
Neutron fraction and neutrino mean free path predictions in relativistic mean field models

P. T. P. Hutauruk, C. K. Williams, A. Sulaksono, and T. Mart
Departemen Fisika, FMIPA, Universitas Indonesia, Depok 16424, Indonesia

(Received 25 August 2004; published 23 December 2004)

The equation of state(EOS) of dense matter and neutrino mean free path(NMFP) in a neutron star have
been studied by using relativistic mean field models motivated by effective field theory. It is found that the
models predict too large proton fractions, although one of the models(G2) predicts an acceptable EOS. This is
caused by the isovector terms. Except G2, the other two models predict anomalous NMFP’s. In order to
minimize the anomaly, besides an acceptable EOS, a largeM* is favorable. A model with largeM* retains the
regularity in the NMFP even for a small neutron fraction.
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The finite-range(FR) (see Refs.[1–4]) and point-coupling
(PC) (see Refs.[5–9]) types of relativistic mean field(RMF)
models have been quite successful to describe the bulk as
well as single particle properties in a wide mass spectrum of
nuclei.

The early version of RMF-FR is based on a Lagrangian
density which uses nucleon, sigma, omega, and rho mesons
as the degrees of freedom with additional cubic and quartic
nonlinearities of the sigma meson. For example, NLZ, NL1,
NL3, and NL-SH parameter sets belong to this version. Re-
cently, inspired by the effective field and density functional
theories for hadrons, a new version of this model(ERMF-
FR) has been constructed[3,10]. It has the same terms as the
previous RMF-FR but with additional isoscalar and isovector
tensor terms and nonlinear terms in the form of sigma,
omega, and rho meson combinations. One of the parameter
sets of this version is G2. In addition to yielding accurate
predictions in finite nuclei and normal nuclear matter
[3,4,10], G2 has demanding features like a positive value of
the quartic sigma meson coupling constant that leads to the
existence of a lower bound in the energy spectrum of this
model [11,12] and to the missing zero sound mode in high
density symmetric nuclear matter[13]. Moreover, the agree-
ment of the nuclear matter and the neutron matter equation
of states (EOS) at high density of G2 with the Dirac-
Brueckner-Hartree-Fock calculation[4,11] is better than
those of the NL1, NL3, and TM1 models(the standard
RMF-FR plus a quartic omega meson interaction).

The difference between RMF-PC and RMF-FR is due to
the replacement of mesonic interactions in the FR model by
density dependent interactions. It is evident that RMF-PC
and RMF-FR have similar qualities in predicting finite nuclei
and normal nuclear matter[5,7,9]. This is due to the fact that
“finite-range” effects in the RMF-PC model are effectively
absorbed by the coupling constants. Therefore in connection
with different treatments of the “finite range” in both models,
studying the behavior of the PC model at high density should
be interesting. In this report, we chose the VA4 parameter set
of Ref. [6] (ERMF-PC) because it can be properly extrapo-
lated to the high density and it has also density dependent
self- and cross-interactions in the nonlinear terms.

So far the EOS of a neutron star has not been known for
sure[14]. However, recently[15] the flow of matter in heavy
ion collisions has been used to determine the pressure of

nuclear matter with a density from two to five times the
nuclear saturation densitysr0d. Reference[15] has found that
these data can be explained only by the variational calcula-
tion of Akmal et al. [16]. Unfortunately, this interaction can-
not be successfully applied to the case of finite nuclei[11].
Reference[11] found that the EOS predicted by G2 is in
agreement with data. This result is remarkable, since Ref.
[17] states that the minimal requirement for an accurate neu-
trino mean free path(NMFP) is a correct prediction in the
low density limit, as well as the consistency with the corre-
sponding EOS. On the other hand, one should remember that
many-body corrections are important but they depend on the
model and the approximation of strong interaction used
[14,17–25].

