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Deformations in N = 14 isotones
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Systematic analysis of deformations in neutron-rich N = 14 isotones was done based on the method of
antisymmetrized molecular dynamics. The property of the shape coexistence in 28Si, which is known to have
the oblate ground state and the prolate excited states, was successfully described. The results suggest that the
shape coexistence may occur also in neutron-rich N = 14 nuclei as well as 28Si. It was found that the oblate
neutron shapes are favored because of the spin-orbit force in most of N = 14 isotones. Q moments and E2
transition strengths in the neutron-rich nuclei were discussed in relation to the intrinsic deformations, and a
possible difference between the proton and neutron deformations in 24Ne was proposed.
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I. INTRODUCTION

The shape coexistence in 28Si has been studied for a long
time. At the early stage, the oblate and prolate solutions
of Hartree-Fock calculations are associated with the ground
0+ state and the 0+

3 state at 6.691 MeV, respectively [1].
Experimentally, the ground band is known to be oblate from the
sign of the quadrupole moment of the 2+

1 state [2,3], whereas
the band-head 0+

3 in the prolate band has been identified by γ

transition measurements [4]. In addition to static quadrupole
deformation, the nonaxial deformation and vibration of 28Si
have been recently studied in the detailed analysis of the
inelastic scattering by use of the coupled-channel method with
the soft rotator model [5].

The coexistence of oblate and prolate states in 28Si can
be described by the shell gap at N = 14 and Z = 14 of
Nilsson orbits in the deformed system [6]. A variety of
shapes is considered to arise from the nature of the shell
structure in N = 14 and/or Z = 14 systems, where a half
of the sd shell is occupied. It is natural to expect that shape
coexistence phenomena may appear also in neutron-rich nuclei
with N = 14. From the coexistence of oblate and prolate
states in 28Si, one may expect that this trend of the oblate
and prolate neutron structure might survive in other N = 14
isotones. The primary interest in the present article is on the
deformations of the proton and neutron densities in neutron
excess N = 14 nuclei. How does the oblate neutron structure
in the ground band of 28Si change with the decrease of
proton number toward the neutron-rich region—and whether
or not the coexistence of oblate and prolate deformations
occurs? The neutron deformations should be sensitive to the
proton structure, therefore, the shape coexistence of the
neutron structure may depend on the proton number. If an
oblate neutron shape is favored also in neutron-rich nucleus as
well as in 28Si, one may meet another question: is the proton
shape consistent with the neutron one? In this sense, 24Ne is an
attractive nucleus, where the proton shape would be different
from the neutron shape, because the prolate shape of proton
density is favored in Z = 10 systems as seen in 20Ne.

In the study of proton and neutron deformations, the
experimental data of electric moments such as B(E2) are
useful to extract information about the intrinsic deformations.

Recently, B(E2; 2+ → 0+) in 24Si has been measured by
Coulomb excitation [7]. The measured B(E2) in 24Si is almost
as large as the experimental value of B(E2) in 24Ne. The ratio
B(E2; 24Si)/B(E2; 24Ne) �1 is much smaller than a naive
expectation based on a collective model picture that B(E2)
is proportional to (N/Z)2 ≈ 2. If these nuclei are mirror
symmetric, the ratio B(E2; 24Si)/B(E2; 24Ne) �1 lead to a
possible difference between proton and neutron deformations
in 24Ne.

The coexistence of the oblate and prolate solutions in 28Si
has been confirmed by many theoretical calculations such as
Nilsson-Strutinsky calculations [8], Hartree-Fock-Bogoliubov
[9], and α-cluster model approaches [10,11]. Although mean
field approaches are useful for systematic study of deforma-
tions, their applicability to very light nuclei is not obvious. In
the light nuclear region, we remind readers of the importance of
cluster aspect, which closely relates with the deformations. The
cluster aspect has been suggested also in light neutron-rich nu-
clei as well as stable nuclei. For example, it is well known that
20Ne has an 16O+α cluster structure, whereas the development
of clustering was suggested in neutron-rich B isotopes. The
cluster aspect and the shape coexistence of even-even N = Z

nuclei has been studied by α-cluster models [10,11]. 7α-cluster
model calculations were applied to 28Si and successfully
describe an exotic shape with D5h symmetry [10,12], which is
associated with the Kπ = 5− band observed in γ transitions
[4]. Although the properties of the oblate and prolate states
were described by the 7α-cluster models [10,11], however,
many 7α-cluster calculations failed to reproduce the order
of the oblate and prolate solutions in 28Si. Namely, in most of
the α-cluster calculations, the prolate solutions are lower than
the oblate solutions except for few calculations with Brink-
Boeker forces [10]. For the oblate property of the ground
state in 28Si, it is important to incorporate the effect of
spin-orbit force, which is omitted within the α-cluster models.
Furthermore, the cluster models are not suitable for the
systematic study of unstable nuclei, because they rely on the
assumption of existence of cluster cores.

