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Nonuniform neutron-rich matter and coherent neutrino scattering
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Nonuniform neutron-rich matter present in both core-collapse supernovae and neutron-star crusts is de-
scribed in terms of a semiclassical model that reproduces nuclear-matter properties and includes long-range
Coulomb interactions. The neutron-neutron correlation function and the corresponding static structure factor
are calculated from molecular dynamics simulations involving 40 000 to 100 000 nucleons. The static structure
factor describes coherent neutrino scattering which is expected to dominate the neutrino opacity. At low
momentum transfers the static structure factor is found to be small because of ion screening. In contrast, at
intermediate momentum transfers the static structure factor displays a large peak due to coherent scattering
from all the neutrons in a cluster. This peak moves to higher momentum transfers and decreases in amplitude
as the density increases. A large static structure factor at zero momentum transfer, indicative of large density
fluctuations during a first-order phase transition, may increase the neutrino opacity. However, no evidence of
such an increase has been found. Therefore, it is unlikely that the system undergoes a simple first-order phase
transition. Further, to compare our results to more conventional approaches, a cluster algorithm is introduced
to determine the composition of the clusters in our simulations. Neutrino opacities are then calculated within
a single heavy nucleus approximation as is done in most current supernova simulations. It is found that
corrections to the single heavy nucleus approximation first appear at a density of the ord€r@fché® and
increase rapidly with increasing density. Thus neutrino opacities are overestimated in the single heavy nucleus
approximation relative to the complete molecular dynamics simulations.
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[. INTRODUCTION NSE models and high-density models of nuclear matter are
often incompatible. As the density increases, it is difficult to
The description of nuclear matter at subnuclear densitiegccount for the strong interactions between nuclei in NSE
is an important and general problem. Attractive short-rangenodels. Likewise, as the density decreases and the uniform
strong interactions correlate nucleons into nuclei. Howeversystem becomes unstable against fragmentation, uniform
nuclear sizes are limited by long-range repulsive Coulombmodels fail to describe cluster formation.
interactions and thermal excitations. This competition be- We wish to study the different phases and properties of
tween attraction and repulsion produces multifragmentatiothe system as a function of density. This is essential in the
in heavy ion collisions; the breaking of the system into in-Simulations of core-collapse supernovae as they involve a
termediate sized fragmenfd—3]. In astrophysics this com- tremendous range of densities and temperatures. Several
petition produces a variety of complex phenomena. At densemiclqssical _si_mulation techniques, often _developed for
sities considerably lower than normal nuclear mattef@avy ion collisions, may be used to describe the system
saturation density, the system may be described as a collefVer this large density range. Indeed, Watanabe and collabo-
tion of nearly free nucleons and nuclei in nuclear statistica{2°rS have used quantum molecular dynamics to describe
equilibrium (NSE), while at normal nuclear matter saturation e Structure of the pas{®]. These simulations should re-
density and above the system is expected to become uniforrgtuch?gtr? 'dsgrl]asti(:‘igsnulﬂeég;é?ged:nfsi;gﬁ)%ngr tghu;;:;mtggi%?
Lnugggﬁiecr:uts?grss d Eﬁ%@gﬁfé%ﬁ;ii;ﬁg gﬁ;;ngmtsh could h_ave a two phas_e_ coexistence regi_on. Large density
. . fluctuations at the transition could greatly increase the neu-
pasta phase may be present in the inner crust of neutron st

di " Unf V. low-densi 0 opacity[7]. In the present paper, we search for regions
and in core collapse supernovae. Unfortunately, low-density i, |arge density fluctuations using molecular dynamics

simulations.
The main focus of the present paper is coherent neutrino
*Electronic address: horowit@indiana.edu scattering, an essential tool for computing neutrino mean-
"Electronic address: mperezga@indiana.edu free paths in supernovae and to determine how neutrinos are
*Electronic address: dkberry@indiana.edu initially ~ trapped.  Furthermore, coherent  neutrino
SElectronic address: jorgep@csit.fsu.edu scattering—by representing long-range “classical” physics—
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may provide insights into how the clustering evolves with TABLE I. Model parameters used in the calculations.
density in a model-independent way. In a previous paper &
simple Monte-Carlo simulation model involving 4000 par- a b c A

ticles was developed and first results for neutrino mean-free
paths were presentd@]. In this paper results are presented
for larger simulations involving up to 100 000 nucleons us-
ing molecular dynamics. This large number of nucleons is
required to accommodate long wavelength neutrinos. For e
ample, the wavelength of a 10 MeV neutrino is approxi-
mately 120 fm. At a baryon density of 0.05 fina simula-
tion volume of one neutrino wavelength per side contain
close to 100 000 nucleons.

Having generated a variety of observables, our micro

110 MeV -26 MeV 24 MeV 1.25 frh

he other hand, interact classically via a nuclear-plus-
oulomb potential. However, the use of an effective tem-
perature and effective interactions are used to simulate ef-
Sfects associated with quantum zero-point motion. More
elaborate models are currently under construction and these
will be presented in future contributions. While simple, the

scopic results are then compared to those generated fromn&OOIeI displays the essential physics of frustration, namely,

macroscopic cluster model. Such macroscopic models d .—#:.:tlggns C{ﬁztecnggm'gfﬁ rpSSt?S.gl;t erasljzngf;‘;ntcgsrﬁrs
scribe the system as a collection of free nucleons plus ! y u puision, | P )

single species of a heavy nucleus and are presently used t| oreO\r/]e:,h Or;e mday s_ttudy tr;e evcalu::pnh %f thi syﬁtem
most supernovae simulations. By comparing the two ap- rough the low densily, pasta, and hign density pnases
ithin a single microscopic model. Finally, the model facili-

roaches, we gain insight into the strengths and limitation ; : ) .
b g 9 9 tates simulations with a large numbers of particles, a feature

of the macroscopic cluster models. There is a duality be . ) . S .
b y ]that is essential to estimate and control finite-size effects and,

tween microscopic descriptions of the system in terms o s alluded earlier. to reliably studv the response of the svstem
nucleon coordinates and macroscopic descriptions in ter @salu €T, 1ably study P y
néo long wavelength neutrinos.

of effective nuclear degrees of freedom. Thus it is interestin The total potential f th N ists of
to learn when does a neutrino scatter coherently from a e total potential energy of the system consists of a
nucleus and when does it scatter from an individual nucleon?4™ of two-body interactions
At the Jefferson Laboratory a similar question is being Vige= 2 VG, ), (1)
posed: when does a photon couple coherently to a full had- i<j
ron and when to an individual quark? The quark or hadron . ., ) L
duality has provided insight on how descriptions in terms ofVhere the “elementary” two-body interaction is given as fol-
hadron degrees of freedom can be equivalent to descriptioHQWS:
in terms of quark coordinatg®]. Here we are interested in A N (iV]erT22A P
nucleon or nuclear duality: how can nuclear models incorpo- Vi =aetim+[b+en(n()le=+Veli)). - (2
rate the main features of microscopic nucleon descriptionsHere the distance between the particles is denoted;by
The manuscript has been organized as follows. In Sec. I1:|ri—rj| and 7, represents the nucleon isospin projection
the simple semiclassical formalism is introduced as well ag7,=+1 for protons andr,=—1 for neutron The two-body
details of the molecular dynamics simulations. In Sec. Ill weinteraction contains the characteristic intermediate-range at-
review the formalism for neutrino scattering and relate it totraction and short-range repulsion of the nucleon-nucleon
the static structure factor. Simulation results are presented iforce. Further, an isospin dependence has been incorporated
Sec. IV including the calculation of neutrino mean-free pathsn the potential to ensure that while pure neutron matter is
using nucleon coordinates. Section V presents a simple clusmnbound, symmetric nuclear matter is appropriately bound.
ter model that compares these results to more convention&ideed, the four model parametéasb,c, andA) introduced
approaches usinguclear coordinates. Finally, conclusions in Eq. (2) have been adjusted in R€B] to reproduce the
and future directions are presented in Sec. VI. following bulk properties:(a) the saturation density and
binding energy per nucleon of symmetric nuclear matter,
(a reasonable value fpthe binding energy per nucleon of
Il. FORMALISM neutron matter at saturation density, af@l (approximate

