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η-Nucleon scattering length and effective range uncertainties
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The coupled ηN, πN, γN, ππN system is described by a K-matrix method. The parameters in this model are
adjusted to get an optimal fit to πN → πN, πN → ηN, γN → πN, and γN → ηN data in an energy range of
about 100 MeV or so each side of the η threshold. Compared with our earlier analysis, we now utilize recent
Crystal Ball data. However, the outcome confirms our previous result that the η-nucleon scattering length a is
large with a value of 0.91(6) + i0.27(2) fm.
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I. INTRODUCTION

The value of the η-nucleon scattering length a is still
uncertain, but everyone agrees that it is indeed attractive,
i.e., a > 0. In the literature, estimates can be found ranging
from Re a of 0.3 ± 0.05 fm up to about 1.0 ± 0.1 fm; a
selection is given in Table I.

The main interest in a lies in the fact that, if the η-nucleon
scattering amplitude in the threshold region is sufficiently
attractive, then η-nuclear quasi-bound states may be possible.
These states were first suggested about 20 years ago [17,18].
Since then many articles have appeared on this subject,
studying different reactions in which such quasi-bound states
could manifest themselves. A bound state was indeed predicted
in the simplest case, i.e., the η-deuteron system [19]. On the
other hand, experimental studies of the pn → dη cross section
[20] do not indicate any such bound dη system [3,21,22]. In
the heavier 3He nucleus, the pd → 3He η reaction suggested
the likelihood of such a state [7,23]. However, the first
experimental attempt to discover η-states in larger nuclei gave
a negative conclusion [24]. Another experiment is now being
undertaken to check that result [25].

Unfortunately, in the absence of η beams, the formation
reactions are also the only source of experimental information
about the ηN scattering length. Therefore, in any discussion,
it is important that as many reactions as possible be treated
simultaneously. Otherwise success with one reaction may be
completely nullified by failure with another.

With this in mind, in Ref. [11] we carried out a simultaneous
K-matrix fit to the πN → ηN cross sections reviewed by
Nefkens [26] and the γp → ηp data of Krusche et al. [27]. In
addition, the fit included πN amplitudes of Arndt et al. [28],
since the πN and ηN channels are so strongly coupled. Using
the notation for the elastic T matrix,

T −1
ηη + iqη = 1/a + r0

2
q2

η + sq4
η , (1)

with qη being the momentum in the ηN center-of-mass,
resulted in the parameters a(fm) = 0.75(4) + i0.27(3), r0(fm)
= −1.50(13) − i0.24(4) and s(fm3) = −0.10(2) − i0.01(1).
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In a later paper [13], we developed this formalism to
include four explicit channels: γN, πN, ππN, and ηN and
new experimental data from GRAAL [29]. As indicated in
Table I, the scattering length was increased to a(fm) =
0.87(4) + i0.27(2) largely as a result of the new photopro-
duction data taken at higher energies. These large scattering
lengths arise as an interplay of the attraction induced by
the N (1535) state and an additional attractive interaction
of unknown origin. These generate the ηN threshold effect
at the center-of-mass energy 1487.0 MeV. The threshold
enhancement as seen in Fig. 1 is rather narrow on this energy
scale. Details of this figure will be discussed later. This
enhancement may dominate the physics of few-nucleon-η
systems, but it is not necessarily the case. The energy region
that really matters covers a range of negative energies, which
begins at the nucleon separation energy of about 10 MeV and
extends down by approximately a further 10 MeV because
of the recoil energy of Nη pairs, making the center-of-mass
energy of about 1460 MeV more relevant than the actual
threshold energy of 1487.0 MeV. This point may be essential
to understanding a discrepancy between phenomenological
3He η scattering lengths and four-body calculations based
on a plausible Nη scattering amplitude. The phenomeno-
logical analysis, based upon elastic pd →3He η [23] and
inelastic pd → 3He π [30] reactions, produces A(3He η) =
4.24(29) + i0.72(81) fm [31]. On a smaller data set, a similar
A(3He η) = |4.3(3)| + i0.5(5) fm is obtained in Ref. [32]. On
the other hand, a refined four-body calculation [33], based on
an Nη scattering amplitude dominated by the N (1535) and
fixed to a(fm) = 0.50 + i0.32 fm finds A(3He η) = 1.82 +
i2.75 fm. This difference in Im A(3He η) indicates an uncer-
tainty in the absorptive, subthreshold, Nη scattering amplitude.
Possible effects of the subthreshold region are also exemplified
by calculations of the dη amplitude in Ref. [12]. Recent
calculations of dη final state scattering performed in Ref.
[22] indicate restrictions, 0.42 < Re a(fm) < 0.72 imposed
by the experimental data. All these few-body calculations
are obtained with the help of separable model extensions
into the subthreshold region. In view of the complicated
multichannel coupling to the N (1535) resonance, e.g., the
effect of the Nη threshold and interference of the resonant
and potential scattering, the subthreshold extrapolation from
the scattering length value may be quite uncertain. Here, to
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TABLE I. A selection of ηN scattering lengths and effective ranges appearing in the
literature.