For the systematic structure study of light nuclei, one of
the powerful approaches is the method of antisymmetrized
molecular dynamics (AMD). The applicability of this method
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for unstable nuclei has been proved in many works [13–16].
In addition to description of deformations and cluster aspect
in light nuclei, this method has an advantage that electric
moments can be directly related with structure change based
on the microscopic treatment of spin-parity projection without
introducing effective charges.

In this article, we study the deformations of N = 14
isotones while focusing on the coexistence of the oblate and
prolate neutron structure. We pay attention to reproduction
of the order of oblate and prolate solutions, which coexist in
28Si, and discuss the effect of the spin-orbit force. We analyze
the systematics of deformations in the neutron excess nuclei
in relation to the observables such as Q moments and E2
transition strength. This article is organized as follows. In the
next section, the formulation of AMD is briefly explained.
We show the theoretical results and give comparisons with
the experimental data in Sec. IV. In Sec. V, we analyze the
instrinsic structure and discuss the lowering mechanism of the
oblate state within the AMD framework. Finally, a summary
is given in Sec. VI.

II. FORMULATION

Here we briefly explain the formulations of the present
calculations. Details of the formulation of AMD methods for
nuclear structure studies are explained in Refs. [13,15]. The
present calculations are basically same as those in Ref. [13].

The wave function of a system with a mass number A is
written by a superposition of AMD wave functions �AMD. An
AMD wave function is given by a single Slater determinant of
Gaussian wave packets as follows:

�AMD(Z) = 1√
A!

A{ϕ1, ϕ2, . . . , ϕA}, (1)

where the ith single-particle wave function is written as
follows:

ϕi = φXi
χiτi, (2)

φXi
(rj ) ∝ exp

{
−ν

(
rj − Xi√

ν

)2
}

, (3)

χi =
(

1

2
+ ξi

)
χ↑ +

(
1

2
− ξi

)
χ↓. (4)

The isospin function τi is fixed to be up(proton) or
down(neutron), and the orientation of intrinsic spin ξi is fixed
to be 1/2 or −1/2 in the present calculations as done in Ref.
[13]. The spatial part is represented by complex variational
parameters, X1i , X2i , X3i , which indicate the centers of
Gaussian wave packets.

In the AMD model, all the centers of single-nucleon
Gaussians are treated independently as the complex variational
parameters. Thus, this method is based completely on single
nucleons and therefore it does not rely on the assumption of
the existence of cluster cores. In the sense that a single
AMD wave function is written by a Slater determinant of
Gaussians, the AMD method is regarded as an extended model
of Bloch-Brink cluster model [17]. Here we note that the

Gaussian center is expressed by the complex parameter Xi ,
which contains a real part and an imaginary part. It means an
extension of the model space, because the degrees of freedom
are twice of the case that Gaussian centers are given by real
values as in usual cluster models. If we ignore the effect of
antisymmetrization, the position Di and the momentum Ki of
the ith single-nucleon wave packets are expressed by the real
and imaginary parts of Xi , respectively, as follows:

Di ≡ 〈φXi
|r|φXi

〉
〈φXi

|φXi
〉 = Re(Xi)√

ν

Ki ≡ 〈φXi
|p|φXi

〉
〈φXi

|φXi
〉 = 2h̄

√
ν Im(Xi). (5)

In the nuclear structure study with the AMD, the imaginary
parts of Z are essential to describe the rotation motion of
the system. They are important to incorporate the effect of
spin-orbit force and to describe high-spin states.

We perform energy variation for a parity-eigen state,
P ±�AMD ≡ �±

AMD, projected from an AMD wave function
by using the frictional cooling method [13]. We consider the
AMD wave function obtained by the energy variation as the
intrinsic state, and total-angular-momentum projection(P J

MK )
is performed after the variation to calculate the expecta-
tion values of operators such as energies and moments.
In the present calculations, the parity projection is done
before the variation, but the total-angular-momentum pro-
jection is performed after the variation. In many of N =
14 isotones, two local minimum solutions are found in
the energy variation. In such cases, we diagonalize the
Hamiltonian and norm matrices, 〈P J

MK ′�
′±
AMD|H |P J

MK ′′�
′′±
AMD〉

and 〈P J
MK ′�

′±
AMD|P J

MK ′′�
′′±
AMD〉, with respect to the obtained

intrinsic wave functions (�′
AMD,�′′

AMD) and the K quantum
(K ′,K ′′). After the diagonalization the ground and excited
bands are obtained.

