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We calculate the nucleon parameters in isospin asymmetric nuclear matter using the QCD sum rules. The
nucleon self-energiesSv andSs

* are expressed in terms of the in-medium values of QCD condensates. Simple
approximate expressions for the self-energies are obtained in terms of these condensates. The relation between
successive inclusion of the condensates and meson-exchange picture of the nucleon interaction with medium is
analyzed. The values of the self-energies and symmetry energy agree with those obtained by the methods of
nuclear physics.
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I. INTRODUCTION

In this paper we investigate the vector and scalar self-
energies of nucleons in nuclear matter composed of neutrons
and protons, distributed with densitiesrn andrp. We calcu-
late the dependence on the total density

r = rp + rn s1d

and on the asymmetry parameter

b =
rn − rp

rp + rn
s2d

[another conventional presentation of the asymmetry param-
eter is b=sN−Zd / sN+Zd=1−2Z/A with N and Z standing
for the total number of neutrons and protons, whileA=N
+Z]. We present also the equations for the single-particle
potential energies. The results are obtained by the QCD sum
rule approach.

The QCD sum rules were introduced to express the had-
ron parameters in terms of the vacuum expectation values of
QCD operators[1–3]. The approach succeeded in describing
the static characteristics as well as some of the dynamical
characteristics of the hadrons in vacuum—see, e.g., the re-
views in Refs.[4] and [5]. Later the QCD sum rules were
applied for an investigation of modified nucleon parameters
in symmetric nuclear matter[6–8]. They were based on the
Borel-transformed dispersion relation for the functionPmsqd
describing the propagation of the system with the quantum
numbers of the nucleon(the proton) in nuclear matter. Con-
sidering nuclear matter as a system ofA nucleons with mo-
mentapi, one introduces the vector

p =
Spi

A
, s3d

which is thusp<sm,0d in the rest frame of the matter.
The spectrum of the functionPmsqd is much more com-

plicated than that of the vacuum functionP0sqd. The sepa-
ration of the singularities connected with the nucleon in mat-
ter from those connected with the excitations of matter itself
can be achieved by keeping the variable

s= sp + qd2 s4d

as a constant and by fixing[7–9]

s= 4E0F
2 , s5d

with E0F being the total nucleon energy at the Fermi surface.
This condition ensures that the nucleon pole in the disper-

sion relations

Pm
j sq2,sd =

1

p
E Im Pm

j sk2,sd
k2 − q2 dk2 s6d

for the componentsPm
j sq2,sd s j =q,p,Id of the function

Pmsqd = qmgmPm
q sq2,sd + pmgmPm

p sq2,sd + IPm
I sq2,sd s7d

corresponds to the nucleon with the three-dimensional mo-
mentum,uqu being equal to the Fermi momentumpF. This
approach was employed in Refs.[7–10] and in Ref.[11].
Another version of the finite-density QCD sum rules based
on dispersion relations in the time componentq0 at uqu fixed
have been reviewed in Ref.[12]. In vacuumP0

p=0, while the
functionsP0

q,I depend onq2 only.
By using Eq. (6) the characteristics of the nucleon in

nuclear matter can be expressed through the in-medium val-
ues of QCD condensates. The possibility of an extension of
the “pole+continuum” model[1,2] to the case of finite den-
sities was shown in Refs.[7–10].

The lowest order of the operator product expansion(OPE)
of the left-hand side(LHS) of Eq. (6) can be presented in
terms of the vector and scalar condensates[7–10]. Vector
condensatesvm

i =kMuq̄igmqiuMl of the quarks with flavori
(uMl denotes the ground state of the matter) are the linear
functions of the nucleon densitiesrn andrp. In the asymmet-
ric matter both SU(2) symmetric and asymmetric conden-
sates

vm = kMuūs0dgmus0d + d̄s0dgmds0duMl = vm
u + vm

d ,

vm
s−d = kMuūs0dgmus0d − d̄s0dgmds0duMl = vm

u − vm
d s8d

obtain nonzero values. In the rest frame of matter,vm
i

=vidm0, vm=vdm0, vm
s−d=vs−ddm0. We can present vi

=knuq̄ig0q
iunlrn+kpuq̄ig0q

iuplrp. The valueskNuq̄ig0q
iuNl are
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just the numbers of valence quarks in the nucleons

knuūg0uunl=kpud̄g0dupl=1, kpuūg0uupl=knud̄g0dunl=2, and
thusvu=rn+2rp=rs 3

2 − b
2

d, vd=2rn+rp=rs 3
2 + b

2
d. Hence, we

obtain

vsrd = vNr, vs−dsr,bd = bvN
s−dr, s9d

with

vN = 3, vN
s−d = − 1. s10d

The LHS of Eq.(6) also contains the SU(2) symmetric
and asymmetric scalar condensates

kmsrd = kMuūs0dus0d + d̄s0dds0duMl,

zmsr,bd = kMuūs0dus0d − d̄s0dds0duMl. s11d

These condensates can be presented as

kmsrd = k0 + ksrd,

wherek0=kms0d is the vacuum value,

ksrd = kNr + . . . , kN = kNuūu + d̄duNl, s12d

and

zmsr,bd = − bszNr + . . . d, zN = kpuūu − d̄dupl. s13d

The dots on the RHS of Eqs.(12) and(13) denote the terms
which are nonlinear inr. In the gas approximation such
terms should be omitted. The SU(2) invariance of vacuum
was assumed in Eq.(13). The expectation valuekN is related
to thepN sigma termspN—i.e., [13]

kN =
2spN

mu + md
, s14d

with mu,d standing for the current masses of the light quarks,
while the value ofspN can be extracted from experimental
data on low-energypN scattering [14,15]. However, the
value zN should be calculated under certain model assump-
tions on the quark structure of the nucleon. These were the
condensates of dimensiond=3.

Turning to the condensates of dimensiond=4, we find,
for the gluon condensate,

gmsrd =KMUas

p
G2s0dUML = g0 + gsrd, g0 = gms0d,

gsrd = gNr + . . . , s15d

with the nucleon expectation valuegN=kNusas/pdG2uNl<
−8

9m obtained in Ref.[16] in a model-independent way. An-
other contribution of the dimensiond=4 comes from the
nonlocal vector condensatekNuq̄s0dgmqsxduNl. It can be ex-
pressed in terms of the higher moments of the nucleon struc-
ture function[9]. Next come the expectation values of the
four-quark operators with dimensiond=6. The importance of
these contributions was analyzed in Ref.[17]. In the gas
approximation they can be presented in terms of nucleon
expectation values. The latter can be obtained in the frame-
work of certain models.

