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Nonuniform neutron-rich matter present in both core-collapse supernovae and neutron-star crusts is de-
scribed in terms of a semiclassical model that reproduces nuclear-matter properties and includes long-range
Coulomb interactions. The neutron-neutron correlation function and the corresponding static structure factor
are calculated from molecular dynamics simulations involving 40 000 to 100 000 nucleons. The static structure
factor describes coherent neutrino scattering which is expected to dominate the neutrino opacity. At low
momentum transfers the static structure factor is found to be small because of ion screening. In contrast, at
intermediate momentum transfers the static structure factor displays a large peak due to coherent scattering
from all the neutrons in a cluster. This peak moves to higher momentum transfers and decreases in amplitude
as the density increases. A large static structure factor at zero momentum transfer, indicative of large density
fluctuations during a first-order phase transition, may increase the neutrino opacity. However, no evidence of
such an increase has been found. Therefore, it is unlikely that the system undergoes a simple first-order phase
transition. Further, to compare our results to more conventional approaches, a cluster algorithm is introduced
to determine the composition of the clusters in our simulations. Neutrino opacities are then calculated within
a single heavy nucleus approximation as is done in most current supernova simulations. It is found that
corrections to the single heavy nucleus approximation first appear at a density of the order of 1013 g/cm3 and
increase rapidly with increasing density. Thus neutrino opacities are overestimated in the single heavy nucleus
approximation relative to the complete molecular dynamics simulations.
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I. INTRODUCTION

The description of nuclear matter at subnuclear densities
is an important and general problem. Attractive short-range
strong interactions correlate nucleons into nuclei. However,
nuclear sizes are limited by long-range repulsive Coulomb
interactions and thermal excitations. This competition be-
tween attraction and repulsion produces multifragmentation
in heavy ion collisions; the breaking of the system into in-
termediate sized fragments[1–3]. In astrophysics this com-
petition produces a variety of complex phenomena. At den-
sities considerably lower than normal nuclear matter
saturation density, the system may be described as a collec-
tion of nearly free nucleons and nuclei in nuclear statistical
equilibrium (NSE), while at normal nuclear matter saturation
density and above the system is expected to become uniform.
In between these regimespasta phasesmay develop with
nucleons clustered into subtle and complex shapes[4,5]. This
pasta phase may be present in the inner crust of neutron stars
and in core collapse supernovae. Unfortunately, low-density

NSE models and high-density models of nuclear matter are
often incompatible. As the density increases, it is difficult to
account for the strong interactions between nuclei in NSE
models. Likewise, as the density decreases and the uniform
system becomes unstable against fragmentation, uniform
models fail to describe cluster formation.

We wish to study the different phases and properties of
the system as a function of density. This is essential in the
simulations of core-collapse supernovae as they involve a
tremendous range of densities and temperatures. Several
semiclassical simulation techniques, often developed for
heavy ion collisions, may be used to describe the system
over this large density range. Indeed, Watanabe and collabo-
rators have used quantum molecular dynamics to describe
the structure of the pasta[6]. These simulations should re-
duce to isolated nuclei at low densities and to uniform matter
at high densities. In principle a first order phase transition
could have a two phase coexistence region. Large density
fluctuations at the transition could greatly increase the neu-
trino opacity[7]. In the present paper, we search for regions
with large density fluctuations using molecular dynamics
simulations.

The main focus of the present paper is coherent neutrino
scattering, an essential tool for computing neutrino mean-
free paths in supernovae and to determine how neutrinos are
initially trapped. Furthermore, coherent neutrino
scattering—by representing long-range “classical” physics—

*Electronic address: horowit@indiana.edu
†Electronic address: mperezga@indiana.edu
‡Electronic address: dkberry@indiana.edu
§Electronic address: jorgep@csit.fsu.edu

PHYSICAL REVIEW C 70, 065806(2004)

0556-2813/2004/70(6)/065806(15)/$22.50 ©2004 The American Physical Society065806-1



may provide insights into how the clustering evolves with
density in a model-independent way. In a previous paper a
simple Monte-Carlo simulation model involving 4000 par-
ticles was developed and first results for neutrino mean-free
paths were presented[8]. In this paper results are presented
for larger simulations involving up to 100 000 nucleons us-
ing molecular dynamics. This large number of nucleons is
required to accommodate long wavelength neutrinos. For ex-
ample, the wavelength of a 10 MeV neutrino is approxi-
mately 120 fm. At a baryon density of 0.05 fm−3, a simula-
tion volume of one neutrino wavelength per side contains
close to 100 000 nucleons.

Having generated a variety of observables, our micro-
scopic results are then compared to those generated from a
macroscopic cluster model. Such macroscopic models de-
scribe the system as a collection of free nucleons plus a
single species of a heavy nucleus and are presently used in
most supernovae simulations. By comparing the two ap-
proaches, we gain insight into the strengths and limitations
of the macroscopic cluster models. There is a duality be-
tween microscopic descriptions of the system in terms of
nucleon coordinates and macroscopic descriptions in terms
of effective nuclear degrees of freedom. Thus it is interesting
to learn when does a neutrino scatter coherently from a
nucleus and when does it scatter from an individual nucleon?
At the Jefferson Laboratory a similar question is being
posed: when does a photon couple coherently to a full had-
ron and when to an individual quark? The quark or hadron
duality has provided insight on how descriptions in terms of
hadron degrees of freedom can be equivalent to descriptions
in terms of quark coordinates[9]. Here we are interested in
nucleon or nuclear duality: how can nuclear models incorpo-
rate the main features of microscopic nucleon descriptions?

The manuscript has been organized as follows. In Sec. II
the simple semiclassical formalism is introduced as well as
details of the molecular dynamics simulations. In Sec. III we
review the formalism for neutrino scattering and relate it to
the static structure factor. Simulation results are presented in
Sec. IV including the calculation of neutrino mean-free paths
using nucleon coordinates. Section V presents a simple clus-
ter model that compares these results to more conventional
approaches usingnuclear coordinates. Finally, conclusions
and future directions are presented in Sec. VI.

II. FORMALISM

In this section we review our semiclassical model that
while simple, contains the essential physics of competing
interactions consisting of a short-range nuclear attraction and
a long-range Coulomb repulsion. The impossibility to simul-
taneously minimize all elementary interactions is known in
condensed-matter circles asfrustration. The complex physics
of frustration, along with many other details of the model,
may be found in Ref.[8]. Here only a brief review of the
most essential features of the model is presented. We model
a charge-neutral system of electrons, protons, and neutrons.
The electrons are assumed to be noninteracting and thus are
described as a degenerate free Fermi gas at a number density
identical to that of the protons(i.e.,re=rp). The nucleons, on

the other hand, interact classically via a nuclear-plus-
Coulomb potential. However, the use of an effective tem-
perature and effective interactions are used to simulate ef-
fects associated with quantum zero-point motion. More
elaborate models are currently under construction and these
will be presented in future contributions. While simple, the
model displays the essential physics of frustration, namely,
nucleons clustering into pasta but the size of the clusters
limited by the Coulomb repulsion, in a transparent form.
Moreover, one may study the evolution of the system
through the low density, pasta, and high density phases
within a single microscopic model. Finally, the model facili-
tates simulations with a large numbers of particles, a feature
that is essential to estimate and control finite-size effects and,
as alluded earlier, to reliably study the response of the system
to long wavelength neutrinos.