The present scheme is the variation after projection with
respect to the parity projection, but it is the method of the total-
angular-momentum projection after the variation (PAV). If the
intrinsic spin orientations of all single-particle wave functions
are treated as variational parameters, the PAV calculations
tend to give small intrinsic deformations. In fact, within such
a framework (free intrinsic spins in a PAV framework), the
AMD calculations of N = 14 isotones give almost spherical
neutron deformations with the d5/2-shell closed configuration
and fail to describe the excited states such as 2+

1 and 4+
1 in

28Si. These spherical solutions are consistent with the recent
results of fermionic molecular dynamics [18,19] where the
wave functions are similar to those of AMD. Conversely,
in a framework of the variation after spin-parity projection,
intrinsic deformations are generally more pronounced as is
mentioned also in Ref. [19]. The full variation after spin-parity
projection with free intrinsic spins is one of the powerful
tools, as shown in the study of 12C [20]; however, it takes
much computational time and is difficult to apply to heavier
nuclei. Instead, in the present article, we perform the AMD
calculations within a PAV framework in a sense of total-
angular-momentum with fixed intrinsic spins.
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III. INTERACTIONS

The effective nuclear interactions adopted in the present
work consist of the central force, the spin-orbit force, and
Coulomb force. We adopt the MV1 force [21] as the central
force. The MV1 force contains a zero-range three-body force
in addition to the two-body interaction. The Bartlett and
Heisenberg terms are chosen to be b = h = 0. We use a
parameter set, case 1 of MV1 force with the Majorana
parameter m = 0.62. Concerning the spin-orbit force, the same
form of the two-range Gaussian as the G3RS force [22] is
adopted. The strengths of the spin-orbit force, uI = −uII ≡
uls = 900, and uls = 2800 MeV are used.

IV. RESULTS

We calculate the natural parity states of N = 14 nuclei,19B,
20C, 22O, 24Ne, and 28Si, with the AMD method. The width
parameters ν = 0.145, 0.15, 0.150, 0.155, and 0.15 are chosen
for 19B, 20C, 22O, 24Ne, and 28Si, respectively, for both the
calculations with uls = 900 and uls = 2800 MeV so as to
minimize the energy of each nucleus.

In these N = 14 nuclei, we find two local minimum
solutions with oblate and prolate deformations of neutron
density, except for the results of 20C and 22O with uls =
2800 MeV. It signifies the trend of the shape coexistence of
neutron structure in the N = 14 isotones. The feature of the
shape coexistence originates in the nature of N = 14 neutron
structure.

After performing the total-angular-momentum projection
and the diagonalization for the obtained oblate and prolate
states, we obtain rotational bands, Kπ = 3/2−

1 and 3/2−
2 bands

in 19B and Kπ = 0+
1 and 0+

2 bands in 24Ne and 28Si, from the
two local minimum solutions. In the calculations of 20C and
22O with the stronger spin-orbit force uls = 2800 MeV, the
shape coexistence phenomena disappear and only one intrinsic
state is obtained by the energy variation in each nucleus. In the
calculations with uls = 2800 MeV, the lowest states of 22O and
24Ne have small prolate deformations of neutron density. As
mentioned later, these states with “small prolate deformations”
should be classified as the “oblate” states in the analysis of the
shape coexistence in N = 14 systems, because their properties
are similar to those of the oblate states of other N = 14 nuclei.
Therefore, in this article we call these lowest states of 22O and
24Ne “oblate.”

The energies of the band-head states are shown in Fig. 1.
In the results with uls = 900 MeV, we find that oblate and
prolate bands coexist in those N = 14 nuclei. The oblate and
prolate bands are almost degenerate in 20C and 22O, whereas in
19B, 24Ne, and 28Si the prolate bands are lower than the oblate
ones. With the stronger spin-orbit force uls = 2800 MeV, the
“oblate” solutions are the lowest in all of these nuclei. Namely,
the ground bands have the “oblate” neutron shapes. The prolate
bands appear as excited bands in 19B, 24Ne, and 28Si. We find
no prolate solutions in 20C and 22O in the calculation with
uls = 2800 MeV.