We shall analyze the sum rules in the gas approximation.
It is a reasonable starting point, since the nonlinear contribu-
tions to the most important scalar condensateksrd are rela-
tively small at densities of the order of the phenomenological
saturation densityr0=0.17 fm−3 of symmetric matter[10].
The QCD sum rule approach, applied to a description of the
nucleon self-energies in symmetric matter[18], provided re-
sults which are consistent with those obtained by the meth-
ods of nuclear physics.

In the case of symmetric mattersb=0d, the leading OPE
termssd=3,4d can be either calculated or expressed in terms
of the observables. In the asymmetric case we need a model
for the calculation of the expectation valuezN, defined by
Eq. (13). In most quark models the nucleon is treated as a
system of valence quarks and an isospin symmetric sea of
quark-antiquark pairs. Under this assumption the condensate
zN is determined by the valence quarks. In models with non-
relativistic valence quarks,zN=1. In more realistic relativis-
tic modelszN,1 due to the relativistic reduction.

The calculations of the four-quark condensates require
model assumptions on the structure of the nucleon. The com-
plete set of the four-quark condensates was obtained in Ref.
[19] by using the perturbative chiral quark model(PCQM).
The chiral quark model, originally suggested in Ref.[20],
was developed further in Refs.[21–23].

Thus, in the calculations, which include terms of the order
of 1/q2 of the OPE obtained in the framework of PCQM we
must use the PCQM valuezN=0.54 [21].

On the RHS of the sum rules we describe the nucleon by
the relativistic in-medium propagator[24]

GN
−1 = qmgm − m− S, s16d

with the total self-energy

S = qmgmSq + pmgmSp

m
+ Ss. s17d

We shall use the QCD sum rules for the calculation of the
nucleon characteristics:

Sv =
Sp

1 − Sq
, m* =

m+ Ss

1 − Sq
, Ss

* = m* − m, s18d

identified with the vector self-energy, Dirac effective mass,
and the effective scalar self-energy—see, e.g., Ref.[24]. Two
other parameters to be determined in the approach are the
in-medium shifts of the effective values of the nucleon resi-
due dlm

2 and of the continuum thresholddWm
2 . We present

also the result for the single-particle potential energies:

U = Ss
* + Sv. s19d

We trace the dependence of these characteristics on the total
densityr and on the asymmetry parameterb—Eqs.(1) and
(2).

Our approach includes only the strong interactions be-
tween the nucleons. The electromagnetic and weak interac-
tions are neglected.

In asymmetric matter the characteristics obtain different
values for the proton and neutron. Considering the asymme-
try parameter in the interval −1øbø1, one can see that the
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values of any parameterPN for the protonspd and neutron
snd are connected as

Pnsbd = Pps− bd. s20d

We shall present all values for the proton using Eq.(20) to
obtain those for the neutron.

We carry out the calculations in the gas approximation,
including only terms linear inr on the LHS of the sum rules.
Thus we can neglect the Fermi motion of the nucleons of the
matter, which manifest themselves in higher order of Fermi
momentum, and put

s= 4m2 s21d

in Eq. (4). Having in mind future extensions of the approach,
we shall keep the dependence ons, using Eq.(21) for the
specific computations.

In the simplest Hartree approximation(without multipar-
ticle forces) Sp is linear in density. If one neglects the Fermi
motion of the nucleon, as we did, the same is true for the

scalar self-energySs. Thus, the parametersSv and m*, Eq.
(18), exhibit nonlinear behavior due to the nonzero value of
Sq (Sq=0 in the mean-field approximation). In a similar way,
the characteristicsSv andm* are not linear inr andb in our
approach due to the relativity large LHS of the sum rules for

FIG. 1. Successive inclusion of the OPE terms. The helix lines
denote the current(23). Solid lines denote the quarks. Thick lines
show the matter.(a) The local vector and scalar condensates are
included (contribution of the gluon condensate is not shown). (b)
The factorized part of the four-quark condensates is included. One
of the q̄q operators acts on vacuum, while anotherq̄q operator acts
inside the nucleon. Small circles stand for averaging over vacuum.
(c) The internal parts of the four-quark operators are included. All
the quark operators act inside the nucleon.(d) The nonlocality of
the vector condensate is included. The dark blobs denote the non-
local condensates.

FIG. 2. The analogs of the OPE terms in the meson-exchange
interaction of the nucleon with matter.(a)–(d) correspond to Figs.
1(a)–1(d). The solid line denotes the nucleon. Thick lines show the
matter. Wavy and dashed lines stand for vector and scalar mesons.
(a) Exchanges by vector and scalar(“effective”) mesons with the
pion vertices.(b) Exchanges by these mesons with the anomalous
Lorentz structures of the vertices(the dark squares). (c) Exchanges
by the q̄q pairs with strong correlations between them, presumably
local interactions with two mesons. The double line denotes the
two-meson systems.(d) Inclusion of the nonlocal structure of the
vertices of interaction between the vector mesons and the nucleons
of the matter. The dark blobs denote the form factors of the vertices.
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the structurePm
q . This reflects the distribution of the baryon

charge between the pole and continuum. Another reason for
the nonlinear effects(although numerically less important) is
the nonlinear structure of the sum rule equations.

The in-medium nucleon QCD sum rules present nucleon
interactions with matter in terms of an exchange by uncorre-
lated quark-antiquark pairs. The latter exchanges correspond
to meson exchanges with the same quantum numbers. Thus
the contributions of the lowest-order OPE terms can be
viewed to the exchange by the isoscalar and isovector vector
and scalar mesons, with the pointlike vertices of the interac-
tions, having the standard Lorentz structure. Inclusion of
nonlocal effects in the quark condensates corresponds to in-
clusion of nonlocal effects in the vertices of the interactions
between the nucleons of matter and the mesons. The four-
quark condensates, in which two of the quark operators are
averaged over the vacuum state, correspond to the anoma-
lous Lorentz structures of the vertices of the nucleon-meson
interactions. In terms of the hadronic degrees of freedom
four-quark condensates, in which all the quark operators act
inside the nucleons, correspond to the exchanges by strongly
correlated four-quark systems. Such exchanges can be
viewed, e.g., as those by two mesons, interacting with the
nucleon at the same point. This is illustrated by Figs. 1 and 2.

We compare our results for the nucleon self-energies and
potential energies with those obtained by the traditional
methods of nuclear physics. We find a promising consistency
of the results.

We present the general equations in Sec. II, calculate the
LHS of the sum rules in Sec. III, and provide the solutions
in Sec. IV. We compare the results to those obtained by
the methods of nuclear physics in Sec. V. We summarize in
Sec. VI.