The total potential energyVtot of the system consists of a
sum of two-body interactions

Vtot = o
i, j

Vsi, jd, s1d

where the “elementary” two-body interaction is given as fol-
lows:

Vsi, jd = ae−ri j
2/L + fb + ctzsidtzs jdge−ri j

2/2L + Vcsi, jd. s2d

Here the distance between the particles is denoted byr ij
= ur i −r ju and tz represents the nucleon isospin projection
(tz= +1 for protons andtz=−1 for neutrons). The two-body
interaction contains the characteristic intermediate-range at-
traction and short-range repulsion of the nucleon-nucleon
force. Further, an isospin dependence has been incorporated
in the potential to ensure that while pure neutron matter is
unbound, symmetric nuclear matter is appropriately bound.
Indeed, the four model parameters(a,b,c, andL) introduced
in Eq. (2) have been adjusted in Ref.[8] to reproduce the
following bulk properties:(a) the saturation density and
binding energy per nucleon of symmetric nuclear matter,(b)
(a reasonable value for) the binding energy per nucleon of
neutron matter at saturation density, and(c) (approximate
values for the) binding energy of a few selected finite nuclei.
All these properties were computed via a classical Monte
Carlo simulation with the temperature arbitrarily fixed at 1
MeV. The parameter set employed in all previous and present
calculations is displayed in Table I. Finally—and critical for
pasta formation—a screened Coulomb interaction of the fol-
lowing form is included:

Vcsi, jd =
e2

r ij
e−ri j /ltpsidtps jd, s3d

wheretp;s1+tzd /2 andl is the screening length that re-
sults from the slight polarization of the electron gas. The
relativistic Thomas-Fermi screening length is given by

TABLE I. Model parameters used in the calculations.

a b c L

110 MeV −26 MeV 24 MeV 1.25 fm2

HOROWITZ et al. PHYSICAL REVIEW C 70, 065806(2004)

065806-2



l =
p1/2

2e
skF

ÎkF
2 + me

2d−1/2
, s4d

whereme is the electron mass and the electron Fermi mo-
mentum has been defined bykF=s3p2red1/3 [10,11]. Unfor-
tunately, while the screening lengthl defined above is
smaller than the lengthL of our simulation box, it is not
significantly smaller. Hence, following a prescription intro-
duced in Ref.[8] in an effort to control finite-size effects, the
value of the screening length is arbitrarily decreased tol
=10 fm.

The simulations are carried out with both a fixed number
of particlesA and a fixed densityr. The simulation volume is
then simply given byV=A/r. To minimize finite-size effects
periodic boundary conditions are used, so that the distancer ij
is calculated from thex,y, andz coordinates of theith and
j th particles as follows:

r ij = Îfxi − xjg2 + fyi − yjg2 + fzi − zjg2, s5d

where the periodic distance, for a cubic box of sideL=V1/3,
is given by

flg = minsul u,L − ul ud. s6d

In our earlier work[8] properties of the pasta were ob-
tained from a partition function that was calculated using
Monte Carlo integration. In the present paper molecular dy-
namics is used to simulate the system. There are a few ad-
vantages in using molecular dynamics over a partition func-
tion. First, larger systems are allowed to be simulated due to
advances in both software and in hardware(see Appendix).
Second, one is not limited to compute the static structure
factor of the system as now the full dynamic response is
available. One expects the neutron-rich pasta to display in-
teresting low-energy collective excitations—such asPygmy
resonances—that may be efficiently excited by low-energy
neutrinos. These low-energy modes of the pasta are currently
under investigation.

To carry out molecular dynamics simulations the trajecto-
ries of all of the particles in the system are determined by
simply integrating Newton’s laws of motion, albeit for a very
large number of particles(up to 100 000 in the present case)
using the velocity-Verlet algorithm[12–14]. To start the
simulations, initial positions and velocities must be specified
for all the particles in the system. The initial positions are
randomly and uniformly distributed throughout the simula-
tion volume while the initial velocities are distributed ac-
cording to a Boltzmann distribution at temperatureT. As the
velocity-Verlet is an energy—not temperature—conserving
algorithm, kinetic and potential energy continuously trans-
formed into each other. To prevent these temperature fluctua-
tions, the velocities of all the particles are periodically res-
caled to ensure that the average kinetic energy per particle
remains fixeds3/2dkBT.

In summary, a classical system has been constructed with
a total potential energy given as a sum of two-body,
momentum-independent interactions as indicated in Eq.(2).
Expectation values of any observable of interest may be cal-
culated as a suitable time average using particle trajectories
generated from molecular dynamics simulations.

We comment on the classical nature of our simulations.
Correlations from Fermi statistics are not explicitly included.
However, some effects of Pauli exclusion are implicitly in-
cluded by incorporating short range repulsion in Eq.(3) and
adjusting the parameters in Table I to reproduce the satura-
tion density and binding energy of nuclear matter. In this
paper, we focus on the neutrino response at long wave-
lengths; see Sec. III. This is dominated by correlations be-
tween clusters; see for example Figs. 3 and 7. These clusters
are heavy, since they involve many nucleons, and their ther-
mal de Broglie wavelengths are much shorter than the inter-
cluster spacing. Therefore, we expect our classical approxi-
mation to accurately reproduce the long wavelength neutrino
response.

III. NEUTRINO SCATTERING

In this section we review coherent neutrino scattering
which is expected to dominate the neutrino opacity in re-
gions where clusters, such as either nuclei or pasta, are
present. Although the formalism has been presented already
in Ref. [8], some details are repeated here(almost verbatim)
for the sake of completeness and consistency.

In the absence of corrections of orderEn /M (with En the
neutrino energy andM the nucleon mass) and neglecting
contributions from weak magnetism, the cross section for
neutrino-nucleon elastic scattering in free space is given by
the following expression[15]:

ds

dV
=

GF
2En

2

4p2 fca
2s3 − cosud + cv

2s1 + cosudg, s7d

whereGF is the Fermi coupling constant andu the scattering
angle.

Having neglected the contribution from weak magnetism,
the weak neutral currentJm of a nucleon contains only axial-
vector sg5gmd and vectorgm contributions. That is,

Jm = cag5gm + cvgm. s8d

The axial coupling constant is

ca = ±
ga

2
sga = 1.26d. s9d

Note that in the above equation the +s−d sign is for neutrino-
proton(neutrino-neutron) scattering. The weak charge of the
protoncv is small, as it is strongly suppressed by the weak-
mixing (or Weinberg) angle sin2uW=0.231. It is given by

cv =
1

2
− 2 sin2uW = 0.038< 0. s10d

In contrast, the weak charge of a neutron is both large and
insensitive to the weak-mixing angle:cv=−1/2.

If nucleons cluster tightly, either into nuclei or into pasta,
then the scattering of neutrinos from the various nucleons in
the cluster may be coherent. As a result, the cross section
will be significantly enhanced as it would scale with the
squareof the number of nucleons[16]. In reality, only the
contribution from the vector current is expected to be coher-
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ent. This is due to the strong spin and isospin dependence of
the axial current, which is expected to reduce its coherence.
(Recall that in the nonrelativistic limit, the nucleon axial-
vector current becomesg5gtz→−stz). Since in nuclei and
presumably also in the pasta most nucleons pair off into spin
singlet states, their axial-vector coupling to neutrinos will be
strongly reduced. Hence, in this work we focus exclusively
on coherence effects from the vector current. Coherence is
important in neutrino scattering from the pasta because the
neutrino wavelength is comparable to the interparticle spac-
ing and even to the intercluster separation. One must then
calculate the relative phase for neutrino scattering from dif-
ferent nucleons and then add their contribution coherently.
This procedure is embodied in the static structure factorSsqd.