According to Refs.[26,27] all RMF-FR models yield
lower threshold densities for the direct URCA process than
those of variational calculations[16]. In the neutron star
cooling model, Migdalet al. [28] treated this fact as a fragile
point of RMF-FR models. So they disregarded direct URCA
in their analysis but Lattimeret al. [29] used this fact to
develop their direct URCA scenario.

Therefore, in this report we will compare the neutron mat-
ter prediction at high density from the G2, NLZ, and VA4
models in order to check the result of Ref.[11] and the
possibly different predictions from ERMF-PC and
ERMF-FR due to the different treatment of the “finite-range
effects.” Furthermore, the agreement between the G2 EOS
with experimental data has motivated us to calculate the
NMFP using this model for the direct URCA process. A simi-
lar assumption as in Ref.[22] is used, i.e., the ground state of
the neutron star is reached once the temperature has fallen
below a few MeV. This state is gradually reached from the
later stages of the cooling phase. The system is then quite
dense and cool so that zero temperature is valid. In this case
the direct URCA neutrino-neutron scattering is kinematically
possible for low energy neutrinos at and above the threshold
density when the proton fraction exceeds 1/9[29] or slightly
larger if muons are present. Furthermore, the absorption re-
action is suppressed. For simplicity, we neglect the random-
phase approximation(RPA) correlations.

The effects of self- and cross-interaction terms and the
treatment of finite range at high density can be observed by
extrapolating the EOS which is presented by the neutron
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matter pressureP and the effective massM* , as shown in
Figs. 1 and 2, where we compare the results obtained from
the G2[10], NLZ [1], and VA4 [6] models as a function of
rB/r0.

It is found that the nuclear matter EOS of VA4 is stiffer
than those of NLZ and G2, even forrB less thanr0. How-
ever, the G2 EOS is softer than the NLZ one at high density
but not at low density. This fact emphasizes the result of Ref.
[11] that the crucial role of self- and cross-interactions of the
meson exchange model is to soften the EOS at high density.

It is shown in Fig. 2 that for 1ørB/r0ø5, the effective
mass MG2

* .MVA4
* , but for rB/r0ù5 one observes that

MG2
* ,MVA4

* . This indicates that quantitativelyM* depends
on the model. We note here that the effective masses of G2
and VA4 depend on self- and cross-interaction terms implic-
itly. We also note that other mechanisms could also produce
a larger M* , e.g., in the Zimanyi-Moszkowski and linear
Hartree-Fock Walecka models[22], where those terms are
not present. Although those models give a regular NMFP,
they are quite unsuccessful in finite nuclei applications, es-
pecially in predicting the single particle spectra of nuclei
[30]. Therefore, it is interesting to check whether or not the
relation between a largeM* and a regular NMFP also ap-
pears in the case of ERMF models.

Now, we calculate the NMFP of the neutron star matter by
employing G2, VA4, and NLZ models. Following Refs.
[21,22], we start with the neutrino differential scattering
cross section

1
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d2V8dEn8
= −
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En8

En

ImsLmnPmnd. s1d

Here En and En8 are the initial and final neutrino energies,
respectively,GF=1.023310−5/M2 is the weak coupling, and
M is the nucleon mass. The neutrino tensorLmn can be writ-
ten as

Lmn = 8f2kmkn + sk ·qdgmn − skmqn + qmknd 7 iemnabkaqbg,

s2d

where k is the initial neutrino four-momentum and
q=sq0,qWd is the four-momentum transfer. The polarization
tensorPmn, which defines the target particle species, can be
written as

Pmn
j sqd = − i E d4p

s2pd4TrfGjspdJm
j Gjsp + qdJn

j g, s3d

where j =n,p,e−,m−. Gspd is the target particle propagator
and p=sp0,pWd is the corresponding initial four-momentum.
The currentsJm

j are gmsCV
j −CA

j g5d. The explicit forms of
Gjspd , CV

j , andCA
j of every constituent and also their expla-

nations can be found in Ref.[22]. The NMFP(symbolized
by l) as a function of the initial neutrino energy at a certain
density is obtained by integrating the cross section over the
time and vector components of the neutrino momentum
transfer. As a result we obtain[21,22]
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Since in our study we assume that the neutron star matter
consists only of neutrons, protons, electrons, and muons, the
relative fraction of each constituent should be taken into ac-
count in the NMFP calculation. The relative fraction is de-
termined by the chemical potential equilibrium and the
charge neutrality of the neutron star at zero temperature. The
neutron fractions for all models are shown in Fig. 3.