Reaction or method Scattering length (fm) Effective range (fm)

[1] 0.25 + i0.16
[2] 0.27 + i0.22
pn → dη [3] �0.3
[4] 0.46(9) + i0.18(3)
[5] 0.487 + i0.171 −6.060 − i0.177
[6] 0.51 + i0.21
[7] 0.55(20) + i0.30
[5] 0.577 + i0.216 −2.807 − i0.057
[8] 0.621(40) + i0.306(34)
[9] 0.68 + i0.24
[10] 0.717(30) + i0.263(25)
Coupled K matrices [11] 0.75(4) + i0.27(3) −1.50(13) − i0.24(4)
ηd → ηd [12] �0.75
Coupled K matrices [13] 0.87 + i0.27
[14] 0.91(3) + i0.29(4)
[15] 0.980 + i0.37
[16] 0.991 + i0.347 −2.081 − i0.81
Coupled K matrices [13] 1.05 + i0.27

provide amplitudes in this region, one first uses the on-shell
K-matrix approach. Next, the effective range expansion of
on-shell amplitudes is calculated and off-shell amplitudes are
generated by a simple separable model.

We recapitulate briefly the phenomenological model used
to describe the S-wave interactions. The K matrix is assumed
to have the form

Kαβ = Bα,β + �i

√
γα(i)γβ(i)

Ei − E
, (2)

where the sum i = 0, 1 extends over the two states N (1535)
and N (1650). The Ei are the positions of poles that in a
“conventional” model should be near the energies of the
S-wave πN resonances N (1535) and N (1650). The γα(0, 1)
are channel coupling parameters that are related to the widths
of these resonances. Again these widths are thought to be
more or less known when data are analyzed by a conventional
model. However, less conventional models can lead to widths
that are quite different [34]. Finally the Bα,β are assumed,
at first, to be energy-independent background terms and are
purely phenomenological. However, later we shall relax this
by putting a theoretically motivated energy dependence into
Bπ,η. The list of free parameters contains two resonant energies
and five couplings to the resonant states γπ (0, 1), γη(0), γγ (0),
and γ3(0). Here γ3(0) describes small effects of the three-body
ππN channel. The additional four background parameters
are Bη,η, Bπ,η, Bγη, and Bγπ . In comparison to the singular
terms in Eq. (2), these background terms turn out to be very
small with the exception of Bη,η, which generates a sizeable
contribution to the value of the ηN scattering length and the
values of the scattering amplitudes at negative energies.

In this note, the calculation is extended to include the new
Brookhaven Crystal Ball data for the πN → ηN cross section
measured close to the ηN threshold [35–37]. These now
replace the ones from the review by Nefkens [26], used in Refs.

[11,13], and the earlier Brookhaven data from Refs. [4,38]. The
latter were used by the present authors in Ref. [39] and gave
rise to apparent massive uncertainties in the ηN effective range
parameters. In comparison to older measurements the new
data offer better statistics, careful estimates of the systematic
uncertainties, and specified errors in pion beam momenta.
An extension in the model involves an additional parameter
γη(1) that couples the ηN channel to N (1650). Another
improvement involves the background terms, which are due to
cross-symmetric amplitudes and potential interactions related
to heavy meson exchanges and other unknown mechanisms.
On the phenomenological level, there is no need to specify
these explicitly. However, such mechanisms may cause some
energy dependence to be accounted for. One expects the related
effective range to result from the nearest singularities in the u, t

channels. In the region of interest, extending from 100 MeV
below up to 150 MeV above the the ηN threshold, it is the a0

meson exchange and u-channel nucleon pole that contribute
to the effective range in the K matrix. In view of the smallness
of the NηN coupling constant, these mechanisms are expected
to contribute an effective range mainly in the crossing π, η

transitions. The values of this range follow from the Born
amplitudes describing the nearest singularities