The static structure factorper neutronis defined as fol-
lows:

Ssqd =
1

N
o
nÞ0

ukCnur̂sqduC0lu2, s11d

where C0 and Cn are ground and excited nuclear states,
respectively and the weak vector charge density is given by

rsqd = o
i=1

N

expsiq · r id. s12d

As the small weak charge of the proton[Eq. (10)] will be
neglected henceforth, the sum in Eq.(12) runs only over the
N neutrons in the system. The cross sectionper neutronfor
neutrino scattering from the whole system is now given by

1

N

ds

dV
= Ssqd

GF
2En

2

4p2

1

4
s1 + cosud. s13d

The above expression is the single neutrino-neutron cross
section per neutron obtained from Eq.(7) (with ca;0) mul-
tiplied by Ssqd. This indicates thatSsqd contains the effects
from coherence. Finally, note that the momentum transfer is
related to the scattering angle through the following equa-
tion:

q2 = 2En
2s1 − cosud. s14d

The static structure factor has important limits. For a detailed
justification of these limits the reader is referred to Ref.[8].
In the limit that the momentum transfer to the system goes to
zerosq→0d the weak charge density[Eq. (12)] becomes the

neutron number operatorr̂sq=0d=N̂. In this limit the static
structure factor reduces to

Ssq = 0d =
1

N
skN̂2l − kN̂l2d. s15d

Thus theq→0 limit of the static structure factor is related to
the fluctuations in the number of particles, or equivalently, to
the density fluctuations. These fluctuations are themselves
related to the compressibility and diverge at the critical point
[17]. As the density fluctuations diverge near the phase tran-
sition, the neutrino opacity may increase significantly. This
could have a dramatic effect on present models of stellar
collapse. So far one dimensional simulations with the most

sophisticated treatment of neutrino transport have not ex-
ploded[18].

In the oppositeq→` limit, the neutrino wavelength is
much shorter than the interparticle separation and the neu-
trino resolves one nucleon at a time. This limit corresponds
to quasielastic scattering where the cross section per nucleon
in the medium is the same as in free space. Thus the coher-
ence disappears and

Ssq → `d = 1. s16d

In Monte Carlo as well as in molecular dynamics simula-
tions it is convenient to compute the static structure factor
from the neutron-neutron correlation functiongsrd. Indeed,
the static structure factor is obtained from the Fourier trans-
form of the two-neutron correlation function. That is,

Ssqd = 1 +rnE d3r„gsr d − 1…expsiq · r d. s17d

The convenience of the two-neutron correlation function
stems from the fact that it measures spatial correlations that
may be easily measured during the simulations. It is defined
as follows:

gsr d =
1

Nrn
o
iÞ j

N

kC0udsr − r i jduC0l, s18d

where rn;N/V is the average neutron density. Operation-
ally, the correlation function is measured by pausing the
simulation to compute the number of neutron pairs separated
by a distanceur u. Note that the two-neutron correlation func-
tion is normalized to one at large distancesgsr →`d=1; this
corresponds to the average density of the medium.

IV. RESULTS

In this section results are presented for a variety of
neutron-rich matter observables over a wide range of densi-
ties. Our goal is to understand the evolution of the system
with density. From the low-density phase of isolated nuclei,
through the complex pasta phase, to uniform matter at high
densities. All the results in this section have been obtained
with an electron fraction and a temperature fixed atYe=0.2
andT=1 MeV, respectively. In core-collapse supernova the
electron fraction starts nearYe=0.5 and drops as electron
capture proceeds. In a neutron starYe is small—of the order
of 0.1—as determined by beta equilibrium and the nuclear
symmetry energy(a stiff symmetry energy favors larger val-
ues forYe [19]). Thus, the value ofYe=0.2 adopted here is
representative of neutron-rich matter.

There are limitations in our simple semiclassical model at
both low and high temperatures. At very low temperatures
the system will solidify while at high temperatures the model
may not calculate accurately the free-energy difference be-
tween the liquid and the vapor. As a result the pasta may melt
at a somewhat too low of a temperature. Results are thus
presented for onlyT=1 MeV where the model gives realistic
results. Recall that our model reproduces both the saturation
density and binding energy of nuclear matter, and the long-
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range Coulomb repulsion between clusters. Therefore, a
good description of the clustering should be expected.

The simulations start at the low baryon density ofr
=0.01 fm−3 (which corresponds approximately to 2
31013 g/cm3). This is about 1/15 of nuclear-matter satura-
tion density. At this low density the most time consuming
part of the simulation is preparing appropriate initial condi-
tions. This is because the Coulomb barrier greatly hinders the
motion of protons into and out of the clusters. The Coulomb
barrier becomes an even greater challenge at lower densities.
Thus, no effort has been made to simulate densities below
0.01 fm−3.

In Ref. [8] results were presented for Monte Carlo simu-
lations withA=4000 nucleons. Unfortunately, finite-size ef-
fects make it difficult to calculateSsqd accurately at small
momentum transfers from these “small” simulations. Further,
at a baryon densityr=0.01 fm−3 each side of the simulation
volume has a length of approximatelyL=75 fm. This is in-
adequate as the wavelength of a 10 MeV neutrino is close to
120 fm. Therefore, in the present simulations the number of
particles has been increased by a full of order of magnitude
to A=40 000 nucleons. This results in a simulation volume
that has increased to a cube ofL=158.7 fm on a side. The
molecular dynamics simulation starts with the nucleons uni-
formly distributed throughout the simulation volume and
with a velocity profile corresponding to aT=1 MeV Boltz-
mann distribution. The system is then evolved according to
velocity-Verlet algorithm using a time step of the order of
Dt=2 fm/c. Velocity-Verlet is an energy conserving algo-
rithm and with this time step the total energy of the system is
conserved to one part in 105. However, in order to preserve
the temperature fixed atT=1 MeV, the velocities of all the
particles must be continuously rescaled so that the kinetic
energy per particle stays approximately fixed at 3kBT/2. For
some excellent references to molecular dynamics simulations
we refer the reader to[12–14].

In an attempt to speed up equilibration, the temperature of
the system was occasionally raised during the evolution to
1.5–2 MeV. This could aid the system move away from local
minimum, as is conventionally done with simulated anneal-
ing. Equilibration is checked by monitoring the time depen-
dence of the two-neutron correlation functiongsrd and the
static structure factorSsqd. The peak inSsqd was observed to
grow slowly with time as the cluster size increased. Changes
became exceedingly slow after evolving the system for a
long total time of 1 287 000 fm/c. Although long, further
changes inSsqd over much larger time scales can not be

ruled out. This suggests that ourr=0.01 fm−3 results may
include a systematic error due to the long—but finite—
equilibration time. Fortunately, equilibrium seems to be
reached much faster at higher densities so that the slow
equilibration probably ceases to be a problem at these den-
sities.

Results for two observables—the potential energy per par-
ticle and the pressure—are displayed in Table II as a function
of density. Also included in the table are the number of
nucleons and the total evolution time for each density. Note
that the pressure of the system is computed from thevirial
equationas follows[12]:

P = rFkBT −
1

3AKo
i, j

r i jUdV

dr
U

ri j

LG . s19d

In the case of noninteracting particles, Eq.(19) reduces to the
well-known equation of state of a classical ideal gas. Thus,
the second term in the above equation reflects the modifica-
tions to the ideal-gas law due to the interactions.