The ground state of 28Si is experimentally known to
be oblate. The order of the oblate and prolate bands is
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FIG. 1. Calculated binding energies for the oblate (o) and prolate
(p) states. The energies are of the band-head states, J ± = 3/2− in 19B
and the 0+ states in 20C, 22O, 24Ne, and 28Si. The results with uls =
900 MeV and (uls = 2800 MeV) are shown on the left and right,
respectively. Although the “oblate” (“o”) states in 22O and 24Ne
have small prolate deformations of neutron density, these states are
attributed to the oblate neutron structure in N = 14 systems. The
details are described in the text.

well reproduced by the calculations with uls = 2800 MeV.
Conversely, the calculations with uls = 900 MeV tend to
relatively overestimate the energy of the oblate bands, and
they fail to reproduce the order of the oblate and prolate
solutions in 28Si. Comparing the results with uls = 900 MeV
and uls = 2800 MeV, it is found that the relative energy of the
oblate and prolate states in N = 14 system is very sensitive
to the strength of the spin-orbit force. To describe the oblate
feature of the ground state of 28Si, the effect of the spin-orbit
force is significant as follows. In comparison of the results for
the stronger spin-orbit force (uls = 2800 MeV) with those for
weaker one (uls = 900 MeV) in Fig. 1, we find that the energy
gains in the oblate states are as large as about 10 MeV, whereas
the energies of prolate states are almost unchanged with the
increase of the strength of the spin-orbit force. As shown in
Table I, the absolute value of the spin-orbit term is much larger
in the oblate states than in the prolate states. It indicates that the
energy gain of the spin-orbit force in the oblate state is essential
to describe the level structure of 28Si. The stronger spin-orbit
force uls = 2800 is appropriate in the present framework for
describing the order of the oblate and prolate levels in 28Si.
We discuss the lowering mechanism of the oblate states in
Sec. V. Next, we show the level scheme obtained with uls =
2800 MeV in Fig. 2.

In 19B, we predict the coexistence of oblate and prolate
bands. In the previous AMD calculations of B isotopes [13],
the prolate shape in the ground state was predicted in 19B. This
is because the adopted spin-orbit force was too weak in the
previous calculations. Conversely, when we use the stronger
spin-orbit force, which reproduces the order of the oblate and
prolate bands in 28Si, we obtain the ground state of 19B with
the oblate neutron shape, whereas the prolately deformed state
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TABLE I. Expectation values (MeV) of the spin-orbit force in the oblate
and prolate states obtained with uls = 2800 MeV. Each value is for the band-
head state obtained by spin-parity projection from an single AMD wave
function which corresponds to “oblate” or prolate solution. The superposition
of the oblate and prolate solutions is not done.

19B 20C 22O 24Ne 28Si

“oblate” −15.9 −18.8 −22.2 −17.9 −23.9
“prolate“ −2.6 — — −9.9 −2.0

appears above the ground state. As shown later, the excited
prolate band has 11Li+8He-like cluster structure. Although
the 2-neutron separation energy of 19B is very small at about
0.1 MeV, we expect that the prolate states may exist as
resonances because such cluster states might be stable against
neutron decays.

In 22O, we obtain the ground state but find no other excited
states in the present calculations. This is because of the double
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FIG. 2. The level structure of 19B, 20C, 22O, 24Ne, and 28Si
calculated with uls = 2800 MeV. The experimental data of 28Si are
only those in the positive-parity rotational bands that were assigned
by E2 transitions [4].

shell-closed feature of 22O. Namely, the intrinsic state has
mostly spherical shape among the N = 14 nuclei due to the
effects of the neutron d5/2-subshell closure and the proton
magic number Z = 8.

In the results of 24Ne, the lowest “oblate” band in the
theoretical results corresponds to the ground band of exper-
imental data as discussed in the next section. Conversely, the
excited prolate bands are not experimentally identified yet. In
the present calculations, a side band K± = 2+ of the oblate
ground is suggested in addition to the excited prolate band.

In 28Si, the shape coexistence of the oblate ground band and
the prolate excited band has been known. The prolate band,
which starts from the band-head 0+

3 state at 6.691 MeV, has
been identified in γ -transition measurements [4]. The 0+

2 state
at 4.979 MeV in the experimental data is considered to be a
vibrational excitation in the oblate state. In Fig. 2, we display
the experimental levels of 28Si only for the positive-parity
rotational bands that were assigned by E2 transitions [4]. The
level structure of the oblate and prolate bands are reproduced
by the present calculations. The level spacing between oblate
and prolate bands can be reproduced in good agreement by
using a slightly stronger spin-orbit force uls = 3200 MeV,
which gives 7.3 MeV excitation energy for the band-head state
of the prolate band.