II. GENERAL EQUATIONS

The equations presented in this section are similar to
those for symmetric matter obtained in Ref.[18]. The func-
tion Pmsqd defined by Eq.(7) (often referred to as the “po-
larization operator”) is presented as

Pmsqd = i E d4xeisqxdkMuTjsxd j̄s0duMl, s22d

with j being the three-quark local operator(often referred to
as the “current”) with proton quantum numbers. The usual
choice is the current[2]

jsxd = «abcfuaTsxdCgmubsxdgg5gmdcsxd, s23d

with definite isospinI =1/2—see, e.g., Ref.[25]. HereT de-
notes a transpose andC is the charge conjugation matrix.
The upper indices denote the colors.

The dispersion relations for the functionsPm
j sq2,sd

s j =q,p,Id can be presented as

Pm
j ,OPEsq2,sd =

lm
*2bj

mm
2 − q2 +

1

2pi
E

Wm
2

` Dk2P j ,OPEsk2,sd

k2 − q2 ,

s24d

with bq=1, bp=−Sv, and bI =m*. The new position of the
nucleon pole is

mm
2 =

ss− m2dSv/m− Sv
2 + m*2

1 + Sv/m
.

The Borel-transformed sum rules(see Appendix A) take
the form

Lm
q sM2,Wm

2 d = LmsM2d, s25d

Lm
p sM2,Wm

2 d = − SvLmsM2d, s26d

Lm
I sM2,Wm

2 d = m* LmsM2d, s27d

with

LmsM2d = lm
*2e−mm

2 /M2
, s28d

while lm
*2 is the effective value of the nucleon residue in

nuclear matter.
Varying in Eq.(24) the value ofs defined by Eq.(4) we

can find the position of the nucleon poles with different val-
ues of uqu. The choice(5) leads touqu=pF. In the simplified
case expressed by Eq.(21), uqu=0. We shall investigate this
very case. Inclusion of finite values of the Fermi momentum
should be done together with inclusion of nonlinear terms in
the scalar condensates. It was noted earlier[9] that in this
approach the contributions of the nucleon and antinucleon
poles are separated. The antinucleon pole corresponding to
q0<−m generates the poleq2=5m2 shifted far to the right
from the nucleon one. Thus it is among the contributions
included in the second term on the RHS of Eq.(24).

Actually, we shall solve the sum rule equations, subtract-
ing the vacuum effects:

LqsM2,Wm
2 ,W0

2d = LmsM2d − L0sM2d, s29d

LpsM2,Wm
2 d = − SvLmsM2d, s30d

LssM2,Wm
2 ,W0

2d = m* LmsM2d − mL0sM2d, s31d

with Lj =Lm
j −L0

j , while L0
q,I stand for the LHS of the QCD

sum rules in vacuumsL0
p=0d and L0sM2d is the vacuum

value of the functionLmsM2d. The vacuum values of the
parameters arem=0.94 GeV, l0

2=1.9 GeV6, and W0
2

=2.2 GeV2. Recall that the matching of the LHS and RHS of
the vacuum QCD sum rule has been achieved in the domain

0.8 GeV2 , M2 , 1.4 GeV2. s32d

Thus Eqs.(29)–(31) should be solved in the same interval of
the values ofM2.
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III. CONTRIBUTIONS TO THE LEFT-HAND SIDE
OF THE SUM RULES

We shall include terms of the order ofq2 ln q2, ln q2, and
1/q2 on the LHS of the sum rules(24). This corresponds to
the terms of the order ofM4, M2, and 1 on the LHS of the
Borel-transformed equations(29)–(31). We shall include
subsequently contributions of three types. The terms,m

j sM2d
stand for the lowest-order local condensates. They contribute
to q2 ln q2 and lnq2 terms on the LHS of Eq.(24). These
contributions correspond to simple exchanges by isovector
vector and scalar mesons between the nucleon on the RHS of
Eq. (24) and the nucleons of matter, Figs. 1(a) and 2(a). The
termsum

j sM2d are caused by the nonlocalities of the vector
condensate, Fig. 1(d), contributing to the terms of the order
of ln q2 and 1/q2. They correspond to the account of the
form factors in the vertices between the isovector mesons
coupled to the nucleons, Fig. 2(d). Finally, v jsM2d describes
contributions of the four-quark condensates, Figs. 1(b) and
1(c), being of the order of 1/q2. They correspond to two-
meson exchanges(or to exchanges by four-quark mesons, if
there are any) and to a somewhat more complicated structure
of the meson-nucleon vertices, Fig. 2(c). Thus we present the
LHS of Eqs.(25)–(27) as

Lm
j = ,m

j + um
j + vm

j s33d

and the LHS of Eqs.(29)–(31) as

Lj = , j + uj + v j , s34d

with , j =,m
j −,0

j , uj =um
j , andv j =vm

j −v0
j , while ,0

j andv0
j are

the corresponding contributions in the vacuum case.

A. Local condensates of the lowest dimensions

The contributions of the local condensates of the lowest
dimensions expressed by Eqs.(10)–(13) and(15) can be pre-
sented as

,q = fv
qsM2,Wm

2 dvqsrd + fg
qsM2,Wm

2 dgsrd, s35d

,p = fv
psM2,Wm

2 dvpsr,bd, s36d

,I = fk
I sM2,Wm

2 dtIsr,bd, s37d

with the dependence onr andb being contained in the fac-
tors

vqsrd = 3r, vpsr,bd = 3rS1 −
b

4
D, tIsr,bd = rskN + zNbd,

s38d

while the condensategsrd is given by Eq.(15). The functions
fa

j are [18]

fv
qsM2,Wm

2 d = −
8p2

3

ss− m2dM2E0m − M4E1m

mL4/9 ,

fg
qsM2,Wm

2 d =
p2M2E0m

L4/9 ,

fv
psM2,Wm

2 d = −
8p2

3

4M4E1m

L4/9 ,

fk
I sM2,Wm

2 d = − 4p2M4E1m. s39d

The notation Ekm sk=0,1d in Eq. (39) means that the
functions E0sxd=1−e−x, E1sxd=1−s1+xde−x depend on the
ratio x=Wm

2 /M2 and the factor LsM2d=sln M2/LQCD
2 d /

sln n2/LQCD
2 d accounts for the anomalous dimension—i.e.,

the most important corrections of the orderas enhanced by
the “large logarithms.” We putLQCD=0.15 GeV, whilen
=0.5 GeV is the normalization point of the characteristic in-
volved.

Now we must find theb dependence of the nucleon self-
energies and also of the parametersWm

2 and lm
*2. Note that

there is a simple solution of Eqs.(25)–(27):

ov
sr,bd = ov

sr,0dS1 −
b

4
D , s40d

m* sr,b;kN,zNd = m* sr,0;kN + bzN,0d, s41d

Wm
2 sr,bd = Wm

2 sr,0d, s42d

which is true with the same accuracy as solutions for sym-
metric mattersb=0d [18]. Indeed, assuming thatWm

2 does
not change withb we find that the functionLmsM2d on the
LHS of Eq. (25) also should not depend onb.1 This leads to
Eqs.(40)–(42).