The neutron-neutron correlation functiongsrd at a baryon
density ofr=0.01 fm−3 is shown in Fig. 1. The two-neutron
correlation function measures the probability of finding a
pair of neutrons separated by a fixed distancer. A large
broad peak is observed ingsrd in the 2–10 fm region; the
lack of neutrons with a relative distance of less than 2 fm is
due to the hard core of the potential. The sharper subpeaks
contained in this structure reflect neutron-neutron correla-

TABLE II. Molecular dynamics simulation results. Herer (in fm−3) is the baryon density,A is the baryon
number,tf (in fm/c) is the total evolution time,V/A (in MeV) is the potential energy per particle,P (in
MeV/ fm3) is the pressure, andSs0d is the approximate value of the static structure factor atq=0 computed as
in Eq. (26).

r A tf V/A P Ss0d

0.010 40 000 1 287 000 −5.377s1d 6.9310−3 0.790

0.025 100 000 52 000 −5.145s1d 3.2310−2 0.344

0.050 100 000 28 000 −4.463s1d 0.13 0.139

0.075 40 000 60 000 −3.686s1d 0.33 0.077

FIG. 1. Neutron-neutron correlation functiongsrd at a density of
r=0.01 fm−3, an electron fraction ofYe=0.2, and a temperature of
T=1 MeV. This is from a simulation with 40 000 nucleons.
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tions (nearest neighbors, next-to-nearest neighbors, and so
on) within a single cluster. The Coulomb repulsion among
protons prevents the clusters from growing arbitrarily large
and keeps them apart. The dip ingsrd at r .10 fm is a result
of the Coulomb repulsion between clusters. Finally, the small
broad peaks near 25–30, 50, and 75 fm reflect correlations
among the different clusters.

Figure 2 displays an enlargement of the neutron-neutron
correlation function for large values ofr. Finite-size effects
lead to an abrupt drop ingsrd at r =L /2,80 fm (not shown).
To ensure a reliable estimate of its Fourier transform—and
correspondingly of the static structure factorSsqd—one must
extrapolategsrd to the regionr .L /2. To do so, an analytic
function of the following form is fitted togsrd:

g0srd = A0e
−a0r cossk0r + d0d + 1. s20d

The constantsA0, a0 ,k0, andd0 are obtained from a fit to the
large-r behavior of the neutron-neutron correlation function.
The result of this fit is indicated by the red dashed line in
Fig. 2.

Figure 3 shows the 0.03 fm−3 isosurface of the proton
density for one configuration of 40,000 nucleons at a density
of 0.01 fm−3. All of the protons and most of the neutrons are
clustered into nuclei. We discuss the size of these nuclei in
Sec. V. There is also a low density neutron gas between the
clusters which is not shown.

The static structure factorSsqd may now be calculated
from the Fourier transform ofgsrd [see Eq.(17)]. That is,

Ssqd = 1 + 4prnE
0

` sinsqrd
qr

„gsrd − 1…r2dr. s21d

In Fig. 4 the static structure factor obtained by using the
above extrapolation(i.e., with g0srd for r *L /2) is displayed
with the red dashed line. In an earlier publication the static
structure factor was calculated directly from the simulation
results assuminggsrd=1 for r .L /2 [8]. This result is also
shown for comparison(black solid line). The improvement
in the low-momentum transfer behavior ofSsqd is clearly

evident. This is important as the value of the static structure
factor at zero-momentum transferSsq=0d monitors density
fluctuations in the system and these may be indicative of a
phase transition.

In the limit of zero-momentum transfer the static structure
factor Ssq=0d is directly related to the isothermal compress-
ibility. That is [17],

Ssq = 0d = rkBTKT = kBTS ] P

] r
D

T

−1

, s22d

where the isothermal compressibility is given by

KT
−1 = − VS ] P

] V
D

T

= rS ] P

] r
D

T

. s23d

For a classical ideal gas(i.e., P=rkBT) the isothermal com-
pressibility reduces toKT

−1=rkBT and Ssq=0d=1. As ex-
pected, in the absence of interactions there are no spatial
correlations among the particles. Assuming now that asq
→0 the fluctuations in the neutron density are proportional
to the corresponding fluctuations in the baryon density, one
obtains for the static structure factor per neutron

Ssq = 0d =
N

A
kBTS ] P

] r
D−1

. s24d

The derivative of the pressure with respect to the baryon
density has not been directly calculated in the simulations.
However, the pressure has been computed at various densi-
ties and has been tabulated in Table II. These values can be
approximated by a simple fit of the form:

Psrd = s0.611dr + s228.131dra+1 sa = 1.583d, s25d

with the pressure expressed in units of MeV/ fm3 and the
density in fm−3. This yields

Ssq = 0d <
1.3583 10−3

s1.0373 10−3 + rad
. s26d

These approximate values forSsq=0d have been reported in
Table II. For comparison, they have also been added(with a
green solid square) to the various figures for whichSsqd was
directly computed from the Fourier transform of the two-
neutron correlation function(see Figs. 4, 7, and 11). Note
that there is good agreement between the two approaches.

At low momentum transfers the static structure factor is
small because of ion screening. Coulomb correlations—
which both hinder the growth of clusters and keep them well
separated—screen the weak charge of the clusters thereby
reducingSsqd. Further, a large peak is seen inSsqd for q
.0.25 fm−1. This corresponds to the coherent scattering
from all of the neutrons in a cluster. As we will show in the
next section, this peak reproduces coherent neutrino-nucleus
elastic scattering at low densities. Finally, the static structure
factor decreases forq.0.3 fm−1. This is due to the form
factor of a cluster. As the momentum-transfer increases, the
neutrino can no longer scatter coherently from all the neu-
trons because of the size of the cluster is larger than the
neutrino wavelength. All these features will be discussed in
greater detail in the next section.

FIG. 2. (Color online) The large-r behavior of the two-neutron
correlation function displayed in Fig. 1. Note the expandedy scale.
Also shown(red dashed line) is the analytic fit togsrd according to
Eq. (20).
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Next, simulation results are presented at the higher den-
sity of r=0.025 fm−3. At this density it becomes much easier
to equilibrate the system as protons have shorter distances to
move over the Coulomb barriers. In order to minimize finite-
size effects more nucleons—a total ofA=100 000—are used
for these simulations. The two-neutron correlation function is
shown in Fig. 5, with its behavior at large distances amplified
in Fig. 6. Note that the calculation forgsrd, which proceeds
by histograming distances between theNsN−1d /2 pairs of
neutrons, is now considerably more time consuming. The
resulting static structure factor is shown in Fig. 7. The peak
in Ssqd has now moved to largerq because of the shorter
distance between clusters.

Figure 8 shows the 0.03 fm−3 isosurface of the proton
density for one configuration of 100 000 nucleons at a den-

sity of 0.025 fm−3. All of the protons and most of the neu-
trons are clustered into nuclei. The size of these nuclei is
now larger than at a density of 0.01 fm−3 as discussed in Sec.
V. There is also a low density neutron gas between the clus-
ters which is not shown.

Simulations have also been performed at a density ofr
=0.05 fm−3 using A=100 000 nucleons. The two-neutron
correlation function, together with its amplification at large
values ofr, is shown in Figs. 9 and 10, respectively. The
corresponding static structure factor is displayed Fig. 11.
Note the significant improvement in the behavior ofSsqd at
low momentum transfers as the sharp cutoff ingsrd is re-
moved in favor of a smooth extrapolation[see Eq.(20)]. As
the density increases, and thus the separation between clus-
ters decreases, the peak inSsqd continues to move to higher
q. However, the peak value ofSsqd has now been reduced
because of the increase in ion screening with density.

Figure 12 shows the 0.03 fm−3 isosurface of the proton
density for one configuration of 100 000 nucleons at a den-
sity of 0.05 fm−3. The clusters are now seen to have very
elongated shapes. The low density neutron gas between these
clusters is not shown.

FIG. 3. (Color online) The 0.03 fm−3 proton density isosurface
for one configuration of 40 000 nucleons at a density of 0.01 fm−3.
The simulation volume is a cube 159 fm on a side.

FIG. 4. (Color online) Static structure factorSsqd at a density of
r=0.01 fm−3, an electron fraction ofYe=0.2, and a temperature of
T=1 MeV. The black solid line assumesgsrd=1 for r .L /2 while
the red dashed line includes an analytic extrapolation forgsrd for
r *L /2. The green solid square is the value ofSs0d from Eq. (26)
and Table II.

FIG. 5. Neutron-neutron correlation functiongsrd at a density of
r=0.025 fm−3, an electron fraction ofYe=0.2, and a temperature of
T=1 MeV. This is from a simulation with 100 000 nucleons.