Vπ,η = C

1 + Q2/�(E)2
, (3)

where Q is a momentum transfer and C a constant. Projected
onto S waves such terms lead to logarithmic singularities
for unphysical amplitudes. In our effective range expansion,
these unphysical singularities are represented by a pole. In
the case of a0 meson exchange, � = ma0 ≈ 5 fm−1 and the
nearest u-channel singularity, the nucleon pole, generates � ≈
3.5 fm−1. This sets the scale of effective range values. In terms
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TABLE II. The πN → ηN data from Ref. [37]: as a function
of the π -beam momenta.

π -beam momenta Pπ (MeV/c)

Uncorrected Corrected σ (mb)

692.5 687.1 0.64(17)
702.4 701.0 1.73(15)
714.5 713.1 2.13(15)
732.1 731.6 2.69(20)
744.3 744.1 2.68(20)

of the parameter R, to be introduced later in Eq. (15), we obtain
Rπ,η ≈ 1/� ≈ 0.2 fm as an order of magnitude estimate.

II. THE CHOICE OF DATA AND RESULTS

Since the procedures followed in this current work are
very similar to those found in Ref. [13], the interested
reader should refer to that article for details concerning
the fitting and error extraction. Also many of the data are
the same as we used in previous analyses, namely, πN →
πN providing 23 data points in the center-of-mass energy
range 1369.2 � Ec.m. � 1705.0 MeV [28]; γN → πN , 16 data
points with 1352.0 � Ec.m. � 1546.3 MeV [28]; and γN →
ηN , 38 data points with 1487.0 � Ec.m. � 1523.8 MeV [29].
The new ingredient is the recent Brookhaven Crystal Ball data
in Refs. [35–37]. These data are from two targets—hydrogen
[35,36] and polyethylene [37]. Both sets are consistent with
each other, but here we use the latter, since a more detailed
discussion is made in [37] concerning uncertainties in the
pion beam momentum. However, it should be added that the
question of how the spread in the pion beam momentum affects
the final value of the cross section is not yet fully resolved to the
satisfaction of all the authors in Refs. [35–37]. Fortunately, as
we shall see later, such refinements are not expected to change
any of the conclusions arrived at in this paper. Therefore, for
πN → ηN we use the five data points in the energy range
1488.5 � Ec.m. � 1523.3 MeV in Ref. [37]. These are shown
in Table II. We give both the uncorrected π -beam momentum
pπ and that containing a correction suggested by the authors.

Since there are uncertainties in arriving at such corrections,
we check that our final results are not dependent on the precise
values of the beam momenta. The errors quoted on the cross
sections are the incoherent combination of the statistical and
systematic errors given in Ref. [37].

We present several sets of results in Table III. Set A fits
all of the data given in the previous section using an energy-
independent form for describing the πN → ηN channel, i.e.,
Rπ,η = 0 in Eq. (A7) of the appendix. Set B fits the same
data as A but without the pion beam momentum correction
in the πN → ηN data from Ref. [37] given in Table II. It
is seen that the two sets have essentially the same effective
range parameters. Furthermore, as seen in Fig. 1, the same is
true for the ηN → ηN amplitude away from the threshold.
This means that, with the present data, the precise values of
the π -beam momentum are not important for extracting this
amplitude. However, the two sets give significantly different
fits to the actual πN → ηN data as seen in Fig. 2. The fit to
the beam corrected data is much better, with a χ2/dp for these
five data points being about 0.2 compared with the uncorrected
value of about 1.8. However, the corresponding overall χ2/dp
for the complete set of 121 data points are 1.01 versus 1.08.