The binding energies calculated with uls = 2800 MeV and
the experimental data are shown in Fig. 3. The results with
the present parameter set (m = 0.62, uls = 2800 MeV) tend
to underestimate the experimental binding energies. We can
fit the experimental data by choosing a smaller Majorana
parameter m as usually done. For example, the result of 28Si
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FIG. 3. Binding energies of 19B, 20C, 22O, 24Ne, and 28Si.
Open circles indicate the theoretical results calculated with uls =
2800 MeV. The experimental data are shown by square points.
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FIG. 4. Root-mean-square matter radii. Open circles indicate the
radii of the lowest states calculated with uls = 2800 MeV. The
experimental data are shown by square points. The data for 19B,
20C, 22O, and 24Ne are those derived from the interaction cross
sections [23], and the radius of 28Si is derived from the charge radius
taken from Ref. [24] measured by electron scattering.

with m = 0.60 reproduces the experimental binding energy.
We found that this parameter change gives only minor effects
on other observables and also on the shape coexistence
phenomena.

The theoretical results of the root-mean-square matter radii,
E2 transition strengths, and electric and magnetic moments are
shown in Fig. 4 and Tables II and III in comparison with the
experimental data. The present calculations agree reasonably
with the experimental data.

V. DISCUSSION

In this section, we analyze the deformations of proton
and neutron densities in the intrinsic states and discuss
their effects on the observables such as E2 transitions. The
following discussions are based on the calculations with uls =
2800 MeV.

TABLE III. Electric quadrupole moments and magnetic dipole
moments. The theoretical results are calculated with uls =
2800 MeV.

Cal. Exp.

28Si Q(2+
1 ) (e2 fm4) 132 160(3)

µ(2+
1 ) (µN ) 1.03 1.12(18)

19B Q(3/2−
1 ;oblate) (e2 fm4) 34

Q(3/2−
2 ;prolate) (e2 fm4) 43

µ(3/2−
1 ;oblate) (µN ) 2.37

µ(3/2−
2 ;prolate) (µN ) 2.46

A. Intrinsic deformations

As mentioned before, two local minimum states are ob-
tained in each system except for 20C and 22O. The deformation
parameters β, γ for neutron and proton densities in the intrinsic
states are shown in Fig. 5. The definition of β, γ are given in
Ref. [26]. Figure 6 shows the distribution of matter, proton, and
neutron densities. As shown in Figs. 5 and 6, the lowest states
of 19B, 20C, and 28Si have oblate neutron shapes. Although the
lowest states of 22O and 24Ne have small prolate deformations
of neutron densities, we notice that the characteristics of the
neutron structure in these states are rather similar to those in
the oblate states of other N = 14 nuclei. One of the remarkable
features of the “oblate” neutron structure is the larger energy
gain of the spin-orbit force than the prolate neutron structure.
In fact, the energy gains of the spin-orbit force in these states
of 22O and 24Ne are as large as those in the oblate states in
19B, 20C, and 28Si as seen in Fig. 1 and Table I. It is considered
that the oblately deformed neutron structure is not rigid but is
somehow soft to vary into the small prolate deformation in such
systems as 22O and 24Ne, which have the spherical and prolate
proton shapes, respectively. In other words, the oblate neutron
deformations can be modified because of the inconsistency
with the proton deformations. It should be stressed that the

TABLE II. E2 transition strengths. The results are calculated with uls = 2800 MeV. The theoretical B(E2) in 24Si are evaluated
by assuming mirror symmetry with 24Ne. The experimental data are taken from Refs. [4,7,25].

Cal. Exp.
Band Transitions B(E2) (w.u.) Band Ei → Ef B(E2) (w.u.)

28Si oblate B(E2; 2+ → 0+) 9.1 Kπ = 0+
1 1.779 → 0 12.9 ± 0.5

B(E2; 4+ → 2+) 12.8 Kπ = 0+
1 4.617 → 1.779 13.6(+1.4, −1.2)

prolate B(E2; 2+ → 0+) 28.1
B(E2; 4+ → 2+) 40.0 Kπ = 0+

2 9.164 → (7.381,7.417) 43.5(+11.6, −8.7)a

24Ne “oblate” B(E2; 2+ → 0+) 9.2 Kπ = 0+
1 1.981 → 0 6.8 ± 2.9

prolate B(E2; 2+ → 0+) 7.8

24Si “oblate” B(E2; 2+ → 0+) 9.4 Kπ = 0+
1 1.88 → 0 4.6 ± 1.4

prolate B(E2; 2+ → 0+) 17

20C oblate B(E2; 2+ → 0+) 1.8

aBecause the collective 4+ → 2+ transition in the Kπ = 0+
2 band of 28Si is distributed over two transitions into 2+(7.381) and

2+(7.417), the experimental value in this table is a sum of the strengths of those two transitions in Ref. [4].
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FIG. 5. Deformation parameters of the intrinsic states �AMD(Z)
obtained with uls = 2800 MeV. The deformation parameters
βn, γn(βp, γp) for the neutron (proton) densities are plotted in both
panels. Triangles denote the deformations in the ground bands of 19B,
20C, 22O, 24Ne, and 28Si, whereas circles indicate those in the excited
bands of 19B∗, 24Ne∗, and 28Si∗.

features of the shape coexistence of neutron structure in
N = 14 nuclei vary depending on the proton number.