FIG. 6. (Color online) The large-r behavior of the two-neutron
correlation function displayed in Fig. 5. Also shown(red dashed
line) is the analytic fit togsrd.
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We conclude this section by presenting results for the
two-neutron correlation function at a density ofr
=0.075 fm−3 using a total ofA=40 000 nucleons in Fig. 13.
Note that this is the largest density considered in this work.
At this density the clusters have been “melted” and the sys-
tem has evolved into a uniform phase. In Fig. 14 results for
the static structure factor at this density are compared with
the corresponding results at the lower densities. There is no
longer evidence for a large peak inSsqd in the uniform sys-
tem as a consequence of the complete loss in coherence.
Finally, Fig. 15 showsSsqd at large momentum transfers.
One observes that the static structure factor decreases with
increasing density in the intermediateq-region before ap-
proaching the value of one(as it must) at highq.

In the next section we will compare these “complete” re-
sults with conventional approaches that model the system as
a collection of strongly-correlated, neutron-rich nuclei plus a
neutron gas. In this approach the peak observed in the static
structure factor is attributed toneutrino-nucleus elastic scat-
tering. Note, however, that the complete simulation results
obtained in this section should remain valid even when these
nuclear models break down.

V. CLUSTER MODEL

In this section a cluster model is developed with the goal
of comparing our simulation results from the previous sec-
tion with commonly used approaches. In the complete model
employed earlier, trajectories for all the nucleons were cal-
culated from molecular dynamics simulations and these were
used to compute directly the two-neutron correlation func-
tion and its corresponding static structure factor. One of the
main virtues of such an approach is that there is no need to
decide if a given nucleon is part of a cluster or part of the
background vapor. Nevertheless, in this section a clustering

FIG. 7. (Color online) Static structure factorSsqd at a density of
r=0.025 fm−3, an electron fraction ofYe=0.2, and a temperature of
T=1 MeV. The black solid line assumesgsrd=1 for r .L /2 while
the red dashed line includes an analytic extrapolation forgsrd for
r *L /2. The green solid square is the value ofSs0d from Eq. (26)
and Table II.

FIG. 8. (Color online) The 0.03 fm−3 proton density isosurface
for one configuration of 100 000 nucleons at a density of
0.025 fm−3. The simulation volume is a cube 159 fm on a side.

FIG. 9. Neutron-neutron correlation functiongsrd at a density of
r=0.05 fm−3, an electron fraction ofYe=0.2, and a temperature of
T=1 MeV. This is from a simulation with 100 000 nucleons.

FIG. 10. (Color online) The large-r behavior of the two-neutron
correlation function displayed in Fig. 9. Also shown(red dashed
line) is the analytic fit togsrd.
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algorithm is constructed with the aim of assigning nucleons
to clusters. In this way one can compare the inferred compo-
sition extracted from our simulations with many nuclear sta-
tistical equilibrium(NSE) models that describe the system as
a collection of nuclei and free nucleons. In this way one can
then compare the static structure factor extracted from the
complete simulations with that calculated in these NSE mod-
els.

A. Clustering algorithm

The clustering algorithm implemented in this section as-
signs a nucleon to a cluster if it is within a distanceRC of at
least one other nucleon in the cluster. In practice, one starts

with a given nucleon and searches for all of its “neighbors,”
namely, all other nucleons contained within a sphere of ra-
dius RC. Next, one repeats the same procedure for all of its
neighbors until no new neighbors are found. This procedure
divides a fixed configuration of nucleons into a collection of
various mass clusters(i.e., “nuclei”).

To illustrate this procedure the final nucleon configuration
of the complete simulation of the previous section at a den-
sity of r=0.01 fm−3 is selected after the system has evolved
for a total time oftf =1 287 000 fm/c. Having selected a cut-
off radius ofRC=3 fm, one finds that the 40 000 nucleons in
the system are divided in the following way:(a) 11 062 free
neutrons,(b) no free protons,(c) a few light nuclei withA
,8, and(d) a collections of heavy nuclei with a mass distri-
bution of 50&A&160. The mass-weighted average of all
clusters withA.2 is equal tokAl=99. This distribution of
clusters is displayed in Fig. 16 and listed in Table III.

In Table III results are also displayed for values of the
cutoff radius in the 2–5 fm range. Note that the average

FIG. 11. (Color online) Static structure factorSsqd at a density
of r=0.05 fm−3, an electron fraction ofYe=0.2, and a temperature
of T=1 MeV. The black solid line assumesgsrd=1 for r .L /2
while the red dashed line includes an analytic extrapolation forgsrd
for r *L /2. The green solid square is the value ofSs0d from Eq.
(26) and Table II.

FIG. 12. (Color online) The 0.03 fm−3 proton density isosurface
for one configuration of 100 000 nucleons at a density of 0.05 fm−3.
The simulation volume is a cube 126 fm on a side.

FIG. 13. Neutron-neutron correlation functiongsrd at a density
of r=0.075 fm−3, an electron fraction ofYe=0.2, and a temperature
of T=1 MeV. This is from a simulation with 40 000 nucleons.

FIG. 14. (Color online) Static structure factorSsqd for a variety
of densities at an electron fraction ofYe=0.2 and a temperature of
T=1 MeV. The black solid line is for a density ofr=0.01 fm−3,
while the red dashed line is forr=0.025 fm−3, the green dotted line
for r=0.05 fm−3, and the blue dot-dashed line forr=0.075 fm−3.
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cluster masskAl appears remarkably constant for 2.5øRC

ø4 fm. This suggest that any value ofRC within this range
should give similar results. However, ifRC is chosen too
large, for exampleRC=5 fm, then most of the nucleons be-
come part of one single giant cluster.

Similar results for a density ofr=0.025 fm−3 are pre-
sented in Table IV. This distribution is extracted from the
final configuration of 100 000 nucleons obtained after a total
evolution time oftf =52 000 fm/c. Using a cutoff radius of
RC=3 fm, the 100 000 nucleons in the system are now di-
vided into 14 549 free neutrons, no free protons, a few light
nuclei, and a broad collection of heavy nuclei withA from
about 80 to 614 nucleons. Such a distribution is shown in
Fig. 17. The average mass has now grown tokAl=199. The
mass of the heavy nuclei is seen to increase with density as
shown in Fig. 17. Finally, results atr=0.05 fm−3 are pre-
sented in Table V. Now the density is so high that it is dif-
ficult to design a sensible scheme to divide the system into
clusters; see Fig. 11. For example, even with a cutoff radius
as small asRC=2.5 fm, already 78 178 of the 100 000 nucle-
ons become part of a single giant cluster.

B. Cluster form factors

To describe coherent neutrino scattering from a single
cluster, that is,neutrino-nucleus elastic scattering, one must
calculate the elastic form factor for the cluster. This is given
by

Fsqd =
1

N
o
n=1

N
sinsqrnd

qrn
. s27d

Here the sum runs over theN neutrons in the cluster andrn is
distance from the nth neutron to the center of mass of the
N-neutron system. The form factor represents the Fourier
transform of the point neutron density and here, for simplic-
ity, has been averaged over the direction of the momentum
transfer. Note that the elastic form factor is normalized so
that Fsq=0d=1. In Fig. 18 the elastic form factors of all
clusters with A.10 are displayed at a density ofr
=0.01 fm−3 (a cutoff radius ofRC=3 fm was selected). The
large spread in the form factors reflects the many different
sizes of the individual clusters(see Fig. 16). Indeed, the root-
mean-square(rms) radius of a cluster appears to scale ap-
proximately asA1/3. Therefore, in Fig. 19 all of these form
factors are plotted but against ascaled momentum transfer
qA1/3. Now all the (scaled) form factors fall in a fairly nar-
row band suggesting that, while these neutron-rich clusters
have different radii, they all share a similar shape.