B. Inclusion of the nonlocal condensates

It was shown in Ref.[9] that only vector nonlocal con-
densate contributes to the OPE of the LHS of the sum rules.
Thus, for a flavori,

um
i sxd = kMuq̄is0dgmqisxduMl =

pm

m
Fa

i
„spxd,x2

…

+ ixmmFb
i
„spxd,x2

…. s43d

Each of the functions on the RHS of Eq.(43) can be pre-
sented as the sum of the proton and neutron contributions:

Fasbd
i = rpfn,asbd

i + rnfp,asbd
i . s44d

As a result of the SU(2) invariance, they can be presented in
terms of the proton functionsfasbd

i =fp,asbd
i :

Fasbd
i = rpfasbd

i + rnfasbd
i8 , s45d

with i =u,d, i8Þ i.
Expansion in powers ofx2 corresponds to expansion of

the functionPmsqd in powers ofq2. To obtain terms of the
order ofq−2 it is sufficient to include the two lowest terms of
the expansions in powers ofx2. One can present[9,26]

1The numerical solution, which will be considered in Sec. IV,
provides indeedWm

2 sr ,bd<Wm
2 sr ,0d with an accuracy of 10%.
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fasbd
i

„spxd,x2
… =E

0

1

dae−iaspxdfasbd
i sa,x2d, s46d

with

fasbd
i sa,x2d = hasbd

i sad +
1

8
x2m2jasbd

i sad. s47d

Here ha
i sad= fa

i sa ,0d is the contribution of the quarks with
the flavori to the asymptotic of the proton structure function
hsad=ha

usad+ha
dsad. Their moments are well known—at

least those which are numerically important. The lowest mo-
ments of the functionshb

i can be expressed in terms of the
moments of the functionsha

i andja
i [9].

In asymmetric matter the two combinationsFasbd
u +Fasbd

d

and Fasbd
u −Fasbd

d contribute, while atb=0 only the former
one survives. Thus we can present

ujsM2d = fuN,1
j sM2d + buN,2

j sM2dgr s48d

s j =q,pd for the functionsujsM2d to the RHS of Eq.(34). In
symmetric matterujsM2d=uN,1

j sM2dr. These functions were
calculated in Ref.[18]. In asymmetric matter we must in-
clude

uN,2
q sM2d =

8p2

3L4/9m
F3

2
m2M2E0mkshu − hddalG s49d

and

uN,2
p sM2d =

8p2

3L4/9F3fM4E1m − ss− m2dM2E0mgkshu − hddal

+
9

5
m2M2E0mkshu − hdda2l −

27

10
m2M2E0mskjul

− kjdldG , s50d

while uIsM2d=0, as well as in symmetric matter. Here
we denote L=LsM2d, E1m=E1sWm

2 /M2d, and E0m

=E0sWm
2 /M2d—see Sec. III A. The values ofkjul=−0.24 and

kjdl=0.09 were calculated in Ref.[27]. We definedkFl
=e0

1daFsad for any functionFsad.

C. Inclusion of the four-quark condensates

The exchange by two quark-antiquark pairs between the
current (23) and matter is described in terms of the four-
quark expectation values

Hm
XYsrd = kMuūGXuūGYuuMl, Rm

XYsrd = kMud̄GXdūGYuuMl,

s51d

with GX,Y being the basic 434 matricesGI = I, GPs=g5, GV

=gm, GA=gmg5, and GT=si /2dsgmgn−gngmd, acting on the
Lorentz indices of the quark operators. We did not display
the color indices in Eq.(51), keeping in mind that the quark
operators are color antisymmetric.

In the gas approximation,

Hm
XYsr,bd = Hm

XYs0d + rnhn
XY + rphp

XY,

Rm
XYsr,bd = Rm

XYs0d + rnrn
XY + rprp

XY. s52d

The characteristicshN
XY and rN

XY can be presented as

hN
XY =

5

6
sk0uūGXuu0lkNuūGYuuNl + k0uūGYuu0lkNuūGXuuNld

+ kNusūGXu · ūGYudintuNl, s53d

rN
XY =

2

3
sk0ud̄GXdu0lkNuūGYuuNl + k0uūGYuu0lkNud̄GXduNld

+ kNusd̄GXd · ūGYudintuNl. s54d

The first and second “factorized” terms on the RHS of Eqs.
(53) and (54) describe two quark operators, acting on the
vacuum state, while the other two operators act inside the
nucleon. Of course, these terms obtain nonvanishing values
only in the scalar caseGX= I (or GY= I). The last terms de-
scribe the “internal” action of all four operators inside the
nucleon. This is shown by the subscriptint. The coefficients
5/6 and 2/3 on the RHS of Eqs.(53) and (54) present the
weights of the color-antisymmetric states[18].

Note that there are the terms which depend on the quark
masses explicitly. In a somewhat straightforward approach
one substitutes the current quark masses. Following more
sophisticated models of pions[28] one should substitute the
constituent quark masses, thus obtaining the values, which
are negligibly small in our scale.

Thus we obtain

sPd4q = SA4q
q sbd

qmgm

q2 + A4q
p sbd

spqd
m2

pmgm

q2

+ A4q
I sbdm

I

q2D a

s2pd2r, s55d

with the coefficientsA4q
j sbd being determined by the nucleon

four-quark expectation values[19] while

a = − s2pd2k0uūuu0l. s56d

We use the valuek0uūuu0l=s−241 MeVd3, corresponding to
a=0.55 GeV3, employed in Ref.[3]. Note thata is just a
convenient scale for presentation of the results. It does not
reflect the chiral properties ofsPd4q.

The coefficientsA4q
q results mainly as the sum of the ex-

pectation value of the product of the fouru-quark operators,
described by the first(“factorized”) term on the RHS of Eq.
(53) and that of the product of twou- and twod-quark op-
erators in the vector channel—Eq.(54). The former contri-
butions depend onb, while the latter do not. Thus, the coef-
ficient A4q

q depends onb strongly. The factorA4q
p is

determined mostly by the expectation value(54) in the vec-
tor channel, with the protons and neutrons providing the
equal contributions. This explains the weak dependence of
the parameterA4q

p on b. The coefficientA4q
I is dominated by

the first term on the RHS of Eq.(54), providing stronger
dependence onb. The calculations give
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A4q
q = − 0.11 − 0.21b, A4q

p = − 0.57 + 0.09b,

A4q
I = 1.90 − 0.92b. s57d

In the simplified model of the pion, which does not in-
clude renormalization of the quark masses by the interac-
tions, the value of the coefficientA4q

q is somewhat different:

