132Ce and the others, our calculation reproduces quite well
the behavior of the energy levels for the yrast band. Like
134Ce, the even-odd staggering in the quasi-γ band is well
reproduced. The yrast states of Ce isotopes were also studied
by the extended IBM [42], and good results such as ours were
obtained.

The backbending phenomena can be clearly seen in the so-
called backbending plot. Experimental γ -ray energies versus
spin I are compared with the PTSM results along the yrast
sequence in Fig. 4. For 132Ce and 136Ce, the calculated levels
agree quite well with experimental ones; our calculations
successfully reproduce the sudden decrease of level spacing
occurring between the 10+

1 and 12+
1 states for 132Ce and

between the 8+
1 and 10+

1 states for 136Ce. In the case of 134Ce,
the experimental level spacing between the 8+

1 and 10+
1 states
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FIG. 2. Comparison of experimental energy spectrum (expt.) with
the PTSM results (PTSM) for 134Ce. The experimental data are taken
from Ref. [4,57].

is small. Conversely, our calculation provides the undesired
results; the level spacings between the 8+

1 and 10+
1 states and

between the 10+
1 and 12+

1 states are small. It is difficult to
produce such a rapid change as seen in experiment when
changing from 136Ce to 132Ce, because in the present study
the strengths of effective interactions are assumed to be linear
functions of the valence neutron number.

The E2 transition operator is defined as follows:

T (E2; µ) = eνQνµ + eπQπµ, (15)

where eτ represents the effective charge of the nucleon, and
the operator Qτ is the quadrupole operator defined in Eq. (12).
As for the effective charges, we use eν = −1.2 e and eπ =
+2.2 e, in accordance with the conventional relation eν = −δe

and eπ = (1 + δ)e [55]. They are fixed so as to reproduce the
experimental B(E2; 2+

1 → 0+
1 ) value of 134Ce. Note that the

neutron effective charge is chosen to be negative, as valence
neutrons are treated as holes.

In Fig. 5, calculated B(E2) values in the yrast band are
compared with the experimental data. We can reproduce
the B(E2; 2+

1 → 0+
1 ) value for 136Ce and the B(E2; 10+

1 →
8+

1 ) values for 132Ce and 134Ce. However, there are many
disagreements between the theoretical B(E2) values and
experimental data. In particular, for all Ce isotopes the
experimental B(E2) values for the 4+

1 → 2+
1 transition are

smaller than those for the 2+
1 → 0+

1 transition, whereas the
opposite behavior is shown in the PTSM result. We suspect that
experimental data might be erroneous, because theoretically
we believe that it is impossible to produce a smaller value for
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FIG. 3. Comparison of experimental energy spectrum (expt.) with
the PTSM results (PTSM) for 132Ce. The experimental data are taken
from Ref. [11,58,59].

B(E2; 4+
1 → 2+

1 ) than B(E2; 2+
1 → 0+

1 ) in any existing col-
lective models.

For instance, let us consider the results of the IBM1, which
is well known to explain several properties of a wide variety
of medium and heavy nuclei. In the model, we have three
dynamical symmetry limits, the U(5), the SU(3), and the
O(6) limits, which well describe rotational nuclei, vibrational
nuclei, and γ -soft nuclei, respectively. For each limit, we

derive the formulae for the B(E2; 4+
1 → 2+

1 )/B(E2; 2+
1 →

0+
1 ) ratios [see Ref. [9], Eq. (2.140)] as follows:

B
(
E2; 4+

1 → 2+
1

)

B
(
E2; 2+

1 → 0+
1

)

=




2
(N − 1)

N
[for U(5)]

10

7

(N − 1)(2N + 5)

N (2N + 3)
[for SU(3)],

10

7

(N − 1)(N + 5)

N (N + 4)
[for O(6)]

(16)

where N is half the number of valence nucleons. For larger
N , the ratios of 2, 10/7, and 10/7 are obtained for the
U(5), the SU(3), and the O(6) limits, respectively. The IBM
always predicts that the B(E2; 4+

1 → 2+
1 ) is larger than the

B(E2; 2+
1 → 0+

1 ). Thus this anomalous behavior of B(E2)
values cannot be explained also by the IBM.