In this section we review our semiclassical model thatvalues for thebinding energy of a few selected finite nuclei.

while simple, contains the essential physics of competin(\gII these properties were computed via a classical Monte
interactions consisting of a short-range nuclear attraction ang@r0_Simulation with the temperature arbitrarily fixed at 1
a long-range Coulomb repulsion. The impossibility to simul-MeV. The parameter set employed in all previous and present

taneously minimize all elementary interactions is known inc@lculations is displayed in Table I. Finally—and critical for
condensed-matter circles fiastration The complex physics pas.ta format.|or.1—a screened Coulomb interaction of the fol-
of frustration, along with many other details of the model,!oWing form is included:

may be found in Ref[8]. Here only a brief review of the o o

most essential features of the model is presented. We model Veli,j) = rfe_r”'/th(l)Tp(J), 3)

a charge-neutral system of electrons, protons, and neutrons. E

The electrons are assumed to be noninteracting and thus anere 7,=(1+17,)/2 and\ is the screening length that re-
described as a degenerate free Fermi gas at a number densults from the slight polarization of the electron gas. The
identical to that of the protong.e., p.=py,). The nucleons, on relativistic Thomas-Fermi screening length is given by
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B e T We comment on the classical nature of our simulations.
A= e (kFV ke + me) : (4) Correlations from Fermi statistics are not explicitly included.
However, some effects of Pauli exclusion are implicitly in-
wherem, is the electron mass and the electron Fermi mo-<luded by incorporating short range repulsion in E).and
mentum has been defined By=(37%p¢)Y® [10,11. Unfor-  adjusting the parameters in Table | to reproduce the satura-
tunately, while the screening length defined above is tion density and binding energy of nuclear matter. In this
smaller than the length of our simulation box, it is not paper, we focus on the neutrino response at long wave-
significantly smaller. Hence, following a prescription intro- lengths; see Sec. lll. This is dominated by correlations be-
duced in Ref[8] in an effort to control finite-size effects, the tween clusters; see for example Figs. 3 and 7. These clusters
value of the screening length is arbitrarily decreased to are heavy, since they involve many nucleons, and their ther-
=10 fm. mal de Broglie wavelengths are much shorter than the inter-
The simulations are carried out with both a fixed numbercluster spacing. Therefore, we expect our classical approxi-
of particlesA and a fixed density. The simulation volume is mation to accurately reproduce the long wavelength neutrino
then simply given byw=A/p. To minimize finite-size effects response.
periodic boundary conditions are used, so that the distance
is calculated from the,y, andz coordinates of théth and
jth particles as follows: IIl. NEUTRINO SCATTERING

rij = VX —xj]2+[yi —y]-]2+[zi —zj]2, (5) In this section we revigw coherent ngutrino s_cat'gering
which is expected to dominate the neutrino opacity in re-

. . . . 1/3
where the periodic distance, for a cubic box of sideV™,  gigns where clusters, such as either nuclei or pasta, are

is given by present. Although the formalism has been presented already
[17=min(I],L = |I)). (6) in Ref.[8], some details are repeated hémbmost verbatim
) ) for the sake of completeness and consistency.
In our earlier work[8] properties of the pasta were ob- | the absence of corrections of ordgy/M (with E, the

Monte Carlo integration. In the present paper molecular dyzontriputions from weak magnetism, the cross section for

namics is used to simulate the system. There are a few agpytrino-nucleon elastic scattering in free space is given by
vantages in using molecular dynamics over a partition funcyne following expressiofil5]:

tion. First, larger systems are allowed to be simulated due to

advances in both software and in hardweésee Appendix do _ G2E?
Second, one is not limited to compute the static structure 40~ 472
factor of the system as now the full dynamic response is

available. One expects the neutron-rich pasta to display invhereGe is the Fermi coupling constant aritthe scattering
teresting low-energy collective excitations—suchRygmy  angle.

resonances-that may be efficiently excited by low-energy Having neglected the contribution from weak magnetism,
neutrinos. These low-energy modes of the pasta are currentfpe weak neutral curred, of a nucleon contains only axial-

[c3(3 - cosh) + cA(1 + cosh)], (7)

under investigation. vector (ysy,) and vectory, contributions. That is,

To carry out molecular dynamics simulations the trajecto- 3 =c te )
ries of all of the particles in the system are determined by n= LaYsYu ™ S
simply integrating Newton'’s laws of motion, albeit for a very The axial coupling constant is
large number of particle@p to 100 000 in the present case
using the velocity-Verlet algorithm12-14. To start the c.= t%‘ (g.=1.26. (9)
simulations, initial positions and velocities must be specified a 2 a

for all the particles in the system. The initial positions are
randomly and uniformly distributed throughout the simula-
tion volume while the initial velocities are distributed ac-
cording to a Boltzmann distribution at temperatiitéAs the
velocity-Verlet is an energy—not temperature—conservin
algorithm, kinetic and potential energy continuously trans- 1 _
formed into each other. To prevent these temperature fluctua- C=5 2 sirf6y,=0.038= 0. (10)
tions, the velocities of all the particles are periodically res-
caled to ensure that the average kinetic energy per particle contrast, the weak charge of a neutron is both large and
remains fixed3/2)kgT. insensitive to the weak-mixing angle;=-1/2.

In summary, a classical system has been constructed with If nucleons cluster tightly, either into nuclei or into pasta,
a total potential energy given as a sum of two-body,then the scattering of neutrinos from the various nucleons in
momentum-independent interactions as indicated in(Bg. the cluster may be coherent. As a result, the cross section
Expectation values of any observable of interest may be caWill be significantly enhanced as it would scale with the
culated as a suitable time average using particle trajectoriexjuareof the number of nucleonglg]. In reality, only the
generated from molecular dynamics simulations. contribution from the vector current is expected to be coher-

Note that in the above equation thé— sign is for neutrino-
proton(neutrino-neutronscattering. The weak charge of the
protonc, is small, as it is strongly suppressed by the weak-
gmixing (or Weinberg angle sidé,,=0.231. It is given by
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ent. This is due to the strong spin and isospin dependence gbphisticated treatment of neutrino transport have not ex-
the axial current, which is expected to reduce its coherenceloded[18].

(Recall that in the nonrelativistic limit, the nucleon axial- In the oppositeq— o limit, the neutrino wavelength is
vector current becomegsyr,— —o7,). Since in nuclei and much shorter than the interparticle separation and the neu-
presumably also in the pasta most nucleons pair off into spitrino resolves one nucleon at a time. This limit corresponds
singlet states, their axial-vector coupling to neutrinos will beto quasielastic scattering where the cross section per nucleon
strongly reduced. Hence, in this work we focus exclusivelyin the medium is the same as in free space. Thus the coher-
on coherence effects from the vector current. Coherence isnce disappears and
important in neutrino scattering from the pasta because the

neutrino wavelength is comparable to the interparticle spac- S(q— ) =1. (16)

ing and even to the intercluster separation. One must then |n Monte Carlo as well as in molecular dynamics simula-
calculate the relative phase for neutrino scattering from diftjons it is convenient to compute the static structure factor
ferent nucleons and then add their contribution COherenthrom the neutron-neutron correlation functig(r)_ |ndeed'
This procedure is embodied in the static structure faBtq).  the static structure factor is obtained from the Fourier trans-

The static structure factguer neutronis defined as fol-  form of the two-neutron correlation function. That is,
lows:

1 . S(@)=1+p fd3r(g(r)—1)exp(iq-r). (17)
Sa) = 2 KW@ wol?, (11 ’
n7o The convenience of the two-neutron correlation function

where ¥, and ¥, are ground and excited nuclear states,stems from the fact that it measures spatial correlations that
respectively and the weak vector charge density is given bynay be easily measured during the simulations. It is defined
as follows:

N
p(a) = 2 explig -r)). (12) 1 N
= g(r)= N_E (Wol&(r —1yj)| ¥, (18)
As the small weak charge of the protgBg. (10)] will be Pnizj
neglected henceforth, the sum in E#j2) runs only over the where p,=N/V is the average neutron density. Operation-
N neutrons in the system. The cross secien neutronfor  ally, the correlation function is measured by pausing the
neutrino scattering from the whole system is now given by simulation to compute the number of neutron pairs separated
2 2 by a distancér|. Note that the two-neutron correlation func-
1do _ S(q)GF_Ev}(l +C0s6). (13)  fion is normalized to one at large distanggs— ) =1; this
N dQ 47”4 corresponds to the average density of the medium.

