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QCD sum rule description of nucleons in asymmetric nuclear matter
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We calculate the nucleon parameters in isospin asymmetric nuclear matter using the QCD sum rules. The
nucleon self-energies, and2; are expressed in terms of the in-medium values of QCD condensates. Simple
approximate expressions for the self-energies are obtained in terms of these condensates. The relation between
successive inclusion of the condensates and meson-exchange picture of the nucleon interaction with medium is
analyzed. The values of the self-energies and symmetry energy agree with those obtained by the methods of
nuclear physics.
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I. INTRODUCTION s=(p+ q)2 (4)

In this paper we investigate the vector and scalar selfas a constant and by fixing—9|
energies of nucleons in nuclear matter composed of neutrons

and protons, distributed with densitipg and p,. We calcu- s=4E5, (5
late the dependence on the total density with Eqe being the total nucleon energy at the Fermi surface.
: This condition ensures that the nucleon pole in the disper-
P=PptPn (1) sjon relations
and on the asymmetry parameter Im T1 I (K%9)
I (q?s) = f dez (6)
-q
_Pn”Pp _
B= Po*+ Pn 2 for the component$l! (¢2,s) (j=q,p,!) of the function

I

[another conventional presentation of the asymmetry param- () = qﬂyf‘H?n(q S)+pf*7#H (o ) + My, (s (7)
eter isB=(N-2)/(N+2)=1-2Z/A with N and Z standing  corresponds to the nucleon with the three-dimensional mo-
for the total number of neutrons and protons, whleN  mentum,|q| being equal to the Fermi momentupa. This
+Z]. We present also the equations for the single-particlapproach was employed in Ref§-10 and in Ref.[11].
potential energies. The results are obtained by the QCD suminother version of the finite-density QCD sum rules based
rule approach. on dispersion relations in the time compongpiat |q| fixed

The QCD sum rules were introduced to express the hadsave been reviewed in Re{ﬂZ] In vacuumlII§=0, while the
ron parameters in terms of the vacuum expectation values (jﬁnc“onqu' depend org? only.
QCD operatorg1-3]. The approach succeeded in describing By using Eq.(6) the characteristics of the nucleon in
the static characteristics as well as some of the dynamicaluclear matter can be expressed through the in-medium val-
characteristics of the hadrons in vacuum—see, e.g., the retes of QCD condensates. The possibility of an extension of
views in Refs.[4] and [5]. Later the QCD sum rules were the “pole+continuum” mode]1,2] to the case of finite den-
applied for an investigation of modified nucleon parametersities was shown in Ref§7—10.
in symmetric nuclear mattg6—8]. They were based on the The lowest order of the operator product expang@RE
Borel-transformed dispersion relation for the functidp(q)  of the left-hand sidgLHS) of Eq. (6) can be presented in
describing the propagation of the system with the quantunterms of the vector and scalar condensdtésl(. Vector
numbers of the nucleofthe proton in nuclear matter. Con- condensatess;'#:<M|§yﬂq‘|M> of the quarks with flavor
sidering nuclear matter as a systemfofiucleons with mo-  (|M) denotes the ground state of the mattere the linear

mentap;, one introduces the vector functions of the nucleon densitig andp,,. In the asymmet-
ric matter both S(R) symmetric and asymmetric conden-
_2p sates

v, = (M[U(0) y,u(0) +d(0) ¥,d(0)|M) = v + v,
which is thusp=(m,0) in the rest frame of the matter.

The spectrum of the functiohl,(q) is much more com- ) = (M7 _ — u_.d
plicated than that of the vacuum functidky(q). The sepa- U = (MIU0)7,u(0) = d(0), dOIM) =v, ~v),  (8)
ration of the singularities connected with the nucleon in matobtain nonzero Values In the rest frame of mattél[
ter from those connected with the excitations of matter |tself=v'5_,i0, V,=U0,0, v =y )5 We can presentv'
can be achieved by keeping the variable =(n[q g/ [N pn+{plq" yoq 'P)pp- The values(N[q y,q[N) are
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just the numbers of valence quarks in the nucleons We shall analyze the sum rules in the gas approximation.