As a further study of the importance of the new πN → ηN

cross sections of Ref. [37], in set C we omit the Crystal
Ball data from set A. We see that, within the errors, the
three complex parameters a, r0, and s are unchanged. Also,
as seen in Fig. 1, the ηN amplitude is essentially unchanged.
Therefore, one’s first impression is that the new data of
Refs. [35–37] add little to our understanding of the ηN → ηN

amplitude. However, this is not true. Firstly, the error bars in
set C are much larger than those in A, i.e., the new data lead to
tighter bounds on the ηN amplitude. Secondly, the new data
stabilize the fit and make it, as far as we can see, unique. We
say this because the omission of the new data can lead to, at
least, one other solution for the ηN → ηN amplitude with a
χ2/dof = 1.054, only slightly larger than the 1.045 of set C.
This is shown as set D and is quite different from the earlier
sets, but is rather similar to those extracted in Ref. [5] using a
Lagrangian model (see Table I). However, it should be added
that in Ref. [5] the authors basically use the πN → ηN data
in Ref. [26], which reviews measurements made in the 1970s.
These authors themselves point out that the data they are forced

TABLE III. The effective range parameters a, r0, and s using the notation for the elastic T -matrix: T −1
ηη + iqη = 1/a + r0

2 q2
η + sq4

η , with
qη being the momenta in the ηN center-of-mass. Sets A and B fit all the data, with A using the corrected π -beam momenta in Table II and
B without this correction. Set C omits the πN → ηN data of Ref. [37]. Set D is a second but unconventional solution when the data of
Ref. [37] are omitted. Set E omits the γN → ηN data of Ref. [29]. Set F is a second but unconventional solution when the data of Ref. [29]
are omitted. Set G fits the same data as set A but with an energy dependence included in the πN → ηN K-matrix element of Eq. (A7).

Set Re a Im a Re r0 Im r0 Re s Im s

A 0.91(6) 0.27(2) −1.33(15) −0.30(2) −0.15(1) −0.04(1)
B 0.88(5) 0.25(2) −1.37(16) −0.31(2) −0.15(1) −0.04(1)
C 0.93(21) 0.27(10) −1.3(6) −0.31(7) −0.16(7) −0.05(3)
D 0.51(9) 0.26(3) −2.5(6) 0.3(5) 0.2(2) −0.0(1)
E 0.77(9) 0.25(5) −1.8(4) −0.3(1) −0.10(69) −0.02(3)
F 0.4(5) 0.3(2) −4(20) 2(5) — —
G 0.92(20) 0.27(9) −1.3(6) −0.30(6) −0.15(6) −0.04(3)
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FIG. 1. (Color online) The real (R) and imaginary (I) parts of
the T (η-N ) scattering amplitude. The solid (dashed) lines show the
fit with (without) the pion beam correction of the πN → ηN data
from Ref. [37] (see Table II). The dotted lines show the effect of not
including this πN → ηN data in the fit. All three sets of curves are
more or less indistinguishable.

to use is poor. Furthermore, the new data are much nearer
the ηN threshold—the energy range that is most important
for extracting the ηN scattering parameters. The uncertainties
that can arise when using poor πN → ηN data were noted
earlier by the present authors in Ref. [39]. There we used
some preliminary Brookhaven non-Crystal Ball data from
experiment E909 [4,38]. This has now been superseded by
the recent Crystal Ball data of Refs. [35–37]. In Ref. [39] we
obtained one solution very similar to that in Ref. [11] (quoted
in Table I) and a second solution a(fm) = 0.21 + i0.30,
r0(fm) = −2.61 + i6.67, and s(fm3) = −0.39 − i3.67. This
we called an “unconventional” solution in Ref. [39], since
not only are a, etc., very different from before but also the
form of the ηN → ηN amplitude away from the threshold
is qualitatively different. We have dwelt on this occurrence
of unconventional solutions because some of the scattering
parameters in Table I could well be of this form. However, we
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FIG. 2. (Color online) Fits to the πN → ηN data from Ref. [37]
with (solid line) and without (dashed line) the π -beam correction.
The squares are for the uncorrected π -beam momenta and the circles
for the corrected momenta (see Table II).

want to emphasize that these unconventional solutions do not
seem to arise in the present formulation using the complete
data set as in A.