The above expression is the single neutrino-neutron cross
section per neutron obtained from Ed) (with c,=0) mul-
tiplied by S(q). This indicates thaS(q) contains the effects
from coherence. Finally, note that the momentum transfer is In this section results are presented for a variety of
related to the scattering angle through the following equaneutron-rich matter observables over a wide range of densi-
tion: ties. Our goal is to understand the evolution of the system
with density. From the low-density phase of isolated nuclei,
o’ = 2E,2,(1 ~ cos6). (14) through they complex pasta phasey, Ft)o uniform matter at high
The static structure factor has important limits. For a detailedensities. All the results in this section have been obtained
justification of these limits the reader is referred to R8f. ~ With an electron fraction and a temperature fixedrat0.2
In the limit that the momentum transfer to the system goes t@nd T=1 MeV, respectively. In core-collapse supernova the
zero(q— 0) the weak charge densif{Eq. (12)] becomes the €lectron fraction starts neaf,=0.5 and drops as electron

neutron number operat@t(q:O):N. In this limit the static ~2PtUre proceeds. In a neutron s¥aris small—of the order
of 0.1—as determined by beta equilibrium and the nuclear
structure factor reduces to

symmetry energya stiff symmetry energy favors larger val-
1 - - ues forYe [19]). Thus, the value o¥,=0.2 adopted here is
S(q=0)= N(<NZ> =(N)?). (15  representative of neutron-rich matter.
There are limitations in our simple semiclassical model at
Thus theq— 0 limit of the static structure factor is related to both low and high temperatures. At very low temperatures
the fluctuations in the number of particles, or equivalently, tothe system will solidify while at high temperatures the model
the density fluctuations. These fluctuations are themselvemay not calculate accurately the free-energy difference be-
related to the compressibility and diverge at the critical pointtween the liquid and the vapor. As a result the pasta may melt
[17]. As the density fluctuations diverge near the phase tranat a somewhat too low of a temperature. Results are thus
sition, the neutrino opacity may increase significantly. Thispresented for onlff=1 MeV where the model gives realistic
could have a dramatic effect on present models of stellaresults. Recall that our model reproduces both the saturation
collapse. So far one dimensional simulations with the mostensity and binding energy of nuclear matter, and the long-

IV. RESULTS

065806-4



NONUNIFORM NEUTRON-RICH MATTER AND COHERENT.. PHYSICAL REVIEW C 70, 065806(2004)

TABLE II. Molecular dynamics simulation results. Hepein fm™3) is the baryon density is the baryon
number,t; (in fm/c) is the total evolution timeV/A (in MeV) is the potential energy per particl®, (in
MeV/fm?3) is the pressure, aD) is the approximate value of the static structure factay=® computed as

in Eq. (26).

p A t; V/A P S0)
0.010 40 000 1287 000 -5.3M 6.9x10°3 0.790
0.025 100 000 52 000 -5.14H 3.2x107? 0.344
0.050 100 000 28 000 -4.468 0.13 0.139
0.075 40 000 60 000 -3.689 0.33 0.077

range Coulomb repulsion between clusters. Therefore, euled out. This suggests that opr=0.01 fni2 results may
good description of the clustering should be expected. include a systematic error due to the long—but finite—
The simulations start at the low baryon density @f equilibration time. Fortunately, equilibrium seems to be
=0.01 fni® (which corresponds approximately to 2 reached much faster at higher densities so that the slow
X 10" g/cn?). This is about 1/15 of nuclear-matter satura- equilibration probably ceases to be a problem at these den-
tion density. At this low density the most time consuming sities.
part of the simulation is preparing appropriate initial condi-  Results for two observables—the potential energy per par-
tions. This is because the Coulomb barrier greatly hinders thecle and the pressure—are displayed in Table 1l as a function
motion of protons into and out of the clusters. The Coulombof density. Also included in the table are the number of
barrier becomes an even greater challenge at lower densitiesucleons and the total evolution time for each density. Note
Thus, no effort has been made to simulate densities beloghat the pressure of the system is computed fromvihial

0.01 fni?, equationas follows[12]:

In Ref. [8] results were presented for Monte Carlo simu-
lations with A=4000 nucleons. Unfortunately, finite-size ef- P=p| ksT - 1 S, av ] (19)
fects make it difficult to calculat&(q) accurately at small 3AN S Dodr i

momentum transfers from these “small” simulations. Further.

at a baryon density=0.01 fnT3 each side of the simulation In the case of noninteracting particles, EtP) reduces to the

well-known equation of state of a classical ideal gas. Thus,

volume has a length of approximatdly=75 fm. This is in- ) , o
adequate as the wavelength of a 10 MeV neutrino is close tg‘e second t'erm in the above equathn reﬂec_;ts the modifica-
tons to the ideal-gas law due to the interactions.

120 fm. Therefore, in the present simulations the number o Th ; ; lation functi tab
particles has been increased by a full of order of magnitude '€ nefu_ron-nefu _rg)n cohrre ation func 'g(L) at a baryon
to A=40 000 nucleons. This results in a simulation volumedensity ofp=0.01 ™ is shown in Fig. 1. The two-neutron

that has increased to a cube lof 158.7 fm on a side. The correlation function measures the probability of finding a
molecular dynamics simulation starts with the nucleons uniPa’ of neutrons separated by a fixed distamce Ia.rge

formly distributed throughout the simulation volume and Proad peak is observed gir) in the 2-10 fm region; the
with a velocity profile corresponding to B=1 MeV Boltz- lack of neutrons with a relative distance of less than 2 fm is

mann distribution. The system is then evolved according t¢lu€ to the hard core of the potential. The sharper subpeaks
velocity-Verlet algorithm using a time step of the order of contained in this structure reflect neutron-neutron correla-

At=2 fm/c. Velocity-Verlet is an energy conserving algo-
rithm and with this time step the total energy of the system is
conserved to one part in L0However, in order to preserve
the temperature fixed at=1 MeV, the velocities of all the
particles must be continuously rescaled so that the kinetic 4
energy per particle stays approximately fixed k{13 2. For
some excellent references to molecular dynamics simulations ., 3
we refer the reader tf12-14. =
In an attempt to speed up equilibration, the temperature of
the system was occasionally raised during the evolution to
1.5-2 MeV. This could aid the system move away from local
minimum, as is conventionally done with simulated anneal-
ing. Equilibration is checked by monitoring the time depen-
dence of the two-neutron correlation functigtr) and the ol Lo bo v Lo s Lo boaalowa L]
static structure facto®(q). The peak irS(q) was observed to 102030 r é?n) 0 60 70 80
grow slowly with time as the cluster size increased. Changes
became exceedingly slow after evolving the system for a FIG. 1. Neutron-neutron correlation functigir) at a density of
long total time of 1287 000 frmo. Although long, further p=0.01 fnT3, an electron fraction o¥,=0.2, and a temperature of
changes inS(q) over much larger time scales can not beT=1 MeV. This is from a simulation with 40 000 nucleons.

p=0.01 fm”
Y =02
T=1 MeV

—

[ w
O_III!IIIIIII|III|III|I
1
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{VP o e I B LI LA ILA L evident. This is important as the value of the static structure
factor at zero-momentum transf&q=0) monitors density
fluctuations in the system and these may be indicative of a
phase transition.