A4q
q = 0.25 − 0.22b, s58d

while the values ofA4q
p andA4q

I remain unchanged.
The contributions of the four-quark condensates to the

LHS of the Borel-transformed sum rules(29)–(31) can be
presented in the same way as for the symmetric case:

v j = vN
j r, vN

j = A4q
j sbdf4q

j ,

f4q
q = − 8p2a, f4q

p = − 8p2s− m2

2m
a, f4q

I = − 8p2ma.

s59d

IV. SOLUTIONS OF THE SUM RULE EQUATIONS

Now we present the solutions of the sum rule equations,
focusing on the functionsSvsr ,bd and m* sr ,bd. We shall
include the terms, j, uj, andv j [Eq. (34)] in the succession
on the LHS of Eqs.(29)–(31). Two lowest-order OPE con-
tributions to the vector structuresPm

q and Pm
p are presented

in terms of the vector and gluon condensates and of the
nucleon structure functions. These characteristics are either
calculated in a model-independent way or determined in the
experiments. The lowest-order OPE terms in the scalar chan-
nel are expressed in terms of isotope-symmetric and isotope-

asymmetric scalar condensateskN=kpuūu+ d̄dupl and zN

=kpuūu− d̄dupl—Eqs. (12) and (13). Here the situation be-
comes somewhat more complicated.

The expectation valuekN is related to thepN sigma term
spN by Eq.(14). The value ofspN can be extracted from the
data on low-energypN scattering. The procedure consists in
subtracting the high-order chirality-violating termss8 from
the experimental valueSpN—i.e., spN=SpN−s8. The value
s8<15 MeV was obtained in Ref.[29] by the dispersion
relation technique. However, there are some uncertainties in
deducing the value ofSpN from the experimental data. The
canonical valueSpN=s60±8d MeV [14] is now challenged
by the higher values 77±6 MeV[15]. Assuming mu+md
=11 MeV [13], we find thatSpN=64 MeV corresponds to
kN=8. Additional uncertainties emerge, since the true value
of the summu+md may be somewhat larger.

There are no experimental data on the expectation value
zN. If the nucleon is treated as a system of valence quarks
and an isospin-symmetric sea of the quark-antiquark pairs,
the expectation valuezN is determined by the contribution of
the valence quarks. Thus, reasonable values arezN=1 for
nonrelativistic models andzN,1 in the relativistic case. Un-
til we include only the leading OPE terms, j, we can solve
the sum rule equations for any values ofkN andzN. However,
the four-quark condensates are obtained in the framework of
a specific perturbative chiral quark model. Within this model,

spN=45 MeV [22], leading to kN=8. Thus, to be self-
consistent, we must use this value as the basic one in the
general equations, which include the contributionsv j. Note
also that the values ofSpN extracted from the experimental
data are correlated with the assumption on the strange quark

content yN=2kpus̄supl / kpuūu+ d̄dupl [15]. The valuesSpN

<77 MeV correspond toyN<0.35, with a large part of the
nucleon mass being due to the strange quarks. The smaller
values of SpN require much smaller values ofyN. In the
PCQM one findsyN=0.08 [22], in agreement with the
smaller values ofSpN. The PCQM valuezN=0.54 can be
obtained by using the results of Ref.[21].

We shall present most of the numerical results for the
values

kN = 8, zN = 0.54. s60d

Anyway, in Sec. IV B the nucleon characteristics will be
presented as an explicit function of the condensates—e.g., of
the parameterskN andzN.

We shall find the values of the parameters which mini-
mize the relative difference between the RHS and LHS of
Eqs.(29)–(31) at values ofM2 in the interval(32).

A. Solution of the general equations

Here we present solutions of the general equations
(29)–(31), which are identical to Eqs.(25)–(27). Recall that
we approximate the in-medium condensates by the functions
which are linear both inr and b. However, the solutions
Svsr ,bd and m* sr ,bd are not linear. One can demonstrate
this by presenting Eqs.(26) and (27) as

Sv = −
Lm

p

Lm
q , m* =

Lm
I

Lm
q , s61d

with the density andb dependence ofLm
q leading to nonlin-

ear behavior ofSv andm* (even if we assumeWm
2 =W0

2). The
nonlinear dependence of the RHS of Eq.(61) on Wm

2 also
cause the nonlinear contributions toSv and m*. However,
they are numerically less important.

Now we include the terms, j, uj, andv j in succession on
the LHS of Eqs.(29)–(31).

1. Role of the lowest-order local condensates

As we have seen, these are the contributions which con-
tain the vector condensatevsrd, gluon condensategsrd, and
scalar condensateskm and zm—Eqs. (9)–(13) and (15). An
account of these terms corresponds to one-meson exchanges
between the nucleon under consideration and the nucleon of
matter, with pointlike structures of the meson-nucleon verti-
ces, Fig. 2(a). The solution can be obtained by using Eqs.
(35)–(37) for the functions, j. As we have seen, there is a
simple solution expressed by Eqs.(40)–(42). The procedure
of minimization of the difference between the LHS and RHS
of Eqs. (29)–(31) indeed prefers the valuesWmsr ,bd
<Wmsr ,0d. Thus Eqs.(40) and (41) appear to be true with
good accuracy. Hence,
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Sv
spdsr,bd = Svsr,0dS1 −

b

4
D ,

Sv
sndsr,bd = Svsr,0dS1 +

b

4
D ,

m* spdsr,b,kN,zNd = m* sr,0,kN + bzN,0d,

m* sndsr,b,kN,zNd = m* sr,0,kN − bzN,0d. s62d

Thus, in matter with an excess of neutronssb.0d, we obtain
Sv

snd.Sv
spd and m* snd.m* spd. For example, using the value

Svsr ,0d obtained by the sum rule approach in Ref.[18]
fSvsr ,0d=335 MeVg, we find Sv

snd−Sv
spd=170 MeV, m* snd

−m* spd=50 MeV for neutron mattersb=1d at r=r0.
The minimization procedure choosesWm

2 sb=−1d
=2.50 GeV2 and Wm

2 sb=0d=2.30 GeV2, Wm
2 sb=1d

=2.05 GeV2, Sv
snd−Sv

spd=170 MeV, and m* snd−m* spd

=50 MeV. Thus, Eqs.(62) work well indeed. However, this
approximation is not sufficient for a description of the poten-
tial energyUsr ,bd, Eq. (19), providingU.0 for both sym-
metric and asymmetric cases.