Sets E and F show the effect of removing the γN → ηN

data of Ref. [29]. In this case, E is a conventional solution
with a χ2/dof = 0.946 and F an unconventional solution
with an insignificantly smaller χ2/dof = 0.942. However, this
solution has enormous error bars, so that the corresponding ηN

scattering parameters are very poorly determined.
Set G fits the same data as case A but now shows the effect

of introducing an energy dependence into the basic πN → ηN

K-matrix element written in Eq. (A7). The magnitude of the
dependence is governed by the value of Rπ,η. Here we take
Rπ,η = 0.2 fm, a value suggested by theory [see the discussion
after Eq. (3)]. This is seen to have a very small effect on
the values of a, r0, and s and also on the χ2/dof, reducing
the latter from 1.0053 for case A to 1.0052. The reason for
this is clear: in the formalism, the Rπ,η always occurs in the
combination Rπ,ηBπ,η and the minimization always produces
a very small value Bπ,η ∼ 0.01 fm. However, the errors on
a, r0, and s are now much larger than in case A indicating
that this energy dependence is attempting to improve the
data fit far from the threshold. In fact, if, as a numerical
experiment, the value of Rπ,η is taken as a free parameter,
then it becomes ∼20 fm—an unacceptably large value. This
gives scattering parameters that are similar to set A; but away
from the threshold, the ηN → ηN amplitude is qualitatively
different. In particular, the ηN → ηN develops a peak near
1400 MeV and an improvement in the fit to the πN → πN

results.
So far the emphasis has been on extracting the best values

for the effective range parameters. This is certainly of interest
when comparing different approaches, as in Table I. However,
as mentioned in the introduction, in practical applications
involving systems with more than one nucleon, it is not the
threshold value of the ηN interaction that is relevant. Instead,
depending on the multinucleon system, this interaction is
needed over a range of energies up to 40 MeV below the
threshold. In Fig. 1 the real and imaginary parts of the ηN

interaction are shown for sets A, B, and C in Table III. There
it is seen that both the real and imaginary parts are not only
qualitatively but also quantitatively the same at all relevant
energies and beyond.

III. FITTING THE ηN → ηN AMPLITUDE WITH
A SEPARABLE FORM

The requirement of few-body physics is a simple separable
approximation to the off-shell ηN → ηN amplitude. This we
provide as

Tηη(q,E, q ′) = vη(q)tηη(E)vη(q ′), (4)

with v = 1/(1 + q2β2), where β is the range parameter in this
model, as discussed in the Appendix. Now another effective
range expansion is used for tηη(E),

tηη(E)−1 + iqηv(qη)2 = 1/as + rs
0

2
q2

η + ssq4
η . (5)
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This is to be compared with the corresponding expansion

T −1
ηη + iqη = 1/a + r0

2
q2

η + sq4
η , (6)

defined in the introduction. The subthreshold amplitude
required in few-body η-physics involves subthreshold energies
E and physical momenta q. In contrast to T the subthreshold
irregularities of t are removed in the large energy region.

The effective range expansions of both amplitudes lead to
the algebraic relations

as = a; rs
0 = r0 − 4aβ2; ss = s − r0β

2 + 3aβ4. (7)

The range parameter β used in the separable model is not
well determined. The actual value used (β = 1/3.2 fm−1) is
motivated by the two factors discussed after Eq. (3): the rough
estimate of the N (1535) form factor and the distance to the
nearest singularities in the t and u channels.

IV. CONCLUSION

In this paper we use a K-matrix method, developed earlier
[11,13], to describe πN → πN , πN → ηN , γN → πN , and
γN → ηN data in an energy range of about 100 MeV or
so each side of the η-threshold. Here the new feature is the
incorporation of recent γN → ηN near-threshold data [37] to
replace that from the compilation of Ref. [26]. Even though
this new data set is not the main deciding factor for the actual
values of the η-nucleon effective range scattering parameters
a, r0, and s, it does play an important role in determining the
errors in these parameters. Furthermore, it appears to make set
A in Table III the optimal unique solution. This is in contrast
to earlier works, e.g., in Ref. [39], where other solutions
appeared with very different values of a, r0, s and forms of the
ηN amplitude away from threshold. Our best and final
value of a = 0.91(6) + i0.27(2) fm is large, but since the
ηN amplitude drops rapidly below threshold (see Fig. 1) it
is not immediately clear whether it is sufficiently strong to
develop quasi-bound states at the appropriate center-of-mass
energies of up to 40 MeV below the threshold. All that
can be said is that the ηN amplitude at these subthreshold
energies is not that small as to obviously eliminate the
possibility of quasi-bound states. It could be that in reality
the situation is borderline, which could explain why some
theories [7,17–19,23] predict these states which, so far, have
apparently not been seen experimentally [20,24].
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APPENDIX