In the limit of zero-momentum transfer the static structure
factor S(q=0) is directly related to the isothermal compress-

— g(m=1forr>L/2
= g(r)=g0(r) for r>L/2

1.01

s I \N S B == ibility. That is [17],

i - S(q=0) = pkaTK1 =k T(ﬁp>_l (22)
i - = = p = _ ]

099 ] BT N\ op /s
i ] where the isothermal compressibility is given by

0.98 Lo o b v v o b by g

' 50 60 70 80 90 100 . JP IP
r (fm) Kiy==-V|—] =p|l — . (23)
aV/y ap/t

FIG. 2. (Color onling The larger behavior of the two-neutron £ 3 classical ideal gage., P=pkgT) the isothermal com-
correlation function displayed in Fig. 1. Note the expangextale. pressibility reduces tdC}lzpkBT and S(q=0)=1. As ex-
Also shown(red dashed lingis the analytic fit tog(r) according o o rtaq in the absence of interactions there are no spatial
Eq. (20). correlations among the particles. Assuming now thaigas
— 0 the fluctuations in the neutron density are proportional
tions (nearest neighbors, next-to-nearest neighbors, and 1@ the corresponding fluctuations in the baryon density, one

on) within a single cluster. The Coulomb repulsion amongoptains for the static structure factor per neutron
protons prevents the clusters from growing arbitrarily large

and keeps them apart. The dipdfr) atr =10 fm is a result Sq=0)= Nk T(ﬁ)_l (24
of the Coulomb repulsion between clusters. Finally, the small AP ap)

broad peaks near 25-30, 50, and 75 fm reflect correlatio
among the different clusters.

Figure 2 displays an enlargement of the neutron-neutro

correlation function for large values of Finite-size effects
lead to an abrupt drop ig(r) atr=L/2~80 fm (not shown.
To ensure a reliable estimate of its Fourier transform—and*P
correspondingly of the static structure fac&g)—one must P(p) = (0.61Dp + (228.132p*** (a=1.583, (25
extrapolateg(r) to the regionr>L/2. To do so, an analytic
function of the following form is fitted tay(r):

rL'f“he derivative of the pressure with respect to the baryon
Hensity has not been directly calculated in the simulations.
However, the pressure has been computed at various densi-
ties and has been tabulated in Table Il. These values can be
proximated by a simple fit of the form:

with the pressure expressed in units of MeV#fand the
density in fni3. This yields

— —aol
gO(r) - Aoe 0 Coik()r + 50) +1. (20) 1.358X% 10—3

The constantsy,, ag ko, andd, are obtained from a fit to the Sa=0)~ (1.037x 103+ p9)
large+ behavior of the neutron-neutron correlation function. _ _
The result of this fit is indicated by the red dashed line inThese approximate values f8(q=0) have been reported in
Fig. 2. Table Il. For comparison, they have also been addéth a
Figure 3 shows the 0.03 fif isosurface of the proton green solid squayeo the various figures for whic(q) was
density for one configuration of 40,000 nucleons at a densitglirectly computed from the Fourier transform of the two-
of 0.01 fni3. All of the protons and most of the neutrons are neutron correlation functioiisee Figs. 4, 7, and 11Note
clustered into nuclei. We discuss the size of these nuclei ithat there is good agreement between the two approaches.
Sec. V. There is also a low density neutron gas between the At low momentum transfers the static structure factor is

(26)

clusters which is not shown. small because of ion screening. Coulomb correlations—
The static structure facto®(q) may now be calculated Wwhich both hinder the growth of clusters and keep them well
from the Fourier transform af(r) [see Eq(17)]. That is, separated—screen the weak charge of the clusters thereby

reducing S(q). Further, a large peak is seen $q) for g
=0.25 fni. This corresponds to the coherent scattering
from all of the neutrons in a cluster. As we will show in the
next section, this peak reproduces coherent neutrino-nucleus
In Fig. 4 the static structure factor obtained by using theelastic scattering at low densities. Finally, the static structure
above extrapolatioqi.e., with go(r) for r=L/2) is displayed  factor decreases fay>0.3 fmi. This is due to the form
with the red dashed line. In an earlier publication the statifactor of a cluster. As the momentum-transfer increases, the
structure factor was calculated directly from the simulationneutrino can no longer scatter coherently from all the neu-
results assuming(r)=1 for r>L/2 [8]. This result is also trons because of the size of the cluster is larger than the
shown for comparisoriblack solid ling. The improvement neutrino wavelength. All these features will be discussed in
in the low-momentum transfer behavior 8fq) is clearly  greater detail in the next section.

“ sin(gr)

S(q) =1 + 4mp, f (g(r) = Dredr. (21)

0 r
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] I L B
25H p=0.025fm”| 3
= Y =02 ]
L T=1 MeV E
=50 =
?/015: m
1 .
0.5 3
0|||||||||||||||||||||||||||||||:

10 20 30 40 50 60 70 80
r (fm)

FIG. 5. Neutron-neutron correlation functigir) at a density of
p=0.025 fn3, an electron fraction of,=0.2, and a temperature of
T=1 MeV. This is from a simulation with 100 000 nucleons.

sity of 0.025 fm3. All of the protons and most of the neu-

trons are clustered into nuclei. The size of these nuclei is

now larger than at a density of 0.01 fhas discussed in Sec.

V. There is also a low density neutron gas between the clus-
Next, simulation results are presented at the higher derfers which is not shown.

sity of p=0.025 fnT3. At this density it becomes much easier ~ Simulations have also been performed at a density of

to equilibrate the system as protons have shorter distances ¥.05 fnT® using A=100 000 nucleons. The two-neutron

move over the Coulomb barriers. In order to minimize finite-correlation function, together with its amplification at large

size effects more nucleons—a totalA$ 100 000—are used values ofr, is shown in Figs. 9 and 10, respectively. The

for these simulations. The two-neutron correlation function iscorresponding static structure factor is displayed Fig. 11.

shown in Fig. 5, with its behavior at large distances amplifiedNote the significant improvement in the behavior30f)) at

in Fig. 6. Note that the calculation fa(r), which proceeds low momentum transfers as the sharp cutoffgim) is re-

by histograming distances between tREN-1)/2 pairs of moved in favor of a smooth extrapolatipsee Eq(20)]. As

neutrons, is now considerably more time consuming. Thehe density increases, and thus the separation between clus-

resulting static structure factor is shown in Fig. 7. The peakers decreases, the peakS(y) continues to move to higher

in S(q) has now moved to largey because of the shorter ¢. However, the peak value @&(g) has now been reduced

distance between clusters. because of the increase in ion screening with density.
Figure 8 shows the 0.03 fih isosurface of the proton Figure 12 shows the 0.03 frhisosurface of the proton

density for one configuration of 100 000 nucleons at a dendensity for one configuration of 100 000 nucleons at a den-

sity of 0.05 fn73. The clusters are now seen to have very

FIG. 3. (Color onling The 0.03 fm? proton density isosurface
for one configuration of 40 000 nucleons at a density of 0.013fm
The simulation volume is a cube 159 fm on a side.