(nfuyoulm)=(pldyedip)=1, (plUeulp)=(nldy,dlm=2, and
thUSU“:pn+2pp:p(g—§), vd:2pn+pp:p(%+§). Hence, we
obtain

v(p) =onp, v 7(p,B)=Bup, 9
with
v\=-1. (10)

The LHS of Eq.(6) also contains the S@) symmetric
and asymmetric scalar condensates

UN:3,

Kke(p) = (M[T(0)u(0) + d(0)d(0)| M),

Ln(pB) = (MU(O)U(0) ~d(0)d(OM).  (1D)
These condensates can be presented as
km(p) = Ko+ k(p),
where k= x(0) is the vacuum value,
Kp)=ryp+ .., ky=(NWU+ddN), (12

and

Lnlp.B) == Bllup+ -..),  &u=(pllu-ddip). (13)
The dots on the RHS of Eq6l2) and(13) denote the terms

which are nonlinear irp. In the gas approximation such

terms should be omitted. The &) invariance of vacuum
was assumed in E@l3). The expectation valuey is related
to the 7N sigma termon—i.e., [13]

20-7TN

KN = (14)

Cmy+my’

with m, 4 standing for the current masses of the light quarks,
while the value ofoy can be extracted from experimental

data on low-energynN scattering[14,15. However, the

value ¢y should be calculated under certain model assump-
tions on the quark structure of the nucleon. These were the

condensates of dimensiat3.
Turning to the condensates of dimensidn4, we find,
for the gluon condensate,

gdm=<M-fG%® M>:%+9@L 9o =9m(0),

gp)=gnpt ..., (15
with the nucleon expectation valug=(N|(a/ 7)G?N)=~

It is a reasonable starting point, since the nonlinear contribu-
tions to the most important scalar condensate) are rela-
tively small at densities of the order of the phenomenological
saturation density,=0.17 fni3 of symmetric mattef10].

The QCD sum rule approach, applied to a description of the
nucleon self-energies in symmetric matf&8], provided re-
sults which are consistent with those obtained by the meth-
ods of nuclear physics.

In the case of symmetric matt¢8=0), the leading OPE
terms(d=3,4) can be either calculated or expressed in terms
of the observables. In the asymmetric case we need a model
for the calculation of the expectation valdg, defined by
Eqg. (13). In most quark models the nucleon is treated as a
system of valence quarks and an isospin symmetric sea of
quark-antiquark pairs. Under this assumption the condensate
{y is determined by the valence quarks. In models with non-
relativistic valence quarkg=1. In more realistic relativis-
tic models{y<1 due to the relativistic reduction.

The calculations of the four-quark condensates require
model assumptions on the structure of the nucleon. The com-
plete set of the four-quark condensates was obtained in Ref.
[19] by using the perturbative chiral quark mod@ICQM).

The chiral quark model, originally suggested in Rgf0],
was developed further in Refl21-23.

Thus, in the calculations, which include terms of the order
of 1/¢? of the OPE obtained in the framework of PCQM we
must use the PCQM valug,=0.54[21].

On the RHS of the sum rules we describe the nucleon by
the relativistic in-medium propagat@24]

Gy =g, /“-m-3, (16)
with the total self-energy
2
2E0,7 S+ P U 2 17

We shall use the QCD sum rules for the calculation of the
nucleon characteristics:

3 m+3 .
:_P_, m*:_s, S =m*-m,
‘13, 1-3,° °°

identified with the vector self-energy, Dirac effective mass,
and the effective scalar self-energy—see, e.g., Rdf. Two
other parameters to be determined in the approach are the
in-medium shifts of the effective values of the nucleon resi-
due S\Z and of the continuum thresholdW?,. We present
also the result for the single-particle potential energies:

(18

—gm obtained in Ref[16] in a model-independent way. An- U=2+3,. (19
other contribution of the dimensiod=4 comes from the e trace the dependence of these characteristics on the total

nonlocal vector condensat®l[q(0)y,q(x)|N). It can be ex-

densityp and on the asymmetry paramej@—Egs. (1) and

pressed in terms of the higher moments of the nucleon strug?).

ture function[9]. Next come the expectation values of the

four-quark operators with dimensia* 6. The importance of
these contributions was analyzed in RgE7]. In the gas

Our approach includes only the strong interactions be-
tween the nucleons. The electromagnetic and weak interac-
tions are neglected.

approximation they can be presented in terms of nucleon In asymmetric matter the characteristics obtain different
expectation values. The latter can be obtained in the frameralues for the proton and neutron. Considering the asymme-
work of certain models. try parameter in the interval <t <1, one can see that the
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FIG. 1. Successive inclusion of the OPE terms. The helix lines
denote the curren23). Solid lines denote the quarks. Thick lines
show the matter(a) The local vector and scalar condensates are
included (contribution of the gluon condensate is not showhb)

The factorized part of the four-quark condensates is included. One
of the'qq operators acts on vacuum, while anothjgroperator acts C
inside the nucleon. Small circles stand for averaging over vacuum.