A feature of the backbending is manifested as an appearance
of a sudden drop in the experimental B(E2) values, and such
a behavior is well simulated by the PTSM. It should be noted
that our calculations give rapid drops of the B(E2) values at
spin 10 for all nuclei 132,134,136Ce. Although the level spacing
between the 8+

1 and 10+
1 states is large for 132Ce, the B(E2)

value of the 10+
1 → 8+

1 transition is very small. It indicates
that the internal structure drastically changes from the 8+

1 to
the 10+

1 states. It is inferred that the basic structure is the same
for all Ce isotopes although they have backbending occurring
at different angular momenta.

In Table III, the relative B(E2) values in low-lying states
calculated for 132,134,136Ce are compared with experiment and
also with the O(6) limit of the IBM. For 134Ce and 132Ce,
good agreements between theoretical relative B(E2) values
and experimental data are achieved. Especially, forbidden E2
interband transition rates are well reproduced. Note that no
experimental data are available for 136Ce. The PTSM predicts

0 0.5 1
0

4

8

12

16

0 0.5 1 0 0.5 1

I  
h
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( 
 )

E

FIG. 4. Comparison of γ -ray energies
Eγ [Eγ = E(I + 1) − E(I − 1)] versus angular
momentum I in experiment (expt.) with the
PTSM results (PTSM) for 132,134,136Ce. The ex-
perimental data are taken from Refs. [4,7,58].
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the results very close to the O(6) limit, which is known to
describe γ -unstable nuclei.

The magnetic dipole operator is given by the following:

µ = µN

∑
τ=ν,π

[g�τ j τ + (gsτ − g�τ )sτ ], (17)

where µN (= eh̄/2mc) is the nuclear magneton and g�τ (gsτ )
is the gyromagnetic ratio for the orbital angular momentum
(spin). The operators j τ and sτ stand for the angular
momentum and spin operators, respectively. The adopted
gyromagnetic ratios for orbital angular momenta are g�ν =
0.00 and g�π = 1.00, and those for spins are gsν = −2.68
and gsπ = 3.91, which are free nucleon g factors attenuated
by a factor of 0.7. The theoretical results of g factors of the
even-spin yrast states are shown in Fig. 6 together with the
observed g factors of the 10+

1 states.
For all Ce isotopes, the g factor along the even-spin yrast

line slightly increases as spin I goes up to 8 and drops suddenly
at spin 10. The negative values of the g factor reflect the
alignment of the 0h11/2 neutrons. These results are similar to
the previous PTSM calculation for 132Ba [45]. With respect
to the 10+

2 states appearing at 3300, 3620, and 3950 keV in
theory, we obtain the g factors of +1.23, +1.24, and +1.29
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FIG. 6. Comparison of the calculated g factors in the PTSM
(PTSM) with the measured values in the yrast states (expt.) for
132,134,136Ce. The experimental data are taken from Refs. [2,62].

for 132Ce, 134Ce, and 136Ce, respectively. The large positive g

factors indicate that the theoretically predicted 10+
2 states have

the alignment of two 0h11/2 protons.

TABLE III. Comparison of calculated relative B(E2) values
for 132,134,136Ce, experimental data (expt.), and the prediction of
O(6) limit of the IBM. The experimental data are taken from
Refs. [11,57]. No experimental data are available for 136Ce.

132Ce 134Ce 136Ce O(6)

J π
i → J π

f PTSM expt. PTSM expt. PTSM

2+
2 → 2+

1 100 100 100 100 100 100

→ 0+
1 1.5 6.1 1.1 5.4 3.1 0

3+
1 → 2+

2 100 100 100 100 100 100

→ 4+
1 54 29.1(7) 50 25.0 48 40

→ 2+
1 1.4 4.0 0.75 2.2 2.5 0

4+
2 → 2+

2 100 100 100 100 100 100

→ 3+
1 6.6 0.039 1.5 0

→ 4+
1 68 59 72 55.0 68 91

→ 2+
1 0.70 0.42 1.5 0.63 5.3 0

0+
2 → 2+

2 100 100 100 100 100 100

→ 2+
1 1.7 0.56 2.0 �2.7 4.8 0
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FIG. 7. The expectation numbers of Dτ pairs (left panel) and Hτ pairs (right panel) calculated in the PTSM for the yrast bands of 132,134,136Ce.
The solid line is for neutrons, and the dashed line for protons.