30T 1 11 LU T 1 .0 1 11 1 1 1 )
- ! ' ! ! - elongated shapes. The low density neutron gas between these
E [— sw=lforr>L/2 3 clusters is not shown.
25 | [ g(r):go(r) for r>L/2 ]
E ®_From Table IT E 1.01— | LA DL L L L L
20F - C ]
C - - — g(n)=1 forr>L/2 4
S 15E 3 1,005 —-— g=g ) forr>L/2|
2 C - R 4
10 — : g .
r ] = - N i
sE 3 = 12_ -
o i _ 0.5 0.995 ]
-1
q (fm ") - ’
. . f 0 C 1 I | 1 1 | 1 | 1 | 1 1 | I 1 | 1 ]
FIG. 4. (Color online Static structure facto®(q) at a density of .99 50 20 30 90 100
p=0.01 fnT3, an electron fraction o¥,=0.2, and a temperature of r (fm)
T=1 MeV. The black solid line assumegr)=1 for r>L/2 while
the red dashed line includes an analytic extrapolationgfoy for FIG. 6. (Color onling The larger behavior of the two-neutron
r=L/2. The green solid square is the valueS®) from Eg. (26) correlation function displayed in Fig. 5. Also showred dashed
and Table II. line) is the analytic fit tog(r).
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o' YRR TR I«'\ LI L 2 LN UL DL L L L
- |— g@)=1forr>L/2 IA 3 - - _
25 |-- g=gy@) forr>L/2 — C p=0.05 fm .
C ®_ From Table II 3 15H Y =02 ]
20 4 - T=1 MeV .
g g = = 0 L\/x\_/ .
e - - ST 4
10 - C ]
S5F = 0.5H -
m__ I r _I T = : 11 1 I 11 1 | 11 1 I 11 1 | 11 1 I 11 1 :

0 0.1 0.2 N 0.3 0.4 0.5 00 0 20 30 i =% 20

q({m ) r (fm)
FIG. 7. (Color onling Static structure factoB(g) at a density of FIG. 9. Neutron-neutron correlation functigfr) at a density of

p=0.025 fn73, an electron fraction 0¥,=0.2, and a temperature of =0.05 fn73, an electron fraction 0¥,=0.2, and a temperature of
T=1 MeV. The black solid line assumegr)=1 forr>L/2 while  T=1 MeV. This is from a simulation with 100 000 nucleons.
the red dashed line includes an analytic extrapolationgfoy for

r=L/2. The green solid square is the valueS00) from Eq. (26)

and Table 1. In the next section we will compare these “complete” re-

sults with conventional approaches that model the system as
) ) i a collection of strongly-correlated, neutron-rich nuclei plus a
We conclude this section by presenting results for th&,e tron gas. In this approach the peak observed in the static
two-neutron - correlation function at a density o6 gycture factor is attributed toeutrino-nucleus elastic scat-

o - " Sy
=0.075 fm™ using a total 0fA=40 000 nucleons in Fig. 13. ajng Note, however, that the complete simulation results
Note that this is the largest density considered in this workphiained in this section should remain valid even when these
At this density the clusters have been “melted” and the sys;, ,cjear models break down.

tem has evolved into a uniform phase. In Fig. 14 results for
the static structure factor at this density are compared with
the corresponding results at the lower densities. There is no V. CLUSTER MODEL

longer evidence for a large peak q) in the uniform sys- In this section a cluster model is developed with the goal

tem as a consequence of the complete loss in coherencgy comparing our simulation results from the previous sec-
Finally, Fig. 15 showsS(q) at large momentum transfers. i, \yith commonly used approaches. In the complete model
One observes that the static structure factor decreases Wiliyjoyed earlier, trajectories for all the nucleons were cal-
increasing density in the intermediateregion before ap- ¢ jated from molecular dynamics simulations and these were
proaching the value of ong@s it must at highg used to compute directly the two-neutron correlation func-
tion and its corresponding static structure factor. One of the
main virtues of such an approach is that there is no need to
decide if a given nucleon is part of a cluster or part of the
background vapor. Nevertheless, in this section a clustering

1.004—||,|||||||||||||||||||||—

— g(=1forr>L/2 o
—— gD=gy(n) for R>L2| |

1.002— =1
= B i
on v S
1 - <__-
— \// -4
0.9981] —
I I T T N A
30 40 50 60 70 80 90
r (fm)
FIG. 8. (Color onling The 0.03 fm? proton density isosurface FIG. 10. (Color onling The larger behavior of the two-neutron

for one configuration of 100000 nucleons at a density ofcorrelation function displayed in Fig. 9. Also showred dashed
0.025 fn73. The simulation volume is a cube 159 fm on a side.  line) is the analytic fit tog(r).
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12 | 1T 11 | T 171 | T 11 I T T 171 | T T ] 2 _I TTT TTTT TTTT I TTTT TTTT I TTTT I TTTT | TTT I_
jof [— en=Tfor>L72 "\ = : p=0.075fm” |
- |-- g®=g,® forr>L/2 . LsE- Y =0.2 A
oF L= FromTablenn E “F T=1 MeV -
5 6F - R -
wn - . &n - -
i 3 : :
C ] 0.5 —
) ] N i
o= T [T R A T T W O OO B 0_||||||||||||||||||||||||||||||||||||||_
0 0.1 0 i 0.5 0 5 10 15 20 25 30 35 40
FIG. 11. (Color onling Static structure factos(q) at a density FIG. 13. Neutron-neutron correlation functigir) at a density

of p=0.05 fnT3, an electron fraction o¥,=0.2, and a temperature of p=0.075 fn3, an electron fraction 0¥,=0.2, and a temperature

of T=1 MeV. The black solid line assumegr)=1 for r>L/2 of T=1 MeV. This is from a simulation with 40 000 nucleons.

while the red dashed line includes an analytic extrapolatiogor ) ) ) )

for r=L/2. The green solid square is the value@) from Eq. ~ With a given nucleon and searches for all of its “neighbors,”

(26) and Table 1. namely, all other nucleons contained within a sphere of ra-
dius Rc. Next, one repeats the same procedure for all of its

algorithm is constructed with the aim of assigning nucleonéq.e'.ghbors 'untll no new ngghbors are foqnd. This propedure
to clusters. In this way one can compare the inferred compog'v'_des a fixed conflg_uratlon of nucleons into a collection of
sition extracted from our simulations with many nuclear sta-Y2rous mass clusteige., “nucler’). . .
tistical equilibrium(NSE) models that describe the system as To illustrate th'§ procc_adure the final pucleon qonflguratlon
a collection of nuclei and free nucleons. In this way one carPf thef Cclrg%lit? §'3”.‘“'a“|°“ Ogthg prehwous sect|rc]>n ata Idergj—
then compare the static structure factor extracted from thd'y ©f p=0.01 = is selected after the system has evolve

complete simulations with that calculated in these NSE mod!° & to_tal time oft;=1 287 OQO fm¢. Having selected a cut-
els P off radius ofR.=3 fm, one finds that the 40 000 nucleons in

the system are divided in the following wagg) 11 062 free
neutrons,(b) no free protons(c) a few light nuclei withA
<8, and(d) a collections of heavy nuclei with a mass distri-

The clustering algorithm implemented in this section as-bution of 50<A=<160. The mass-weighted average of all
signs a nucleon to a cluster if it is within a distariRgof at  clusters withA>2 is equal to(A)=99. This distribution of
least one other nucleon in the cluster. In practice, one star§lusters is displayed in Fig. 16 and listed in Table III.