In Fig. 20 we display the form factor for a single neutron-
rich cluster withA=100 andZ=28 s‘‘ 100Ni’’ d extracted from

TABLE IV. Distribution of cluster as a function of the cutoff
radiusRC at a densityr=0.025 fm−3 for a system of 100 000 nucle-
ons. The number of free neutrons is denoted byNsA=1d, the aver-
age mass of allA.2 clusters bykAl, and the size of the largest
cluster byAmax.

RC sfmd NsA=1d kAl Amax

2.0 49 761 58.95 162

2.5 28 234 167.40 423

3.0 14 549 198.91 614

3.5 5 187 59 411 75 003

FIG. 16. Number of clusters of atomic massA for one configu-
ration of 40 000 nucleons at a density ofr=0.01 fm−3. Note that
this is a linear-log plot.

FIG. 15. (Color online) The large-q behavior of the static struc-
ture function displayed in Fig. 14.

TABLE III. Distribution of cluster as a function of the cutoff
radiusRC at a densityr=0.01 fm−3 for a system of 40 000 nucle-
ons. The number of free neutrons is denoted byNsA=1d, the aver-
age mass of allA.2 clusters bykAl, and the size of the largest
cluster byAmax.

RC sfmd NsA=1d kAl Amax

2.0 20 585 46.20 118

2.5 14 233 102.29 155

3.0 11 062 98.75 160

3.5 7 856 96.17 254

4.0 5 131 100.97 261

4.5 2 888 149.84 513

5.0 1 427 14 069 23 189
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the simulation with a density ofr=0.01 fm−3. Also shown in
the figure(with a green dotted line) is the form factorF0sqd
of a uniform neutron distribution with a sharp surface radius
Rn chosen to reproduce the rms radius of the neutron-rich
clusterkrn

2l1/2. It is given by

F0sqd = 3
sinsxd − x cossxd

x3 sx ; qRnd, s28d

with Rn given by

Rn =Î5

3
krn

2l1/2. s29d

Finally, Fig. 20 also shows the neutron form factor of the
exotic, neutron-rich nucleus98Ni calculated in a relativistic
mean-field approximation using the very successful NL3 in-
teraction [20]. While the NL3 form factor has a slightly
smaller RMS radius, the overall agreement between all three
models is fairly good. Note that98Ni (rather than100Ni) was
used in this calculation as it contains closed protons and
neutrons subshells. For this exotic nucleus the 1h11/2 neutron
orbit—responsible for magic number 82—is not even bound.

The clusters generated in the simulations are neutron-rich
nuclei with well developed neutron skins. Nuclei with neu-
tron skins are characterized by neutron radii that are larger
than those for the protons. Using the distribution of nuclei
obtained with a density ofr=0.01 fm−3, the following values
are obtained for average matter, proton, and neutron rms ra-
dii, respectively:

kr2l1/2 = 1.06A1/3fm, s30ad

krp
2l1/2 = 0.91A1/3fm, s30bd

krn
2l1/2 = 1.11A1/3fm. s30cd

Note that the sharp-surface radius of a uniform distribution
with the same rms radius is simply given bys5/3d1/2 times
these values[see Eq.(29)].

C. Single heavy nucleus approximation

A number of approaches to dense matter, such as those
using the equation of state by Lattimer and Swesty[21],
model the system as a collection of free neutrons plus a
single representative heavy nucleus. Occasionally, free pro-
tons and alpha particles are also added to the system. To
mimic this approach, a model is constructed based on our
earlier cluster results reported in Tables III and IV for a
cutoff radius ofRC=3 fm. For example, at a density ofr
=0.01 fm−3 the system contains a mass fractionXn=0.28 of
free neutrons and a mass fraction ofXh=1−Xn=0.72 for the
single representative heavy nucleus. According to the aver-
age mass reported in Table III, a mass ofA=100 is assigned
to this representative heavy nucleus. Conservation of charge
constrains this nucleus to haveZ<28. Note that due to the
presence of free neutrons(but not free protons) the charge-
to-mass ratio of the heavy nucleusZ/A=0.28 slightly ex-
ceeds the electron fractionYe=0.2 of the whole system. The
assumed composition of the system at densities ofr
=0.01 fm−3 andr=0.025 fm−3 is given in Table VI.

The heavy nuclei are assumed to interact exclusively via a
screened Coulomb interaction. Each nucleus is assumed to
have a uniform charge distributionrch that extends out to a
radiusRp chosen to reproduce the proton rms radiuskrp

2l1/2

given in Eq. (30). The Coulomb interaction between two
such nuclei whose centers are separated by a distanceR is
given by

VCsRd = e2E d3r rchsrd E d3r8 rchsr8d
e−Rtot/l

Rtot
, s31d

whereRtot;uR+r −r 8u andl is the screening length fixed(as
in Sec. II) at a constant value ofl=10 fm. In the limit that
the distance between nuclei is much larger than the nuclear
rms radius(i.e., Rp!R) the above integral reduces to

VCsRd . e2rch
2 e−R/l

R
SE d3r e−r cosu/lD2

=
Z2e2

R
e−R/lfsRp/ld,

s32d

where the dimensionless functionfsxd has been defined as
follows:

fsxd = F3
x coshsxd − sinhsxd

x3 G2

sx ; Rp/ld. s33d

Note that the functionf is independent ofR. Indeed, it only
depends on the dimensionless ratioRp/l, namely, on the
interplay between the nuclear size and the screening length.

TABLE V. Distribution of cluster as a function of the cutoff
radiusRC at a densityr=0.05 fm−3 for a system of 100 000 nucle-
ons. The number of free neutrons is denoted byNsA=1d, the aver-
age mass of allA.2 clusters bykAl, and the size of the largest
cluster byAmax.

RC sfmd NsA=1d kAl Amax

2.0 47 239 56.86 308

2.5 16 219 72 952 78 178

FIG. 17. (Color online) Number of clusters of atomic massA for
one configuration of 100 000 nucleons at a density ofr
=0.025 fm−3 (black hatched line). Also shown for comparison is the
number of clusters(from Fig. 16) at r=0.01 fm−3 (red solid line).
Note that both scales are now linear.
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In the absence of screening,f ;1 (independent of nuclear
size) in accordance with Gauss’ law. However, with screen-
ing f becomes greater than one. The finite nuclear size places
some of the charges closer together thanR; this increases the
repulsion. Of course, the finite size also places some of the
charges farther apart, thereby decreasing the repulsion. When
these two effects are weighted by the screening factore−r/l,
the repulsion more than compensates for the “attraction”
leading ultimately to f ù1. In the particular case ofRp
=5.45 fm andl=10 fm, one obtainsfs0.545d=1.061(about
a 6% increase).

The single-heavy-nucleus models consists of a gas of non-
interacting neutrons plus ions interacting via the screened
Coulomb interaction given in Eqs.(32). Molecular dynamics
simulations in the ion coordinates are performed to compute
its static structure factorSionsqd. The simulations used 5000
to 10 000 ions and a time step of 25 to 75 fm/c. The ion
simulation can afford a larger time step than the correspond-
ing nucleon simulation because the heavier ions move
slower. Further, the ion simulations require fewer particles to
simulate the same physical volume because each ion “con-
tains” several nucleons. The static structure factor for the

ions computed in this way(for densities ofr=0.01 fm−3 and
r=0.025 fm−3) is shown in Fig. 21.