In 19B, the lowest state has the oblate neutron shape and
a triaxial proton shape, whereas in the excited state the large
prolate deformation with a cluster structure is enhanced. As
seen in Fig. 6, the developed 8He+11Li-like clustering is
suggested in the prolate excited band.

In the lowest state of 20C, both the proton and neutron
shapes are oblate. The reason for the absence of the prolate
solution in 20C is understood as follows. As known in 12C,
the proton shape is oblate in Z = 6 nuclei. Because of the
inconsistency with the oblate proton deformation, the prolate
neutron structure is energetically unfavored comparing with
the oblate neutron structure.

In 22O, the neutron deformation is the smallest among
these N = 14 isotones due to the spherical proton shape that
originates in the p-shell closure effect. Another local minimum
solution with the large prolate deformation of neutron structure
does not appear as well as in 20C.

In 24Ne, two local minimum solutions with different neutron
structures are obtained. The neutron structure of the lowest
state has a smaller prolate deformation than that of the excited
state. This smaller neutron deformation in the lowest state can
be attributed to the oblate neutron structure in N = 14 systems,
because as mentioned above the sensitivity of the energy of this
state to the strength of the spin-orbit force is quite similar to
that of the oblate states in other N = 14 isotones. Conversely,
in the excited state, the neutron structure has a large prolate
deformation and is similar to the prolate excited state of 28Si.
Therefore, the coexistence of two local minimum solutions in
24Ne is associated with the shape coexistence of the oblate and
prolate states in 28Si. One of the unique features in 24Ne is that
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FIG. 6. Density distribution of the intrinsic state �AMD(Z). The
axis of the intrinsic frame are chosen as 〈xx〉�〈yy〉�〈zz〉 and 〈xy〉 =
〈yz〉 = 〈zx〉 = 0. The intrinsic system is projected onto the zy plane.
The density is integrated along the transverse axis x. The densities
for matter, protons, and neutrons are displayed in the left, middle,
and right panels, respectively. 〈xx〉, 〈yy〉, 〈zz〉 for matter, proton, and
neutron densities are written below the figures. The unit of the box
frame size is 10 ×10 fm.

the proton deformations are prolate in both the ground and
excited states. It is because of the nature of Z = 10 systems.
Due to the effect of prolate proton deformation, the oblate
neutron structure varies into the small prolate deformation.
As a result, the deformation parameters βp and βn for the
proton and neutron densities are inconsistent with each other
as βp > βn. This leads to a difference between proton and
neutron deformations in the ground state of 24Ne. The details
of the different deformations are discussed later in relation to
the E2 transition strengths.

In the results of 28Si, the oblate and prolate states coexist. As
already mentioned, the oblate feature of the ground state is re-
produced with the stronger spin-orbit force (uls = 2800 MeV).
The shape coexistence of 28Si has been studied by 7α-cluster
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(b)(a)

FIG. 7. Schematic figures for the positions (Di) of the Gaussian
centers in the oblate (a) and prolate (b) states of 28Si. The positions
Di(i = 1 ∼ 28) are distributed in seven groups that associate with the
7α-cluster configurations.

models [10–12], where exotic shapes have been suggested in
addition to the normal oblate and prolate deformations. For
example, a pentagon shape composed of 7α clusters with D5h

symmetry [12] is attributed to the Kπ = 5− rotational band
that has been observed in gamma transition measurements [4].
In the present calculations, all the centers of 28 single-nucleon
Gaussians are treated as independent variational parameters
without assuming existence of any cluster cores. By analyzing
the positions Di(i = 1 ∼ 28) of Gaussian centers, we find that
the oblate and prolate states consist of 7α-like clusters in the
present results. Schematic figures for spatial configurations of
the oblate and prolate states are shown in Fig. 7. Due to the 7α

clustering, the pentagon shape appear in the oblate solution as
seen in Fig. 6. We give a comment on “α” clusters in the present
results. Because the imaginary parts of the single-nucleon
Gaussian centers are nonzero in the oblate solution, the α-like
clusters are dissociated α clusters, which differ from the ideal
α clusters written by (0s)4 harmonic-oscillator wave functions.
The details are discussed in the last part of this section.