In Table Ill results are also displayed for values of the
cutoff radius in the 2-5 fm range. Note that the average

A. Clustering algorithm

30 L L I /4 T T T T T
E [— p=0.010fm” \ 3
25 [-—— p=0.025 fm> ks =
cofee p=0.050 fm’’ 5 3
E [ —— p=0.075fm" .
20 : = \\ -]
- \ -
= F ]
7 PE E
10 -
5 -
C > ~=
0E el o S M M ot s

0 0.1 0.2 0.3 0.4 0.5

q (fm™)

FIG. 14. (Color online Static structure factoB(q) for a variety
of densities at an electron fraction ¥f=0.2 and a temperature of
FIG. 12. (Color onling The 0.03 fm? proton density isosurface T=1 MeV. The black solid line is for a density @f=0.01 fnT3,
for one configuration of 100 000 nucleons at a density of 0.08fm  while the red dashed line is far=0.025 fn3, the green dotted line

The simulation volume is a cube 126 fm on a side. for p=0.05 fn3, and the blue dot-dashed line fpF0.075 fm®,
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TABLE lll. Distribution of cluster as a function of the cutoff
radiusR¢ at a densityp=0.01 fnT2 for a system of 40 000 nucle-

3||If_‘|:||||||
e A

25F i 3 — p=0.010 fm:; 3 ons. The number of free neutrons is denoted\gji=1), the aver-
E [ 3 —— p=0.025fm_ - age mass of alA>2 clusters by(A), and the size of the largest
2F I,' | g - cluster byA
I ' -
g =t 3 Re (fm) N(A=1) A Amax
: ; 3 2.0 20585 46.20 118
=i E 2.5 14 233 102.29 155
ol — =7 E 3.0 11062 98.75 160
o T 3 35 7 856 96.17 254
o) i S, I O i e AT O A A A A A B 4.0 5131 100.97 261
L s 1 e, 2 &2 8 45 2888 149.84 513
q (fm ) 5.0 1427 14069 23189

FIG. 15. (Color onling The largeg behavior of the static struc-

ture function displayed in Fig. 14. B. Cluster form factors

To describe coherent neutrino scattering from a single
cluster, that ispeutrino-nucleus elastic scatteringne must

. e : calculate the elastic form factor for the cluster. This is given
should give similar results. However, R: is chosen too

large, for examplér-=5 fm, then most of the nucleons be- by

come part of one single giant cluster. 1 N sin(qr,)
Similar results for a density 0p=0.025 fn73 are pre- F(OI):NE —.

sented in Table IV. This distribution is extracted from the

final configuration of 100 000 nucleons obtained after a totalyere the sum runs over tiéneutrons in the cluster ang is

evolution time oft;=52 000 fm£. Using a cutoff radius of gistance from the g neutron to the center of mass of the
Rc=3 fm, the 100 000 nucleons in the system are now din.neytron system. The form factor represents the Fourier
vided into 14 549 free neutrons, no free protons, a few lightyansform of the point neutron density and here, for simplic-
nuclei, and a broad collection of heavy nuclei wahfrom i has been averaged over the direction of the momentum
about 80 to 614 nucleons. Such a distribution is shown ifrgnsfer. Note that the elastic form factor is normalized so
Fig. 17. The average mass has now growiAp=199. The  h5¢ F(q=0)=1. In Fig. 18 the elastic form factors of all
mass of the heavy nuclei is seen to increase with density agsters with A>10 are displayed at a density of
shown in Fig. 17. Finally, results gi=0.05 fn7® are pre- =001 fn73 (a cutoff radius ofR.=3 fm was selected The
sented in Table V. Now the density is so high that it is dif-|3rge spread in the form factors reflects the many different
ficult to design a sensible scheme to divide the system intQjzes of the individual clustersee Fig. 16 Indeed, the root-
clusters; see Fig. 11. For example, even with a cutoff rad'“?nean—squarerms) radius of a cluster appears to scale ap-
as small aikc=2.5 fm, already 78 178 of the 100 000 nucle- proximately asAY. Therefore, in Fig. 19 all of these form
ons become part of a single giant cluster. factors are plotted but againstsgaled momentum transfer
gAY3. Now all the(scaled form factors fall in a fairly nar-
row band suggesting that, while these neutron-rich clusters

cluster masgA) appears remarkably constant for ZR-
=<4 fm. This suggest that any value BE within this range

(27)
n=1 dfn

ARRARRERRRRRARE RAR AR AR RS

10000 — 3 E have different radii, they all share a similar shape.
R_O.(ilét(f)n(i)oo 3 In Fig. 20 we display the form factor for a single neutron-
1000 R rich cluster withA=100 andz=28 (* 1°Ni" ) extracted from
C

[

TABLE IV. Distribution of cluster as a function of the cutoff
radiusR¢ at a densityp=0.025 fn72 for a system of 100 000 nucle-
ons. The number of free neutrons is denoted\igf=1), the aver-
age mass of alA>2 clusters by(A), and the size of the largest
cluster byAmay

Re (fm) N(A=1) (A Amax
200 40 60 80 100 120 140 160 20 49 761 58.95 162
A 25 28234 167.40 423
FIG. 16. Number of clusters of atomic ma&dor one configu- 3.0 14 549 198.91 614
ration of 40 000 nucleons at a density @f0.01 fn73. Note that 3.5 5187 59 411 75 003

this is a linear-log plot.
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10III

= p=0.010 fm” (A=40,000)
* p=0.025 fm” (A=100,000)

N(A)

100 200 300 600

A

400 500

FIG. 17.(Color onling Number of clusters of atomic massfor
one configuration of 100000 nucleons at a density f
=0.025 fn73 (black hatched ling Also shown for comparison is the
number of clustergfrom Fig. 16 at p=0.01 fm3 (red solid ling.
Note that both scales are now linear.

the simulation with a density gf=0.01 fni3. Also shown in
the figure(with a green dotted lines the form factor=y(q)

PHYSICAL REVIEW C 70, 065806(2004)

TABLE V. Distribution of cluster as a function of the cutoff
radiusRc at a densityp=0.05 fn73 for a system of 100 000 nucle-
ons. The number of free neutrons is denoted\igfi=1), the aver-
age mass of alA>2 clusters by(A), and the size of the largest
cluster byAnay

Rc (fm) N(A=1) A Amax
2.0 47 239 56.86 308
25 16 219 72 952 78 178

C. Single heavy nucleus approximation

A number of approaches to dense matter, such as those
using the equation of state by Lattimer and Swe&y],
model the system as a collection of free neutrons plus a
single representative heavy nucleus. Occasionally, free pro-
tons and alpha particles are also added to the system. To
mimic this approach, a model is constructed based on our
earlier cluster results reported in Tables Il and IV for a
cutoff radius ofR-=3 fm. For example, at a density @f
=0.01 fn73 the system contains a mass fractdn=0.28 of
free neutrons and a mass fraction)gf=1-X,=0.72 for the

of a uniform neutron distribution with a sharp surface radiusSingle representative heavy nucleus. According to the aver-
R, chosen to reproduce the rms radius of the neutron-ricif9€ mass reported in Table Ill, a massAf100 is assigned

cluster(r2)*2. It is given by

sin(x) — x cogx)

Fola) =3 N (x=0qRy), (28)

— ? 2\1/2
Rn_\/;<rn> .

with R, given by

(29

to this representative heavy nucleus. Conservation of charge
constrains this nucleus to have=28. Note that due to the
presence of free neutroribut not free protonsthe charge-
to-mass ratio of the heavy nucleZgA=0.28 slightly ex-
ceeds the electron fractiory,=0.2 of the whole system. The
assumed composition of the system at densities pof
=0.01 fm3 and p=0.025 fm?3 is given in Table VI.