In this Appendix, the physics of the model is briefly
presented. It is based on the nuclear resonance reaction theory
of Wigner-Eisenbud. The spectrum of the system consists of
channel states |i) and an internal single baryon state |o) of
energy Eo. The latter may be a quark state or a bound state
generated by some closed channels. The channel states interact
via a potential V and the propagator for such a system is
denoted by gi,j in the channel sector, where go,o = (E − Eo)−1

and gi,o = 0. Coupling of the channels to the internal state
is generated by an additional interaction H , and the hi,o =
(o|H |i) are coupling form factors. The full propagator that
involves both V and H is obtained from the equation

G = g + gHG. (A1)

The g already includes the V potential interactions and
Eq. (A1) is a separable equation easy to solve. This gives

Gi,j = gi,j + fi,o Go,o fo,j , (A2)

Go,o = (E − Eo − �o)−1, Gi,o = gi,j hj,o Go,o,(A3)

where �o = ho,i gi,i hi,o is the energy shift of the internal
state due to the channel coupling and fi,o = gi,j hj,o. In these
and the following equations, the summation over repeated
channel indices and integration over corresponding momenta
are understood.

The K matrix is obtained in the standard way as K =
UGU , where G is the standing wave propagator and, in our
extended space, U = V + H . This results in

Ki,j = K
pot
i,j + γi,o Go,o γo,j , (A4)

where the potential part of the K matrix is

K
pot
i,j = Vi,j + Vi,m gm,l Vl,j , (A5)

and the coupling form factors become

γi,o = hi,o + Vi,m gm,j hj,o. (A6)

The phenomenological model used in the main part of this
work assumes γi,o to be constants and Eq. (A4) is the basis of
Eq. (2).

In our earlier work, the K
pot
i,j have been considered to be

the constants B
pot
i,j . Now this restriction is relaxed in the πη

channel, and the effective range expansion at the ηN threshold
is made in the standard way for the potential part

[Kpot(E)]−1
π,η = [B]−1

π,η + Rπ,η q2
η , (A7)

where B refers to the η threshold. As discussed in the text,
there are arguments to expect a range term in the πN to ηN

transition. Therefore, we invert Eq. (A7) in the limited two-
channel space and obtain

Kpot
π,π (E) = Bπ,π

1 + 2β2q2
η − γ q4

η

,

Kpot
η,η(E) = Bη,η

1 + 2β2q2
η − γ q4

η

, (A8)

Kpot
π,η(E) = Bπ,η − DRπ,η q2

η

1 + 2β2q2
η − γ q4

η

,
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where D = Bη,η Bπ,π − B2
π,η, β2 = Bπ,η Rπ,η, γ = R2

π,ηD,
and q2

η = (E − Ethr)2µNη. For weak potentials, parameter β

is determined directly by the force range. Knowing Ki,j , the
Ti,j are given by the usual relationship

K =
(

Kπ,π Kη,π

Kπ,η Kη,η

)
and T =

( Aπ,π

1−iqπ Aπ,π

Aη,π

1−iqηAη,η

Aπ,η

1−iqηAη,η

Aη,η

1−iqηAη,η

)
,

(A9)

where qπ,η are the center-of-mass momenta of the two
mesons in the two channels π, η. The channel scattering
lengths Ai,j are expressed in terms of the K-matrix elements
as

Aπ,π = Kπ,π + iK2
π,η qη/(1 − iqη Kη,η),

Aη,π = Kη,π/(1 − iqπKπ,π ), (A10)

Aη,η = Kη,η + iK2
η,πqπ/(1 − iqπKπ,π ).
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W. Nörenberg, Phys. Lett. B409, 51 (1997); nucl-th/9701022.

[7] C. Wilkin, Phys. Rev. C 47, R938 (1993).
[8] V. V. Abaev and B. M. K. Nefkens, Phys. Rev. C 53 385 (1996).
[9] N. Kaiser, P. B. Siegel and W. Weise, Phys. Lett. B362, 23

(1995).
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