B. 19B

The structure of B isotopes has been studied with the
AMD method in Ref. [13]. In the previous results, it was
predicted that cluster structure develops as a neutron number
increases from 13B toward the neutron-drip line 19B due to a
large prolate deformation of neutron structure. In the present
results, however, the ground state of 19B has the oblate neutron
structure, which is inconsistent with the previous results. In
the previous calculations of 19B, the oblate solution was not
lower than the prolate solution because the adopted spin-orbit
force uls = 900 MeV was too weak. As explained, the relative
energy of the prolate and oblate solutions is sensitive to the
strength of spin-orbit force. Therefore, it is important to use a
proper strength of the spin-orbit force to describe the feature of
shape coexistence in N = 14 systems. By using the stronger
spin-orbit force uls = 2800 MeV, which can reproduces the
level scheme of the oblate and prolate bands in 28Si, the oblate
band becomes lowest in 19B, whereas the prolate band appear
as the excited band (Fig. 2). As a result, the neutron structure of
the ground state of 19B is predicted to be oblate in the present
work. The oblate property of the ground band of 19B is contrast
to the features of other neutron-rich B isotopes (15B and 17B),
where prolate neutron structure is favored [13].

Because of the oblate neutron structure in 19B, the proton
deformation is smaller, and the clustering is weaker in the
ground state than the excited prolate state as seen in Fig. 6. The
deformation of the neutron structure is reflected in the electric
quadrupole moment (Q) through the proton deformation. As
shown in Table III, the calculated Q(3/2−) for the oblate
ground state is much smaller than that for the prolate excited
state. The experimental measurement of the Q moment of 19B
is required to confirm the oblate neutron deformation. Contrary
to the Q moments, the calculated magnetic dipole moments µ

are not so much different between oblate and prolate states.

C. 24Ne
24Ne is an interesting nucleus, because the proton structure

in Z = 10 system may favor a prolate shape as known in
20Ne. Considering the coexistence of oblate and prolate shapes
in N = 14 neutron structure, it is natural to expect that the
neutron shape and the proton shape may compete. The present
results suggest that the different kinds of neutron structure
coexist in 24Ne. One is the smaller prolate deformation in the
ground band, and the other is the larger prolate deformation in
the excited band. The former is attributed to the oblate structure
in the N = 14 systems. We consider that the change of the
neutron structure from the oblate shape into the small prolate
deformation is understood as the oblate neutron structure is
somehow soft and is varied by the prolate nature of the proton
structure. The present results suggest the smaller neutron
deformation βn than the proton deformation βp as βn < βp

in the ground band of 24Ne. Conversely, βn is as large as βp in
the excited band.

To extract information about the proton and neutron
deformations from the experimental data, it is useful to
analyze E2 transition strengths and compare them with
those of mirror nuclei. Similar analyses on the electric
moments were done in Refs. [26,27], where deformations
of C isotopes have been discussed. Recently, B(E2; 2+

1 →
0+

1 ) in 24Si has been measured by Coulomb excitation [7]
as B(E2) = 4.6 ± 1.4 w.u., which is smaller than or of
same order of B(E2; 2+

1 → 0+
1 ) = 6.8 ± 1.6 w.u. in 24Ne.

If we assume the mirror symmetry between 24Ne and 24Si,
B(E2; 24Si) in 24Si should be equal to Bn(E2; 24Ne) for
neutron transitions in 24Ne. Therefore, these facts suggest
that, in 24Ne, the neutron transition strength Bn(E2; 24Ne)
is as small as the proton transition strength B(E2; 24Ne).
The ratio Bn(E2; 24Ne)/B(E2; 24Ne) �1 is smaller than the
naive expectation, (N/Z)2 ≈ 2, given by a collective model
picture. The reduction of Bn(E2; 24Ne) can be described by the
smaller neutron deformation βn than the proton deformation
βp in the “oblate” ground band. In fact, the calculated ratio
Bn(E2)/B(E2) = B(E2; 24Si)/B(E2; 24Ne) in the “oblate”
band of 24Ne is approximately 1 (Table II), which agrees well
with the experimental data. Conversely, in the excited prolate
band with βn ≈ βp, the calculated B(E2; 24Si∗) is twice as
large as the B(E2; 24Ne∗), and the ratio Bn(E2)/B(E2) =
B(E2; 24Si∗)/B(E2; 24Ne∗) is consistent with the collective
model expectation (N/Z)2 ≈ 2. Comparing the calculations
and the experimental data of B(E2; 24Ne) and B(E2; 24Si),
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we conclude that the “oblate” band correspond to the ground
band of 24Ne. The present result of the “oblate” band still
overestimates the B(E2; 24Si) as shown in Table II. It is
conjectured that the neutron deformation might be smaller
due to the d5/2 shell closure effect.