Neutrino scattering from this system is described, in this
single-heavy-nucleus model, by neutrino-nucleus elastic
scattering within a framework that incorporates effects from
both, the nuclear form factor and ion screening from the
correlated nuclei. The cross section for elastic neutrino scat-
tering from a single nucleus is proportional to thesquareof
the weak charge of the nucleus times a suitable form factor
to account for it finite size. For the weak charge of the
nucleus we simply use its neutron numberN as we continue
to ignore the small weak charge of the proton, i.e.,Qweak
=−N+Zs1−4 sin2 uWd→−N. Thus, the weak nuclear form

FIG. 18. Cluster form factorFsqd as a function of the momen-
tum transferq for all clusters withA.10 using a single configura-
tion of 40 000 nucleons at a density ofr=0.01 fm−3.

FIG. 19. Cluster form factorFsqd as a function of the scaled
momentum transferqA1/3 for all clusters withA.10 using a single
configuration of 40 000 nucleons at a density ofr=0.01 fm−3.

FIG. 20. (Color online) Cluster form factorFsqd as a function of
the momentum transferq. The red dashed line represents the angle-
averaged form factor for one cluster withA=100 andZ=28 from a
simulation at a density ofr=0.01 fm−3. The dotted(green) line is
the form factor of a uniform density sphere with the same root-
mean-square radius[see Eqs.(28) and (29)]. Finally, the solid line
is the form factor of the very neutron-rich nucleus98Ni calculated in
a relativistic mean-field approximation with the NL3 interaction
[20].

FIG. 21. (Color online) Ion static structure factorSionsqd as a
function of the momentum transferq. The black solid line is from a
simulation with 10 000 ions corresponding to a density ofr
=0.025 fm−3. The red dashed line is from a simulation with 5000
ions corresponding to a density ofr=0.01. See text for details.
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factor reduces to that of the neutron distribution. Further, to
incorporate effects that result from correlations among the
ions, such as ion screening, the cross section is multiplied by
the ion static structure factorSionsqd. Finally, one multiplies
these terms by the fractionXh of heavy nuclei and divides by
N to obtain a static structure factor per neutronSmodelsqd
consistent with the normalization of the earlier sections. That
is,

Smodelsqd = XhNFsqd2Sionsqd. s34d

Note that in addition to the coherent nuclear contribution
there is a small incoherent contribution from the neutron gas
that has been neglected. As defined above, this static struc-
ture factor can now be directly compared to the one obtained
in the full nucleon simulations.This prescription for
Smodelsqd corresponds to what is presently used in most su-
pernova simulations. These simulations often takeXh andN
from the Lattimer-Swesty equation of state[21] and Sionsqd
as computed in Ref.[22].

In Fig. 22 the model static structure factorSmodelsqd is
compared to the one from the full nucleon calculation(see
Sec. IV) at a density ofr=0.01 fm−3. The uniform form
factor of Eq.(28) is used with the sharp surface radiusRn
listed in Table VI. For low to moderate momentum transfers
the agreement between the two approaches is excellent. This
indicates that—at this density and(low) momentum

transfers—the system is well described by a collection of
nuclei of a single average mass. We expect that this good
agreement will also hold at lower densities. However, there
is a modest disagreement betweenSmodelsqd and the complete
Ssqd for q.0.25 fm−1. This provides the first indication of
limitations within the single heavy nucleus approximation.
The discrepancy could arise because the broad distribution of
cluster sizes displayed in Fig. 16 is approximated by a single
average cluster with a mass ofA=100. Or it could be due to
a breakdown in the factorization scheme. That is, the cross
section may no longer factor into a product of a correlation
function between ionssSiond times the weak response of a
single ionsN2Fsqd2d.

A similar comparison is done in Fig. 23 but now at the
higher density ofr=0.025 fm−3. Now the disagreement be-
tweenSmodelsqd andSsqd is more severe. This indicates that
errors in the single nucleus approximation will grow rapidly
with density. Moreover, the single nucleus approximation
overpredictsthe neutrino opacity relative to the complete
calculations.

VI. CONCLUSIONS

Nonuniform neutron-rich matter was studied via semiclas-
sical simulations with an interaction that reproduces the satu-
ration density and binding energy of nuclear matter and in-
corporates the long-range Coulomb repulsion between

TABLE VI. Composition of the system in the single-heavy-nucleus approximation. The mass fraction of
free neutrons is denoted byXn and that of heavy nuclei byXh. The mass and charge of the nuclei are given
by A and Z, respectively. Finally, the radii of the equivalent uniform proton and neutron distributions are
denoted byRp andRn, respectively.

r sfm−3d Xn Xh A Z Rp sfmd Rn sfmd

0.010 0.28 0.72 100 28 5.45 6.68

0.025 0.14 0.86 199 47 6.84 8.40

FIG. 22. (Color online) Neutron static structure factorSsqd as a
function of the momentum transferq at a density ofr=0.01 fm−3

for the full calculation(black solid line). Also shown(red dashed
line) is the prediction from the ion static structure factor in Fig. 21
including the square of the cluster form factor, as explained in the
text.

FIG. 23. (Color online) Neutron static structure factorSsqd as a
function of the momentum transferq at a density of r
=0.025 fm−3 (black solid line). Also shown(red dashed line) is the
prediction from the ion static structure factor in Fig. 21 including
the square of the cluster form factor, as explained in the text.
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protons. Simulations with a large number of nucleons
(40 000 to 100 000) enable the reliable determination of the
two-neutron correlation function and its Fourier transform—
the static structure factor—even for low momentum trans-
fers. The static structure factorSsqd describes coherent neu-
trino scattering that is expected to dominate the neutrino
opacity. At low momentum transferq the static structure fac-
tor is small because of ion screening; correlations between
different clusters screen the weak charge. At intermediate
momentum transfers a large peak is developed inSsqd corre-
sponding to coherent scattering from all of the neutrons in a
cluster. This peak moves to higherq and decreases in ampli-
tude as the density of the system increases.

In principle the neutrino opacity could be greatly in-
creased by large density fluctuations. A simple first-order
phase transition has a two-phase coexistence region where
the pressure is independent of density. Large density fluctua-
tions in this region imply a very large value of the static
structure factor at very small momentum transfers. Indeed,
Ssq=0d is directly proportional to the density fluctuations in
the system. Moreover, density fluctuations are also propor-
tional to the isothermal compressibility. For consistency, the
static structure factorSsq=0d was computed in these two
equivalent yet independent ways, namely, as the Fourier
transform of the two-neutron correlation function and as the
derivative of the pressure with respect to the baryon density.
While we find good agreement between these two schemes,
no evidence is found in favor of a large enhancement in
Ssq=0d. We conclude that the system does not undergo a
simple, single component first-order phase transition, so no
large increase in the neutrino opacity was found.

To compare our simulation results to more conventional
approaches of wide use in supernova calculations a cluster
model was introduced. Aminimal spanning tree clustering
algorithmwas used to determine the composition of the vari-
ous clusters(“nuclei”) in the simulations(see for example
Ref. [23]). To make contact with some of these conventional
approaches, such as thesingle heavy nucleus approximation,
the neutrino opacity was computed in a system modeled as a
gas of free neutrons and a representative(i.e., average)
single-species heavy nucleus. The neutrino opacity for such a
system is dominated by elastic scattering from the heavy
nucleus. The contribution from the single nucleus to the neu-
trino response is proportional to the square of its weak
charge(assumed to be carried exclusively by the neutrons)
and its elastic neutron form factor, that accounts for its finite
size. Further, Coulomb correlations among the different nu-
clei was incorporated through anion static structure factorto
account for ion screening. Fairly good agreement is found
between the single heavy nucleus approximation and our
complete simulations at low density and especially at small
momentum transfers. However, starting at a density of ap-
proximately 1013 g/cm3, we find a large disagreement be-
tween the two approaches that grows rapidly with increasing
density. In particular, our complete simulations yield neu-
trino opacities that are smaller than those in the single heavy
nucleus approximation. Note that our full simulations yield
accurate results even at the(high) densities where the single
heavy nucleus approximation becomes invalid. We reiterate

that the single heavy nucleus approximation is what is pres-
ently employed in most supernova simulations.