The internal changes of the structure for Ce isotopes can be
seen by inspecting the expectation values of the number of Dτ

and Hτ pairs, which are shown as functions of spin I in Fig. 7.
For every nucleus, the S and D pairs are dominant in the states
up to spin 8, so that the SD truncation scheme works well for
the description of low-lying states. Furthermore, because the
number of the proton D(Dπ ) pairs rapidly increases compared
to that of the neutron D(Dν) pairs, the proton quadrupole
excitations are responsible for the low-lying states especially
for 136Ce. This interpretation is consistent with the previous
PTSM calculation for 132Ba [45]. Above spin 10, the sudden
increase of the neutron H (Hν) pair implies that decoupling of
two 0h11/2 neutrons yields the backbending. From the results
of the E2 transitions, it is found that the internal structure of
132Ce drastically changes when spin increases from 8 to 10. A
similar thing is also confirmed in the expectation values of the
number of the D and H pairs. This concludes that for 132Ce
the internal structure drastically changes from the 8+

1 to the
10+

1 states like the other nuclei.

IV. SUMMARY

In this article the level schemes and electromagnetic
properties observed in 132,134,136Ce were investigated in terms
of the SD + H version of the pair-truncated shell model
(PTSM). In the model, the shell model basis is restricted to
the SD + H subspace where the S and D collective pairs
and noncollective (h11/2)2 pairs (H pairs) are used as the

building blocks. The effective Hamiltonian consists of the
single-particle energies and the P + QQ interaction, whose
strengths are linearly changed as the number of valence
neutrons.

Concerning the high-spin states, the backbending was
experimentally observed at spin 10 for 134,136Ce and at spin
12 for 132Ce. Our calculation reproduced quite well the energy
levels for the yrast bands, except for the level spacing between
the 10+

1 and 12+
1 states of 134Ce. Experimentally, the rapid drop

of B(E2) values occurred at the point of backbending for 134Ce
and 136Ce, and the theoretical results exhibited the decrease of
B(E2) values between the 10+

1 and 8+
1 states. However, in

132Ce backbending occurred at spin 12, whereas the B(E2)
value dropped at spin 10. We infer that the collective rotation
delays the appearance of backbending. We also calculated g

factors, and excellent agreement with experimental values at
spin 10 for 136,134Ce was obtained. Experimental confirmation
of our theoretical result is desirable for 132Ce.

With respect to the low-lying states, good agreements be-
tween theoretical spectra and experimental data were achieved.
Our results especially well described the staggering seen in 2+

2 ,
3+

1 , 4+
2 , and 5+

1 states in the quasi-γ band, which characterizes
the γ -instability in low-lying states. The theoretical results
of intraband and interband transition rates also agreed well
with the experimental data. However, the theoretical pre-
dictions did not succeed in reproducing the absolute B(E2)
values for the low-lying states. In the conventional collective
models, it is quite difficult to produce the B(E2; 4+

1 → 2+
1 )
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value, which is smaller than the B(E2; 2+
1 → 0+

1 ) value,
and there is a possibility that experimental absolute E2
transition strengths for all Ce isotopes are erroneous. More
detailed measurements are awaited to bring this controversy to
an end.

The features of both low-lying and high-spin states were
well interpreted in terms of the expectation values of the
number of D and H pairs. The S and D collective pairs
play essential roles in describing the low-lying states, whereas
the effect of the alignment of two 0h11/2 neutrons becomes
apparent above 10+ states. We conclude that the truncation

scheme extended to the SD + H subspace by including the
intruder configurations provides an effective and minimal shell
model space just enough to describe the yrast band, the γ band,
and the backbending.
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