The heavy nuclei are assumed to interact exclusively via a
screened Coulomb interaction. Each nucleus is assumed to

Finally, Fig. 20 also shows the neutron form factor of thehave a uniform charge distributign, that extends out to a

exotic, neutron-rich nucleu¥®Ni calculated in a relativistic

radiusR, chosen to reproduce the proton rms ram[§1/2

mean-field approximation using the very successful NL3 in-given in Eq.(30). The Coulomb interaction between two

teraction [20]. While the NL3 form factor has a slightly

such nuclei whose centers are separated by a disfarise

smaller RMS radius, the overall agreement between all thregiven by

models is fairly good. Note thatNi (rather thant®Ni) was

used in this calculation as it contains closed protons and

neutrons subshells. For this exotic nucleus thE/Z neutron

~Riot A

V<;(R)=ezf0|3|r pch(r)fdar’pch(r’)eR :

tot

(31

orbit—responsible for magic number 82—is not even boundyyhereR,,,=|R+r -r’| and\ is the screening length fixe@s

The clusters generated in the simulations are neutron-ricfy sec. ) at a constant value 0f=10 fm. In the limit that
nuclei with well developed neutron skins. Nuclei with neu- the distance between nuclei is much larger than the nuclear
tron skins are characterized by neutron radii that are larggfims radiug(i.e., R,<R) the above integral reduces to

than those for the protons. Using the distribution of nuclei

obtained with a density gf=0.01 fni3, the following values

are obtained for average matter, proton, and neutron rms ra-

dii, respectively:

(r)Y?=1.06 AY3m, (309
(rH)t?=0.91A3m, (30b)
(rdt2 =111 AY3m. (300

e_R/)\ —r cos 2 2262 -
Vc(R) = engh?< J d’re 9/%) = RM(RYN),
(32)

where the dimensionless functidiix) has been defined as
follows:

X cosh(x) — sinh(x)

f(x) = {3 2

2
} (x=RJ/N. (33

Note that the sharp-surface radius of a uniform distributionNote that the functiorf is independent oR. Indeed, it only

with the same rms radius is simply given by/3)Y? times
these valuegsee Eq(29)].

depends on the dimensionless raRg/\, namely, on the
interplay between the nuclear size and the screening length.
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FIG. 18. Cluster form factoF(q) as a function of the momen-
tum transferg for all clusters withA>10 using a single configura- FIG. 20. (Color onling Cluster form factoiF(q) as a function of
tion of 40 000 nucleons at a density @£0.01 fnT3, the momentum transfey. The red dashed line represents the angle-

averaged form factor for one cluster witt=100 andZ=28 from a
In the absence of screeninfi=1 (independent of nuclear Simulation at a density 0p=0.01 fnT*. The dotted(green line is
Siz@ in accordance with Gauss’ law. However, with Screen_the form factor of a uniform density sphere with the same root-
ing f becomes greater than one. The finite nuclear size placégéan-square radiysee Eqs(28) and(29)]. Finally, the solid line
some of the charges closer together tRathis increases the is the form factor of the very neutron-rich nucletsli calculated in
repulsion. Of course, the finite size also places some of thé relativistic mean-field approximation with the NL3 interaction
charges farther apart, thereby decreasing the repulsion. Whéa?-
these two effects are weighted by the screening fagtdy, N . _ 3
the repulsion more than compensates for the “attraction*"S computed in this wagfor densities 0p=0.01 " and

- 3 i in Ei

leading ultimately tof=1. In the particular case OR, p_’(\)l'ozts. fm )'SttSh.OW? in F{%: 21. tem is d ived. in thi
=5.45 fm and\ =10 fm, one obtain$(0.545=1.061(about _ Neutrino scattering irom this systém 1S described, in tnis
a 6% increase single-heavy-nucleus model, by neutrino-nucleus elastic

The single-heavy-nucleus models consists of a gas of no scattering within a framework that incorporates effects from

interacting neutrons plus ions interacting via the screene oth, the nuclear form factor and ion screening from the

. X : . . correlated nuclei. The cross section for elastic neutrino scat-
Coulomb interaction given in Eq§32). Molecular dynamics . . . .
. . : . . tering from a single nucleus is proportional to thguareof
simulations in the ion coordinates are performed to comput

its static structure facto,(q). The simulations used 5000 fhe weak charge of the nucleus times a suitable form factor

t0 10 000 ions and a time step of 25 to 75 fmTThe ion to account for it finite size. For the weak charge of the

simulation can afford a larger time step than the correspon _ucleus we simply use its neutron numiéas we continue
ing nucleon simulation Secause thg heavier ions Enove0 ignore the small weak charge of the proton, i@uea

9 . . . . . =-N+Z(1-4 sirf 6,) ——-N. Thus, the weak nuclear form
slower. Further, the ion simulations require fewer particles to

simulate the same physical volume because each ion “con- 35

) . HEN | LI I UL | LI | UL | LI | LI | LI | LI
tains” several nucleons. The static structure factor for the = =
3 — p=0.025 fm" (10,000 ions)|
2.53_ —= p=0.010fm" ( 5,000 ions) —f
= 2F =
.E E a E
1.5 II —
_ - / 3
G E B (R . E
= - -
0.5 -
O:IJ_I_J—& Colooa oo boaabonaloaaler 3
0 01 02 03 04 05 06 07 08 09
-1
, , , , , q (fm )
0 1/3 1 10 . .
gA (fm™1) FIG. 21. (Color onling lon static structure facto§,,(q) as a

function of the momentum transfer The black solid line is from a
FIG. 19. Cluster form factoF(q) as a function of the scaled simulation with 10 000 ions corresponding to a density mf
momentum transfegqAl’3 for all clusters withA>10 using a single  =0.025 fn73. The red dashed line is from a simulation with 5000
configuration of 40 000 nucleons at a densitypef0.01 fnTs, ions corresponding to a density p£0.01. See text for details.
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TABLE VI. Composition of the system in the single-heavy-nucleus approximation. The mass fraction of
free neutrons is denoted b, and that of heavy nuclei b}, The mass and charge of the nuclei are given
by A and Z, respectively. Finally, the radii of the equivalent uniform proton and neutron distributions are
denoted byR, andR,, respectively.

p (im™) X X A z R, (fm) R (fm)
0.010 0.28 0.72 100 28 5.45 6.68
0.025 0.14 0.86 199 47 6.84 8.40

factor reduces to that of the neutron distribution. Further, taransfers—the system is well described by a collection of
incorporate effects that result from correlations among thewuclei of a single average mass. We expect that this good
ions, such as ion screening, the cross section is multiplied bggreement will also hold at lower densities. However, there
the ion static structure fact®,,(q). Finally, one multiplies is a modest disagreement betwekp () and the complete
these terms by the fractiox, of heavy nuclei and divides by S(q) for q>0.25 fni''. This provides the first indication of

N to obtain a static structure factor per neutr§f,ge(q) limitations within the single heavy nucleus approximation.
consistent with the normalization of the earlier sections. Thafhe discrepancy could arise because the broad distribution of
is, cluster sizes displayed in Fig. 16 is approximated by a single
B 9 average cluster with a mass AF100. Or it could be due to
Sinodeld) = XiNF(Q)"Son(0).- (34) a breakdown in the factorization scheme. That is, the cross

Note that in addition to the coherent nuclear contributionsection may no longer factor into a product of a correlation

there is a small incoherent contribution from the neutron gagunction between iongS,,) times the weak response of a

that has been neglected. As defined above, this static strusingle ion(NF(q)?).

ture factor can now be directly compared to the one obtained A similar comparison is done in Fig. 23 but now at the

in the full nucleon simulations.This prescription for higher density ofp=0.025 fn3. Now the disagreement be-

Shogel@) corresponds to what is presently used in most sutweenS,y4e(0) and S(q) is more severe. This indicates that

pernova simulationsThese simulations often takg, andN  errors in the single nucleus approximation will grow rapidly

from the Lattimer-Swesty equation of std@l] and S,,(q) with density. Moreover, the single nucleus approximation

as computed in Ref22]. overpredictsthe neutrino opacity relative to the complete
In Fig. 22 the model static structure fact8f.qe(q) is  calculations.

compared to the one from the full nucleon calculatisee

Sec. IV) at a density ofp=0.01 fn73. The uniform form VI. CONCLUSIONS

factor of Eq.(28) is used with the sharp surface radids ) . ) i )

listed in Table VI. For low to moderate momentum transfers _Nonuniform neutron-rich matter was studied via semiclas-

the agreement between the two approaches is excellent Th%cal simulations with an interaction that reproduces the satu-
indicates that—at this density andlow) momentum' ration density and binding energy of nuclear matter and in-
corporates the long-range Coulomb repulsion between