Future work could include calculating the dynamical re-
sponse of the system to study the transfer of energy between
neutrinos and matter. Note that a great virtue of molecular
dynamics approaches combined with special purpose com-
puters(such as what has been done here) is that dynamical
information for systems with large number of particles may
be readily obtained from time-dependent correlations. Par-
ticularly interesting is the low-energy part of the response
which should be dominated by the so-calledPygmy reso-
nances. These oscillations of the neutron skin of neutron-rich
nuclei against the symmetric core should be efficiently ex-
cited by low-energy neutrinos. Another promising area for
future research is the spin response of the system. A first step
could involve including spin dependent forces in our model.
The spin response is interesting because nucleons have large
spin dependent couplings to neutrinos.

ACKNOWLEDGMENTS

We acknowledge useful discussions with Sanjay Reddy.
M.A.P.G. acknowledges partial support from Indiana Univer-
sity and University of Oviedo. J.P. thanks David Banks and
the staff at the FSU Visualization Laboratory for their help.
We thank Brad Futch for preparing Figs. 3, 8, and 12. This
work was supported in part by DOE Grants DE-FG02-
87ER40365 and DE-FG05-92ER40750, and by Shared Uni-
versity Research grants from IBM, Inc. to Indiana Univer-
sity.

APPENDIX: MDGRAPE

To do the simulations we used a special purpose computer
called the MDGRAPE-2. The MDGRAPE-2 is a single
board which plugs into the PCI bus of a general purpose
computer, and is designed for extremely fast calculation of
forces and potentials in molecular dynamics simulations
[24]. It is the third generation of such hardware, which
evolved from the work of Makinoet al. at the University of
Tokyo on similar hardware called the GRAPE(for GRAvity
PipE), for doing gravitationalN-body problems[25]. In our
case, we have two boards plugged into the PCI bus of one of
the Power3+ nodes of Indiana University’s IBM SP super-
computer. Each board is rated at a peak speed of 64 Giga-
FLOPS (floating point operations per second). The
MDGRAPE-2 can compute any central potential of the form

Vsi, jd = bij f„aijsr ij
2 + ei j

2d… sA1d

or the corresponding central force, which is of the same
form, except multiplied byr . All three terms in Eq.(2) are of
this form. In our caseei j =0, andbij andaij are either scalars,
or 232 matrices, corresponding to the two particle types
proton and neutron. The boards are accessed via the M2
library, which the user links into his code. The library is very
easy to use, and handles distribution of work between the
two MDGRAPE-2 boards without user intervention. The
user definesfsxd by a function table of 1024 points, which
the MDGRAPE-2 interpolates via fourth degree polynomial
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interpolation. One can thus reproduce most physically real-
istic functions very accurately. Software is provided for con-
structing function tables, which are stored in files and loaded
in during runtime.

At each MD time step, one calls M2 subroutines to load in
the function table and the scale factors or matricesaij andbij .
One then calls a subroutine to load in the source particle
coordinates, and subroutines to load integer arrays of particle
types(0 for neutron, 1 for proton) for both source and target
particles. Then one calls a force calculation routine, passing
it the array of target particle coordinates. In our case the
source and target particles are the same, but they do not have
to be. One input parameter to the force calculation specifies
that periodic boundary conditions should be used. The
MDGRAPE-2 has built in hardware for taking periodic b.c.
into account. The output is an array containing the total force
on each target particle. A similar call can be made to com-
pute the total potential energy of each particle.

We must go through these steps three times, once for each
term in Eq.(2). Still, the MDGRAPE-2 is much faster than

serial Fortran code. In ordinary Fortran, this whole calcula-
tion would be done in a pair of nested DO loops, and thus
would take of orderOsA2d time. For our simulations with
A=40,000 this would be prohibitive even for today’s fast
CPUs. But the two MDGRAPE-2 boards together can do the
force calculation about 90 times faster than a single Power3+
processor, so that a simulation of 100 000 MD time steps that
would take over two years using a serial program can be
done in less than nine days. Benchmark tests show this
speedup holds out to at leastA=160 000. Each
MDGRAPE-2 board has enough memory to hold a half mil-
lion particles, so we have not yet reached our maximum
capability.

We calculated the neutron-neutron correlation function
gsrd using ordinary Fortran code, as it was not clear how to
perform this calculation with the MDGRAPE-2. Although
gsrd is also anOsA2d calculation, it is done infrequently, and
does not severely impact performance.

[1] A. R. Bodmer, C. N. Panos, and A. D. MacKellar, Phys. Rev.
C 22, 1025(1980).

[2] T. J. Schlagel and V. R. Pandharipande, Phys. Rev. C36, 162
(1987).

[3] G. Peilert, J. Randrup, H. Stocker, and W. Greiner, Phys. Lett.
B 260, 271 (1991).

[4] D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Phys. Rev.
Lett. 50, 2066(1983).

[5] M. Hashimoto, H. Seki, and M. Yamada, Prog. Theor. Phys.
71, 320 (1984).

[6] G. Watanabe, K. Sato, K. Yasuoka, and T. Ebisuzaki, Phys.
Rev. C 68, 035806(2003).

[7] J. Margueron, J. Navarro, and P. Blottiau, astro-ph/0401545.
[8] C. J. Horowitz, M. A. Perez-Garcia, and J. Piekarewicz, Phys.

Rev. C 69, 045804(2004).
[9] S. Jeschonnek and J. W. Van Orden, Phys. Rev. D65, 094038

(2002), and references therein.
[10] A. L. Fetter and J. D. Walecka,Quantum Theory of Many-

Particle Systems(McGraw-Hill, New York, 1971).
[11] S. A. Chin, Ann. Phys.(N.Y.) 108, 301 (1977).
[12] F. Ercolessi, “A molecular dynamics primer”, available from

http://www.sissa.it/furio/(1997).
[13] F. J. Vesely,Computational Physics: An Introduction, 2nd ed.

(Kluwer Academic/Plenum, New York, 2001).

[14] M. P. Allen and D. J. Tildesley,Computer Simulation of Liq-
uids (Clarendon, Oxford, 2003).

[15] C. J. Horowitz, Phys. Rev. D65, 043001(2002).
[16] D. Z. Freedman, D. N. Schramm, and D. L. Tubbs, Annu. Rev.

Nucl. Sci. 27, 167 (1977).
[17] R. K. Pathria,Statistical Mechanics, 2nd ed. (Butterworth-

Heinemann, London, 1996).
[18] R. Buras, M. Rampp, H. T. Janka, and K. Kifonidis, Phys. Rev.

Lett. 90, 241101(2003), and references therein.
[19] C. J. Horowitz and J. Piekarewicz, Phys. Rev. C66, 055803

(2002).
[20] G. A. Lalazissis, J. Konig, and P. Ring, Phys. Rev. C55, 540

(1997).
[21] J. M. Lattimer and F. D. Swesty, Nucl. Phys.A535, 331

(1992).
[22] C. J. Horowitz, Phys. Rev. D55, 4577(1997).
[23] C. H. Papadimitriou and K. Kenneth Steiglitz,Combinatorial

Optimization: Algorithms and Complexity(Dover, Mineola,
NY, 1998).

[24] T. Narumi, R. Susukita, T. Ebisuzaki, G. McNiven, and B.
Elmegreen, Mol. Simul.21, 405 (1999).

[25] J. Makino, T. Fukushige, M. Koga, and E. Koutsofios, inPro-
ceedings of SC2000, Dallas, 2000.

NONUNIFORM NEUTRON-RICH MATTER AND COHERENT… PHYSICAL REVIEW C 70, 065806(2004)

065806-15