2. Role of the four-quark condensates

Now we include the four-quark condensate; i.e., we use
Eq. (33) for Lj =, j +v j, with v j described by Eqs.(59). In-
clusion of these terms mimics several contributions on the
RHS of the dispersion relations(24). In the condensates
ūGXuūGXu, presented by Eq.(53), the first term, which has a
nonvanishing value only ifGX= I, generates a contribution to
the Pm

q structure due to the anomalous Lorentz structure of
the interaction between the scalar field and the nucleon,
caused by the chiral-odd vacuum condensatek0uq̄qu0l. In a
similar way the first term on the RHS of Eq.(54) describes
the contribution of the vector meson exchange to the scalar
structure of the nucleon propagator. The anomalous Lorentz
structures emerge if the nucleon-meson vertices are treated
beyond the lowest order. These contributions are illustrated
by Fig. 2(b). The last terms on the RHS of Eqs.(53) and(54)
describe exchanges by the four-quark strongly correlated
system[see Fig. 2(c)]. The condensates presented by Eq.
(54) have the same values for the proton and neutron. Thus
their contributions do not depend onb.

The differences between the neutron and proton charac-
teristics in neutron matter atr=r0 become Sv

snd−Sv
spd

=140 MeV andm* snd−m* spd=−110 MeV. In the simplified
model for the pion with the current masses of the constituent
quarks, whereA4q

q sbd is given by Eq.(58), we obtainSv
snd

−Sv
spd=145 MeV, whilem* snd−mspd=−110 MeV at these val-

ues ofr andb.

3. Final results

The nonlocal contributions come from the account of the
x dependence of the expectation values of the vector opera-
tors kMuq̄is0dgmqisxduMl with qisxd=s1+xmDm+¯ dqis0d. As
we have seen, the nonlocality of the scalar condensates is not

important in our case. The nonlocality is included by putting
Lj =, j +v j +uj with uj defined by Eqs.(49) and(50). We use
the structure functions obtained in Ref.[30] for the calcula-
tion of the termsuq andup.

An account of the nonlocality of the vector condensate
corresponds to inclusion of the form factor of the vertex of
the interaction between the vector meson and the nucleon of
the matter—Fig. 2(d). Recall that a similar contribution for
the effective scalar meson exchanges vanishes in our
approximation—Sec. III B.

We find the dependence of the nucleon vector self-energy
Sv and of the effective massm* on the density of matter and
on the asymmetry parameterb and show the results in Figs.
3 and 4. For example, the differences between the neutron
and proton characteristics in the neutron matter atr=r0 are
Sv

snd−Sv
spd=110 MeV, and m* snd−m* spd=−70 MeV. In the

simplified model for the pion with current quark masses,
where A4q

q sbd is given by Eq. (58), we obtain Sv
snd−Sv

spd

=115 MeV andm* snd−m* spd=−65 MeV at these values ofr
andb. The minor change is due to the small change in theb
dependence of the condensateA4q

q . The nucleon residuelm
2

and the spectrum thresholdWm
2 exhibit very weak depen-

dence onb. Thus we can assume

lm
2 sr,bd = lm

2 sr,0d, Wm
2 sr,bd = Wm

2 sr,0d. s63d

The consistency between the RHS and LHS of Eqs.
(29)–(31) is illustrated by Fig. 5.

FIG. 3. The density dependence of the vector self-energySv
[solution of Eqs.(29)–(31)]. The solid line shows the results for
symmetric mattersb=0d. The dashed and dotted lines show the
proton and neutron self-energiesSv

spd and Sv
snd in neutron matter

sb=1d.

FIG. 4. The density dependence of the effective massm* [solu-
tion of Eqs.(29)–(31)]. The solid line shows the results for sym-
metric mattersb=0d. The dashed and dotted lines show the proton
and neutron effective massesm* spd and m* snd in neutron mattersb
=1d.

DRUKAREV, RYSKIN, AND SADOVNIKOVA PHYSICAL REVIEW C 70, 065206(2004)

065206-8



As a result of the nonlinear character of Eqs.(29)–(31),
the self-energiesSvsr ,bd and Ss

*sr ,bd=m* sr ,bd−m could
have been nonlinear in bothr andb. The nonlinear behavior
of these characteristics withr manifests itself explicitly.
However, the dependence onb appears to be linear in the
framework of the accuracy of our computations(see the next
subsection). Thus bothSv and Ss

* can be approximated by
linear functions ofb:

Svsr,bd =
r

r0
fV1srd + btzV2srdg,

Ss
*sr,bd =

r

r0
fS1srd + btzS2srdg, s64d

with tz=1 for the proton andtz=−1 for the neutron. The
functionsV1,2srd andS1,2srd are shown in Fig. 6. They can
be approximated by polynomials of the second order—see
Appendix B.

The single-particle potential energy is expressed by Eq.
(19). At r=r0 the neutron-proton difference of the potential
energy caused by the isovector interaction isDUnp
<38b MeV at smallb. In Fig. 7 we show the dependence
Usrd for several values ofb for both neutrons and protons.
Recall that the potential energy is determined with an accu-
racy lower than the self-energies.

B. Explicit expression for the nucleon parameters in terms
of QCD condensates

We can present an approximate solution of Eqs.
(29)–(31), in which the nucleon self-energies are expressed
in terms of the QCD condensates explicitly. We see from Eq.
(63) that Wm

2 sr ,bd<Wm
2 sr ,0d, while Wm

2 sr ,0d is close to its
vacuum valueW0

2 [18]. Thus, we can putWm
2 =W0

2 on the
RHS of Eqs.(25)–(27) and (61). This enables us to present
the proton characteristicsSv andm* as explicit functions of
the quark condensates and of the Borel massM2:

Sv = −
Tv

psvN + 3/4bvN
s−dd + Tu1

p + bTu2
p + Tv

pA4q
p sbd

1 + Fqsr,bd
r

r0
,

s65d

m* = Fm+ fTk
I skN + bzNd + Tv

I A4q
I sbdg

r

r0
G 1

1 + Fqsr,bd
,

s66d

with

Fqsr,bd = fTv
qvN + mTg

qgN + Tu1
q + bTu2

q + Tv
qA4q

q sbdg
r

r0
.

s67d

We denoteTv
j =Tv

j sM2d and Tk
j =Tk

j sM2,W0
2d for other k and

introduce, forj =q,p,I,

Tk
j sM2,W0

2d = r0fk
j sM2,W0

2d
em2/M2

l0
2 sk = v,g,kd,

Tur
j sM2,W0

2d = r0uN,r
j sM2,W0

2d
em2/M2

l0
2 sr = 1,2d,

Tv
j sM2d = r0f4q

j em2/M2

l0
2 , s68d

with the functionsfk
q and f4q

q defined by Eqs.(39) and(59). It
is instructive to present the densityr in units of the observ-
able saturation density of symmetric matter,r0=0.17 fm−3.

Note that in the interval determined by Eq.(32) the func-
tions Tk

j sM2d defined by Eq. (68) sk=v ,g,k ,u1,u2;
j =q,p,Id depend onM2 rather weakly. Thus, approximating

FIG. 5. The consistency of the LHS and RHS of Eqs.(29)–(31)
for neutrons in neutron matter atr=r0. The lines 1, 2, and 3 show
the LHS to RHS ratio of Eqs.(29)–(31) correspondingly in the
interval (32) of the values ofM2.