(c) The internal parts of the four-quark operators are included. All Q

the quark operators act inside the nucle@. The nonlocality of
the vector condensate is included. The dark blobs denote the non- \/
local condensates.

values of any parametd? for the proton(p) and neutron
(n) are connected as d

P.(B) = Pp(_ B). (20) FIG. 2. The analogs of the OPE terms in the meson-exchange
interaction of the nucleon with mattga)—(d) correspond to Figs.
We shall present all values for the proton using Ef)) to  1(a)-1(d). The solid line denotes the nucleon. Thick lines show the
obtain those for the neutron. matter. Wavy and dashed lines stand for vector and scalar mesons.
We carry out the calculations in the gas approximation(a) Exchanges by vector and scaldeffective”) mesons with the
including only terms linear ip on the LHS of the sum rules. pion vertices(b) Exchanges by these mesons with the anomalous
Thus we can neglect the Fermi motion of the nucleons of théorentz structures of the verticéhe dark squargs(c) Exchanges
matter, which manifest themselves in higher order of Fermby theqq pairs with strong correlations between them, presumably
momentum, and put local interactions with two mesons. The double line denotes the
two-meson systemgd) Inclusion of the nonlocal structure of the
s= 4’ (21 vertices of interaction between the vector mesons and the nucleons

. S . . f th tter. The dark blobs denote the f fact f th tices.
in Eq.(4). Having in mind future extensions of the approach,o © matter. The dark biobs denote the form factors of the vertices

we shall keep the dependence §nusing Eq.(21) for the  scalar self-energ®.. Thus, the parametei, and m*, Eq.
specific computations. (18), exhibit nonlinear behavior due to the nonzero value of
In the simplest Hartree approximatigwithout multipar- 2, (24=0 in the mean-field approximatiprin a similar way,
ticle forceg X is linear in density. If one neglects the Fermi the characteristicy, andm* are not linear inp and 3 in our
motion of the nucleon, as we did, the same is true for theapproach due to the relativity large LHS of the sum rules for
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the structurd19. This reflects the distribution of the baryon OPE \2b, 1 [ AdICPHK2s)
charge between the pole and continuum. Another reason for 1T} qoPs) = R + o T -
the nonlinear effect&@lthough numerically less importgris m~ 0 ™ IW, q

the nonlinear structure of the sum rule equations. (24)
The in-medium nucleon QCD sum rules present nucleon

interactions with matter in terms of an exchange by uncorrewith by=1, b,=-3,, andb;=m*. The new position of the

lated quark-antiquark pairs. The latter exchanges corresporitiicleon pole is

to meson exchanges with the same quantum numbers. Thus 5 S

the contributions of the lowest-order OPE terms can be 2 = (s-m)Z,/m=-37+m

viewed to the exchange by the isoscalar and isovector vector m 1+3,/m

and scalar mesons, with the pointlike vertices of the interac- .

tions, having the standard Lorentz structure. Inclusion of '€ Borel-transformed sum rulgsee Appendix A take

nonlocal effects in the quark condensates corresponds to i€ form

clusion of nonlocal effects in the vertices of the interactions

between the nucleons of matter and the mesons. The four-

quark condensates, in which two of the quark operators are

averaged over the vacuum state, correspond to the anoma- L%(MZ,Wan) =-3,An(M?), (26)

lous Lorentz structures of the vertices of the nucleon-meson

interactions. In terms of the hadronic degrees of freedom

LE(MZWE) = Ap(M?), (25

I (\12 - 2
four-quark condensates, in which all the quark operators act Lr(M ’Wzm) =m* Ap(M9, (27
inside the nucleons, correspond to the exchanges by strong\lkll.
ith
correlated four-quark systems. Such exchanges can be
viewed, e.g., as those by two mesons, interacting with the x
: 4 . An(M?) = N2, (28

nucleon at the same point. This is illustrated by Figs. 1 and 2.

We compare our results for the nucleon self-energies an\%
potential energies with those obtained by the traditionah
methods of nuclear physics. We find a promising consistency
of the results.

We present the general equations in Sec. Il, calculate th . _ S
LHS of the sum rules in Sec. Ill, and provide the solutionsSes oflgl. The choice(5) leads tolg|=pe. In the simplified

: : case expressed by E@1), |g|=0. We shall investigate this
in Sec. IV. We compare the results to those obtained b.3(/ery case. Inclusion of finite values of the Fermi momentum

tSh:Cm\(/althods of nuclear physics in Sec. V. We summarize "hould be done together with inclusion of nonlinear terms in

o the scalar condensates. It was noted eafBrthat in this
approach the contributions of the nucleon and antinucleon
poles are separated. The antinucleon pole corresponding to
go~-m generates the polg?=5n7 shifted far to the right
Jrom the nucleon one. Thus it is among the contributions
included in the second term on the RHS of E24).

Actually, we shall solve the sum rule equations, subtract-
ing the vacuum effects:

hile \;2 is the effective value of the nucleon residue in
uclear matter.