D. Lowering mechanism of oblate states

The shape coexistence in 28Si has been studied by 7α-
cluster models for a long time [10,11]. The oblate and prolate
solutions coexist as local minima in the α-cluster model space;
however, most of the calculations fail to reproduce the order
of the oblate and prolate states in 28Si. Even in the three-
dimensional calculations of 7α clusters, the prolate solution
is lower than the oblate solution [11], which is inconsistent
with the fact of the oblate ground state. Exceptions are the
7α calculations with a few parameter sets of Brink-Boeker
forces in Ref. [10], though the binding energy is greatly
underestimated.

The main reason for the failures in describing the deforma-
tion of the ground state of 28Si in the 7α-cluster calculations is
because the spin-orbit force is omitted in the α-cluster models.
As seen in the Nilsson orbits [6], the spin-orbit force plays an
important role to make the shell gap at N = 14 in the oblate
system. It means that the spin-orbit force is necessary to gain
the energies of the oblate states in N = 14 systems. Here we
explain the lowering mechanism of the oblate state in 28Si
within the AMD model space.

As described in Sec. VA, in the results of 28Si it is found
that the positions Di (the real part of Xi/

√
ν) of Gaus-

sian centers correspond to the 7α-like cluster configurations
(Fig. 7). If the imaginary parts of the Gaussian centers are zero,
the expectation value of the spin-orbit force vanishes because
it is exactly zero in the systems composed of the ideal (0s)4-α
clusters. However, in the intrinsic state of the oblate band, we
find that the nonzero imaginary parts of the Gaussian centers
cause the rotational motion. The positions and the momenta
of the single-nucleon Gaussian wave packets are given by the
real parts {Dy}i and imaginary parts {Kx}i of the Gaussian
centers (Xi/

√
ν) as given in Eq. (5). {Dy}i and {Kx}i in the

intrinsic state of the oblate ground band of 28Si are plotted in
Fig. 8. The positions and momenta for up-spin and down-spin
nucleons are shown by square and circle points, respectively.
The correlation between Dy and Kx indicates the rotational
motion around the z axis. Namely, the angular momenta of
the up-spin nucleons are parallel to the z axis and those of the
down-spin nucleons are antiparallel. Therefore, the rotational
motions for up-spin nucleons and the down-spin nucleons are
reverse to each other and make the spin-orbit force attractive.
The energy gain of the spin-orbit force is more than 20 MeV as
shown in Table I. In the kth α-like cluster, the momenta Kx(↑)
for the up-spin proton and neutron are opposite to those Kx(↓)
for the down-spin proton and neutron as Kx(↑) = −Kx(↓)
as shown in Fig. 8. Although the positions Di are located
in the 7α-like cluster configurations, it is important that the
α-like clusters are dissociated due to the imaginary parts Ki ,
because the Gaussians for the up-spin nucleons are moving
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FIG. 8. (a) Positions Dy and momenta Kx of 28 Gaussian centers
in the intrinsic wave function of the oblate solution of 28Si. The x,
y, and z axes are chosen to be 〈x2〉�〈y2〉�〈z2〉. The z axis in the
oblate solution almost equals the direction of the intrinsic-spins of
single-nucleon wave functions. (b) Schematic figure for the rotational
motion given by the positions and momenta of Gaussian centers.

in the reverse to the down-spin nucleons in each of α-like
clusters.

Thus, in the AMD framework, the spin-orbit force can
increase while maintaining the α-like cluster configurations.
The energy gain of the spin-orbit force arises from the
flexibility of the AMD wave functions where Gaussian centers
are expressed by “complex” variational parameters instead of
real parameters.

VI. SUMMARY

We studied the deformations of N = 14 isotones, 19B, 20C,
22O, 24Ne, and 28Si, while focusing on the shape coexistence
of the oblate and prolate neutron structure. The relative
energies between the oblate and prolate states are found to be
sensitive to the strength of spin-orbit force. By using a set of
interaction parameters m = 0.62 and uls = 2800 MeV in the
MV1(case 1)+G3RS force, we can describe the properties of
the shape coexistence in 28Si, which is known to have the
oblate ground band and the prolate excited band. The present
results agree reasonably with the experimental data of radii,
moments, and E2 transition strengths.
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In the present calculations, the solutions with the oblate
neutron structure are energetically favored and form the
ground bands in these N = 14 isotones. In the results of 19B,
the prolately deformed excited band with cluster structure
was predicted to appear above the oblate ground state. In
24Ne, we proposed a possible difference between proton and
neutron deformations in the ground band. We discussed Q

moments and E2 transition strengths in relation to the intrinsic
deformations. In the analysis of the results, it was found that
the spin-orbit force plays an important role in the lowering
mechanism of the oblate neutron structure in N = 14 systems.
We found that the imaginary parts of the single-nucleon
Gaussian centers in the AMD model space are important to
gain the spin-orbit force.
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