FIG. 6. The density dependence of the functionsxV1, xV2, xS1,
andxS2 introduced by Eqs.(64), x=r /r0. The dotted lines demon-
strate the quality of fitting with the simple functions onr, as de-
scribed in Appendix B.

FIG. 7. The density dependence of the single-particle potential
energyU, Eq. (19). The solid line shows the results for symmetric
matter sb=0d. The dashed and dotted lines show the proton and
neutron self-energiesUspd andUsnd in neutron mattersb=1d.
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Tk
j sM2d = Ck

j , s69d

we can replace the functionsTk
j sM2d on the LHS of Eqs.(68)

by the constant coefficientsCk
j . Numerically the most impor-

tant functionsTv
psM2d and Tk

I sM2d can be approximated by
the constant values with the errors of about 4% and 7%. The
largest errors of about 25% emerge in the averaging of the
functionsTv

j . This solves the problem of expressing the in-
medium change of nucleon parameters through values of the
condensates. For the proton,

Sv = − fCv
pvN + bCvs−d

p vN
s−d + mCu1

p + bmCu2
p

+ mCv
pA4q

p sbdg
r

r0

1

s1 −Fqd
, s70d

m* = Fm+ fCk
I kN + bCz

I zN + Cv
I A4q

I sbdg
r

r0
G 1

s1 −Fqd
,

s71d

with

Fq = − fCv
qvN + mCg

qgN + mCu1
q + bmCu2

q + mCv
qA4q

q sbdg
r

r0
.

s72d

The coefficients on the RHS of Eqs.(70)–(72) are

Cv
q = − 0.062, Cg

q = 0.011 GeV−1, Cv
q = − 0.070,

Cu1
q = − 0.074, Cu2

q = 0.008,

Ck
I = − 0.042 GeV, Cz

I = − 0.042 GeV,

Cv
I = − 0.063 GeV,

Cv
p = − 0.090 GeV, Cvs−d

p = − 0.068 GeV, Cv
p = − 0.095,

Cu1
p = 0.094, Cu2

p = − 0.020. s73d

Note that the dependence ofFq on b is very weak.(Recall
that the lowest-order OPE terms in thePm

q structure of the
polarization operator do not depend onb.) Thus, on the LHS
of Eqs.(70) and(71) only the dependence of the numerators
on b is important. This explains the linear dependence of the
self-energiesSv andSs

* on b.
The values ofSv, m*, and Fq for the neutron are de-

scribed by Eqs.(70)–(72) with b changed to −b. Equations
(70) and (71) enable us to obtainSv andm* during succes-
sive inclusion of condensates of higher dimensions. If only
the leading OPE terms are included the values provided by
Eqs. (70) and (71) actually coincide with the solutions of
Eqs.(29)–(31). If all the contributions are included, Eqs.(70)
and(71) reproduce the values ofSv andm* with an accuracy
of 15% and 10% correspondingly for symmetric matter. The
precision of Eqs.(70) and (71) changes withb. For neutron
matter these equations provide the valuesSv

snd−Sv
spd

=120 MeV andm* snd−m* spd=−60 MeV, comparing to the
values of 110 MeV and −70 MeV, obtained in the previous
subsection from the general solution of Eqs.(29)–(31).

V. DISCUSSION

Now we compare our results to those obtained by nuclear
physics methods. The lowest-order OPE terms on the LHS of
the sum rules describe mainly the exchanges by localizedq̄q
pairs. This corresponds to the vector and(effective) scalar
meson exchanges between the nucleon and nucleons of mat-
ter. These exchanges have pointlike vertices and standard
Lorentz structures.

Inclusion of the higher-order OPE terms corresponds to a
more complicated picture of the meson exchanges between
the nucleons. Turning to the four-quark condensates, we can
separate the two types of terms. In the “factorized” contribu-
tions one of theq̄q operators is averaged over vacuum. In the
“internal” terms bothq̄q pairs act inside the nucleons, Eqs.
(53) and (54). The first(factorized) term on the RHS of Eq.
(53) describes the contribution to the structurePm

q of the
polarization operator, which contains the scalar expectation
valuekNuūuuNl. In a similar way the first(factorized) term on
the RHS of Eq.(54) contributes to the scalar structure of the
polarization operator, being proportional to the vector expec-
tation value kNuūgmuuNl. These terms correspond to the
anomalous Lorentz structures of the nucleon-meson vertices.
As to the “internal” terms—i.e., the last terms on the RHS of
Eqs.(53) and(54)—they can be interpreted as exchanges by
two-meson systems with their local interactions with the
nucleon or as the exchanges by four-quark mesons(if there
are any).

Inclusion of the nonlocal vector condensatesq̄s0dgmqsxd
means that the vertices of the interactions between the nucle-
ons of the matter and the vector mesons do not have a point-
like structure, requiring rather a description by form factors.
The nonlocality of the scalar condensate does not influence
the results in our approach.

A usual subject of calculation is the difference between
the characteristics of the neutron and proton. If only the low-
est OPE terms are included, the vector self-energies are de-
termined by the vector condensates. The neutron-proton dif-
ferenceSv

snd−Sv
spd, usually attributed tor meson exchange, is

170 MeV atr=r0 andb=1. Inclusion of the four-quark con-
densates and of the nonlocalities subtract 30 MeV and
28 MeV from this value. The lowest-order OPE terms pro-
vide the difference of the effective massesm* snd−m* spd

=50 MeV at the same values ofr and b. Inclusion of the
four-quark condensates and of the nonlocalities adds
s−160 MeVd and 40 MeV. This leads toSv

snd−Sv
spd

=110 MeV andm* snd−m* spd=−70 MeV in neutron matter at
r=r0.

The structure of the equations forSv and m*, Eqs. (70)
and (71), is similar to that, Eq.(18), employed in nuclear
physics. Recall that in the Hartree approximation depen-
dence ofSv on the density deviates from the linear law due
to the termSq in denominator of the first ratio on the RHS of
Eq. (18). (The same refers toSs

* if the nucleon Fermi motion
is neglected.) In our approach the nonlinear behavior of the
self-energies is due to nonzero values ofFq.

Now we compare the numerical results. Considering the
papers containing relativistic calculations, we can compare
the vector and scalar self-energiesSv andSs

* =m*−m. In the
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case of works carried out in the nonrelativistic approxima-
tion, we can compare the nucleon potential energiesUn,p. We
analyze also the contribution to the parameter, convention-
ally denoted asa4 [31], which is defined as

«sr0,bd = «sr0,0d + b2a4 + Osb4d, s74d

being thus the lowest-order term of theb2 expansion of the
averaged binding energy« per nucleon at the saturation
value of density.