T T T [ TAT T [ T T T [ T T T_]
40_ /\\\ — Full calculation i 80:||||||||||||||1||||||||||||:
: ', \‘ —— Single Heavy Nucleus : 70:_ ’,\\ — Full calculation _:
30— | ] E i == Single Heavy Nucleus 3
L ” i 60— " || —]
- ] - E ] “ 3
@20- i 50:_ ,' “ _:
— — =~ F I ]
@ = - =40 [ =
I N r I | 3
o =1 30__ ] \\ —
10— — - ! -
- - 20— ]
- s 10F -
0 I t - -
0 0.2 0.41 0.6 0.8 oL [ ]
q@m") 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

q (fm’™)
FIG. 22. (Color online Neutron static structure fact®&q) as a
function of the momentum transferat a density ofp=0.01 fnr3 FIG. 23. (Color online Neutron static structure fact&gq) as a
for the full calculation(black solid ling. Also shown(red dashed function of the momentum transfeq at a density of p
line) is the prediction from the ion static structure factor in Fig. 21 =0.025 fm3 (black solid ling. Also shown(red dashed lingis the
including the square of the cluster form factor, as explained in therediction from the ion static structure factor in Fig. 21 including
text. the square of the cluster form factor, as explained in the text.
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protons. Simulations with a large number of nucleonsthat the single heavy nucleus approximation is what is pres-
(40 000 to 100 00penable the reliable determination of the ently employed in most supernova simulations.
two-neutron correlation function and its Fourier transform—  Future work could include calculating the dynamical re-
the static structure factereven for low momentum trans- sponse of the system to study the transfer of energy between
fers. The static structure fact&q) describes coherent neu- neutrinos and matter. Note that a great virtue of molecular
trino scattering that is expected to dominate the neutrin@lynamics approaches combined with special purpose com-
opacity. At low momentum transfeythe static structure fac- puters(such as what has been done hesethat dynamical
tor is small because of ion screening; correlations betweeimnformation for systems with large number of particles may
different clusters screen the weak charge. At intermediatbe readily obtained from time-dependent correlations. Par-
momentum transfers a large peak is developefp corre- ticularly interesting is the low-energy part of the response
sponding to coherent scattering from all of the neutrons in avhich should be dominated by the so-callBggmy reso-
cluster. This peak moves to highgrand decreases in ampli- nancesThese oscillations of the neutron skin of neutron-rich
tude as the density of the system increases. nuclei against the symmetric core should be efficiently ex-

In principle the neutrino opacity could be greatly in- cited by low-energy neutrinos. Another promising area for
creased by large density fluctuations. A simple first-ordeifuture research is the spin response of the system. A first step
phase transition has a two-phase coexistence region whegould involve including spin dependent forces in our model.
the pressure is independent of density. Large density fluctuaFhe spin response is interesting because nucleons have large
tions in this region imply a very large value of the static spin dependent couplings to neutrinos.
structure factor at very small momentum transfers. Indeed,
S(q=0) is directly proportional to the density fluctuations in ACKNOWLEDGMENTS
the system. Moreover, density fluctuations are also propor-
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derivative of the pressure with respect to the baryon density/Ve thank Brad Futch for preparing Figs. 3, 8, and 12. This
While we find good agreement between these two scheme¥0rk was supported in part by DOE Grants DE-FGO02-
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To compare our simulation results to more conventional APPENDIX: MDGRAPE
approaches of wide use in supernova calculations a cluster ) . )
model was introduced. Aninimal spanning tree clustering 10 do the simulations we used a special purpose computer
algorithmwas used to determine the composition of the vari-called the MDGRAPE-2. The MDGRAPE-2 is a single
ous clusterg“nuclei”) in the simulationgsee for example Poard which plugs into the PCI bus of a general purpose
Ref. [23]). To make contact with some of these conventionalCOmputer, and is designed for extremely fast calculation of
approaches, such as thiagle heavy nucleus approximation forces Qnd poter_mals in mplecular dynamics S|mulat|pns
the neutrino opacity was computed in a system modeled as/#4l- It is the third generation of such hardware, which
gas of free neutrons and a representatiice., averagp evolved from _the work of Makinet al. at the Unlversny of
single-species heavy nucleus. The neutrino opacity for such okyo on similar hardware called the GRARBr GRAvity
system is dominated by elastic scattering from the heavy’iPB for doing gravitationaN-body problemg25]. In our
nucleus. The contribution from the single nucleus to the neu¢ase; we have two boards plugged into the PCI bus of one of
trino response is proportional to the square of its weakh® Power3+ nodes of Indiana University's IBM SP super-
charge(assumed to be carried exclusively by the neutronsCOMPuter. Each board is rated at a peak speed of 64 Giga-
and its elastic neutron form factor, that accounts for its finittF-OPS (floating point operations per secgnd The
size. Further, Coulomb correlations among the different nuMPDGRAPE-2 can compute any central potential of the form
clei was incorporated through & static structure factoto = f(a (12
account for ion screening. Fairly good agreement is found VAL =y (3 i + eﬁ)) (AL)
between the single heavy nucleus approximation and oupr the corresponding central force, which is of the same
complete simulations at low density and especially at smalform, except multiplied by . All three terms in Eq(2) are of
momentum transfers. However, starting at a density of apthis form. In our case; =0, andb;; andg;; are either scalars,
proximately 16° g/cn?, we find a large disagreement be- or 22 matrices, corresponding to the two particle types
tween the two approaches that grows rapidly with increasingroton and neutron. The boards are accessed via the M2
density. In particular, our complete simulations yield neu-library, which the user links into his code. The library is very
trino opacities that are smaller than those in the single heavgasy to use, and handles distribution of work between the
nucleus approximation. Note that our full simulations yieldtwo MDGRAPE-2 boards without user intervention. The
accurate results even at ttieigh) densities where the single user defined(x) by a function table of 1024 points, which
heavy nucleus approximation becomes invalid. We reiteratthe MDGRAPE-2 interpolates via fourth degree polynomial
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interpolation. One can thus reproduce most physically realserial Fortran code. In ordinary Fortran, this whole calcula-

istic functions very accurately. Software is provided for con-tion would be done in a pair of nested DO loops, and thus

structing function tables, which are stored in files and loadegyould take of orderO(A?) time. For our simulations with

in during runtime. _ _ A=40,000 this would be prohibitive even for today’s fast
At each MD time step, one calls M2 subroutines to load iNcpUs. But the two MDGRAPE-2 boards together can do the

the function table and the scale factors or matraeandb;;. éorce calculation about 90 times faster than a single Power3+

One then calls a subroutine to load in the source particl . : .
coordinates, and subroutines to load integer arrays of partidgrocessor, so that a simulation of 100 000 MD time steps that

types(0 for neutron, 1 for protonfor both source and target Would take over two years using a serial program can be
particles. Then one calls a force calculation routine, passingone in less than nine days. Benchmark tests show this
it the array of target particle coordinates. In our case thespeedup holds out to at leasA=160000. Each
source and target particles are the same, but they do not haMDGRAPE-2 board has enough memory to hold a half mil-
to be. One input parameter to the force calculation specifieon particles, so we have not yet reached our maximum
that periodic boundary conditions should be used. Theapability.

MDGRAPE-2 has built in hardware for taking periodic b.c. e calculated the neutron-neutron correlation function

into account. The output is an array containing the total forc%(r) using ordinary Fortran code, as it was not clear how to

on each target pamgle. A similar call can be made to COm'perform this calculation with the MDGRAPE-2. Although
pute the total potential energy of each particle.

We must go through these steps three times, once for ea%gr) Is also anO(AZ). calculation, it is done infrequently, and
term in Eq.(2). Still, the MDGRAPE-2 is much faster than oes not severely impact performance.
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