Qualitatively, all parameter sets have similar trend in frac-
tion of each constituent, i.e., when the neutron fraction is
decreasing, other constituentsp,e−,m−d fractions are increas-
ing. Quantitatively, isovector terms are responsible for the
high proton fraction. G2 has a smaller neutron fraction than

FIG. 1. Equation of states(EOS) of the neutron matter.

FIG. 2. Effective massessM*d of the neutron matter.

FIG. 3. Neutron fraction in the neutron star matter with and
without isovector terms.
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VA4 and NLZ. Therefore, even though G2 has an acceptable
EOS, it has a too large proton fraction. This fact leads to
such a low threshold density for the direct URCA process.
We note that this fact is ruled out by the analysis of the
neutron stars cooling data[26,31,32]. Thus, this result indi-
cates that significant improvements in the treatment of the
isovector sector of ERMF-FR are urgently required. A varia-
tional calculation of Akmalet al. [16] allows for a direct
URCA process only forrB/r0.5. The linear Walecka(lin-
ear FR) and Zimanyi-Moszkowski(derivative coupling)
Hartree-Fock models of Ref.[22] yield a higher critical den-
sity for the direct URCA process. Isovector contributions of
these models do not drastically change the proton fraction.
But, on the other hand, all Hartree-Fock models of Ref.[22]
are unable to give a good prediction in finite nuclei, espe-
cially in the single particle properties[33,34]. It may be in-
teresting to see also the consistency of their EOS with ex-
perimental data[15].

The NMFP for all models can be seen in Fig. 4. Here we
use a neutrino energy ofEn=5 MeV. In general, from me-
dium to high density,lNLZ is larger thanlG2 andlVA4. In the
high density region we clearly see thatlG2<lVA4. The
NMFP difference among all models appears to be significant
around 1ørB/r0ø5 (medium density). For rB/r0 smaller
than 1,lVA4 <lG2<lNLZ. In other words, in the limit of low
density all parameter sets give a similarl prediction as we
expected.

In Fig. 5 we show the dependence ofl with respect to the
M* and neutron fraction. Obviously, NLZ has a maximum
NMFP atM* <200 MeV and neutron fraction<0.75. These

lead to a bump inlNLZ as shown in Fig. 4. On the other
hand, G2 demonstrates no maximum inM* and neutron frac-
tion dependences, leading to a smoothly decreasing function
of lG2 displayed in Fig. 4. For comparison, previous NMFP
calculations using all Hartree-Fock models[22] showed also
no anomaly. In these models, the predicted NMFP falls off
faster than that of the Hartree type model as the density
increases.

In conclusion, the EOS and NMFP of ERMF models in
the high density states have been studied. It is found that the
ERMF-FR and ERMF-PC models have different behaviors at
high density and even by using a parameter set that predicts
an acceptable EOS, the calculated proton fraction in the neu-
tron star is still too large. The isovector terms are responsible
for this. Therefore, improvements in the treatment of the is-
ovector sector of ERMF-FR should be done. Different from
the Hartree-Fock calculation of Ref.[22], only the parameter
set with an acceptable EOS(G2) has a regular NMFP. In
order to minimize the anomalous behavior ofl, a relatively
largeM* in RMF models is more favorable. It seems that the
relatively largeM* in the ERMF models at high density
originates from the presence of the self- and cross interac-
tions in nonlinear terms. The RMF models with relatively
large M* retain their regularities partly or fully even for a
small neutron fraction.
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