Of course, we cannot expect very good agreement, since
our calculations are carried out in the gas approximation.
Future and more sophisticated calculations should include
scalar and four-quark condensates beyond the gas approxi-
mation. This would correspond to an account of the renor-
malization of the nucleon interactions with matter by
particle-hole excitations on the RHS of the sum rules. An-
other reason is that the results should be corrected for the
effects of antisymmetrization of the total final-state wave
function (“exclusion effect”) [32].

The general feature of the relativistic calculations is that
they provide the positive value of the differenceSv

snd−Sv
spd

.0 in the matter with the neutron excess. Also the proton
effective masses are above the neutron ones in this case—
i.e., m* snd−m* spd,0. Our calculations show the same ten-
dency. As to the quantitative results, our values ofSv

snd

−Sv
spd andm* snd−m* spd appear to be about twice smaller than

those obtained in Ref.[33]. Our value of the effective mass
splitting is also about 2 times smaller than the result of Ref.
[34] but is only 30% smaller than that of Ref.[35]. However,
we find a somewhat smaller discrepancy with the relativistic
Brueckner-Hartree-Fock(RBHF) calculations presented in
Ref. [36]. They foundSv

snd−Sv
spd<30 MeV andm* snd−m* spd

<−25 MeV atb=0.2 (Fig. 3 of Ref.[36]), while our results
are Sv

snd−Sv
spd<20 MeV and m* snd−m* spd<−15 MeV. An-

other RBHF analysis[37] provided results which are very
close to ours. One can extract the valuesSv

snd−Sv
spd

<80 MeV and m* snd−m* spd<−50 MeV at b=0.75 from
Figs. 10 and 11 of Ref.[37]. Our values are 80 MeV and
−55 MeV correspondingly. Note, however, that the split of
the effective masses, obtained in Ref.[37], is due to ex-
change effects only.

The nonrelativistic calculations, carried out in various ap-
proaches[38,39], provideUsnd−Uspd<60 MeV atr=r0 and
b=1. This is consistent with the earlier calculations[40].
Our value is 40 MeV atr=r0 andb=1.

Another important parameter is the symmetry
energy—Eq.(74). Note that we calculate the quantity

D« =
1

2r
sUsndrn + Uspdrpd, s75d

which is the true contribution to the energy per nucleon. The
value

D«sr0,bd − D«sr0,0d = b2Da4 + Osb4d, s76d

thus being the true contribution of the isovector forces. Our
value isDa4<10 MeV. This is close to the one obtained in
Ref. [32]. Theb2 law is true up tob2=1 with 10% accuracy
in agreement with Refs.[36], [38], and[39]. Using Eq.(64)

we can expressD«= 1
2fV1+S1−b2sV2+S2dg. To find the total

contribution of the potential energy one must include the
term caused by the exclusion effect, mentioned above. This
adds 9 MeV toa4 [32]. Including also the contribution of the
kinetic energy, we obtaina4=29 MeV. The various calcula-
tions of this parameter provide values around 30 MeV
[33–41]. Thus, our result agrees with those obtained by
nuclear physics methods.

VI. SUMMARY

We expressed the vector and scalar self-energies of a
nucleon in asymmetric nuclear matter as a function of den-
sity r and of the asymmetry parameterb. We presented the
nucleon characteristics in terms of the in-medium expecta-
tion values of QCD operators. The main ingredients are the

nonlocal vector condensateskMuūs0dg0usxd± d̄s0dg0dsxduMl,
the scalar condensateskMuūs0dus0d± d̄s0dds0duMl, and the
four-quark condensates. The local vector condensates are
calculated easily. The nonlocality of the vector condensates
is expressed in terms of the nucleon structure functions. The

scalar condensateksrd=kMuūu+ d̄duMl is presented in terms
of the observable sigma term. The scalar condensate

zsr ,bd=kMuūu− d̄duMl and the four-quark condensates are
calculated in the framework of the perturbative chiral quark
model (PCQM).

Although we treat the condensates in the gas approxima-
tion, the nucleon characteristics are not linear in density. The
corresponding equations(70) and (71) are analogous to the
equations of nuclear physics beyond the mean-field approxi-
mation. Also Eqs.(70) and (71) provide an explicit expres-
sion of the nucleon characteristics in terms of the QCD con-
densates.

The successive inclusion of OPE terms on the LHS of the
sum rules finds direct analogs in the meson-exchange de-
scription of the interactions of the nucleon in nuclear matter.
The lowest-order OPE terms correspond to the exchanges by
the vector and(effective) scalar mesons with pointlike verti-
ces of the interactions. The higher-order terms correspond to
the nonlocal structure of nucleon-meson vertices, including
anomalous Lorentz structures, and to the exchanges by
strongly correlated four-quark systems. A possible interpre-
tation of the latter contributions is a local two-meson ex-
change(or the exchanges by the four-quark mesons, if there
are any[42]), Figs. 1 and 2.

We obtained the functionsSvsr ,bd and m* sr ,bd for all
values ofb. We calculated also the single-particle potential
energyUsr ,bd. The results are presented in Figs. 3–7.

Note that we did not need phenomenological parameters
of the nucleon-meson interactions. We used the condensates
which have been either calculated or expressed in terms of
the observables. For the four-quark condensates we used,
however, the already known input parameters of the PCQM.
While including condensates of higher dimension in succes-
sion, we found direct analogs of the meson-nucleon ex-
change mechanisms of nuclear physics.

Our results for the nucleon self-energies are in reasonable
agreement with the results of nuclear physics. The value of
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the symmetry energy is close to the one obtained by nuclear
physics methods.
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APPENDIX A

To improve the overlap of OPE and phenomenological
descriptions one usually applies the Borel transform defined
as

Bfsq2d = lim
Q2,n→`

sQ2dn+1

n!
S−

d

dQ2Dn

fsq2d ; f̃sM2d,

Q2 = − q2, M2 = Q2/n sA1d

with M called the Borel mass. It is important in applications
to the sum rules that the Borel transform eliminates the poly-
nomials and emphasizes the contribution of the lowest state
on the RHS of Eq.(24) due to the relation

B
1

m2 − q2 = e−m2/M2
. sA2d

Thus, the terms on the RHS of Eqs.(25)–(27) are just Borel
transforms of the first term on the RHS of Eq.(24).

APPENDIX B

The functionsV1,2srd and S1,2srd introduced by Eq.(64)
can be approximated by polynomials of the second order:

P2sxd = b0 + b1x + b2x
2, sB1d

with x=r /r0. The values of the coefficientsbi are presented
in Table I. This leads to parametrization of the proton poten-
tial energy:

Usxd = fxs− 0.15 + 0.17x − 0.09x2d + bxs− 0.04x

+ 0.02x2dgGeV. sB2d
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