Varying in Eq.(24) the value ofs defined by Eq(4) we
can find the position of the nucleon poles with different val-

II. GENERAL EQUATIONS

The equations presented in this section are similar t
those for symmetric matter obtained in REE8]. The func-
tion I1,,(q) defined by Eq(7) (often referred to as the “po-
larization operatorj'is presented as

LIMMZ,WE, Wo) = A(M?) = Ag(M?), (29
Hm(q) =i J d4Xé(qX)<M |T](X)RO)|M>, (22) LD(M2’\Nr2n) = — EUAm(MZ), (30)
with j being the three-quark local operatoften referred to L(MZ W5, WE) = m* A(M?) - mAg(M?),  (31)

as the “currentf with proton quantum numbers. The usual

i =) - ile Lo
choice is the curreni2] with L'=L} -L{, while Lg" stand for the LHS of the QCD

sum rules in vacuun{L5=0) and Ay(M?) is the vacuum
value of the functionA(M?). The vacuum values of the
j(%) = e2TuPT(X) Cy,uP(x) ] ¥5,d°(X), (23)  parameters arem=0.94 GeV, A\3=1.9 GeV, and W3
=2.2 Ge\~. Recall that the matching of the LHS and RHS of

. o ) the vacuum QCD sum rule has been achieved in the domain
with definite isospin =1/2—see, e.g., Ref25]. HereT de-

notes a transpose ar@ is the charge conjugation matrix. 0.8 Ge\2 < M2< 1.4 Ge\~. (32)
The upper indices denote the colors. '

The dispersion relations for the functiond! (g?,s)  Thus Eqs(29)«31) should be solved in the same interval of
(j=q,p,l) can be presented as the values ofM?.
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IIl. CONTRIBUTIONS TO THE LEFT-HAND SIDE 872 AME
p 2 W2 _ im
OF THE SUM RULES M2 WE) = - 3 4P

We shall include terms of the order gf In ¢°, In g%, and
1/g? on the LHS of the sum rule@4). This corresponds to f! (MZ,V\@ = - 47”M%Ey,,,. (39)
the terms of the order df14, M2, and 1 on the LHS of the “
Borel-transformed equationg29)—(31). We shall include The notation E,, (k=0,1) in Eqg. (39 means that the
subsequently contributions of three types. The teéf#1?)  functions Eq(x)=1-€™, Ey(X)=1-(1+x)e™ depend on the
stand for the lowest-order local condensates. They contributatio x=W2/M? and the factor L(M?)=(In leAéCD)/
to g?Ing? and Ing? terms on the LHS of Eq(24). These  (In 12/Acp) accounts for the anomalous dimension—i.e.,
contributions correspond to simple exchanges by isovectathe most important corrections of the ordeyenhanced by
vector and scalar mesons between the nucleon on the RHS tife “large logarithms.” We puit\ocp=0.15 GeV, whilev
Eg. (24) and the nucleons of matter, Figgaland 2a). The  =0.5 GeV is the normalization point of the characteristic in-
terms qu(Mz) are caused by the nonlocalities of the vectorvolved.
condensate, Fig.(d), contributing to the terms of the order Now we must find the3 dependence of the nucleon self-
of Ing? and 142 They correspond to the account of the energies and also of the paramet@ and \;2. Note that
form factors in the vertices between the isovector mesonthere is a simple solution of Eq&5)—(27):
coupled to the nucleons, Fig(d. Finally, »'(M?) describes 8
contributions of the four-quark condensates, Fighe) &nd = ( __>
1(c), being of the order of 1g% They correspond to two- 2, pB=2, (01 4) “0
meson exchangg®er to exchanges by four-quark mesons, if
there are anyand to a somewhat more complicated structure m* (p, B; kn, {n) =M* (p, 06y + Bin, 0), (41)
of the meson-nucleon vertices, FigcR Thus we present the

LHS of Eqgs.(25)—27) as W2(p, B) = WA (p,0) (42)
m L m 1 1
i = pi ] ]
Lin = €+ Uy + 0y (33) which is true with the same accuracy as solutions for sym-
and the LHS of Eqs(29)—<31) as metric matter(8=0) [18]. Indeed, assuming that? does
i J. not change with3 we find that the function\(M?) on the
L=t+u+o, (34) LHS of Eq.(25) also should not depend (ﬁll This leads to

with ¢i=¢) ¢ ui=ul  andw' = ), - o}, while €, andw) are  Eds.(40+42).
the corresponding contributions in the vacuum case.
B. Inclusion of the nonlocal condensates

A. Local condensates of the lowest dimensions It was shown in Ref[9] that only vector nonlocal con-
ensate contributes to the OPE of the LHS of the sum rules.

The contributions of the local condensates of the lowes .
hus, for a flavorn,

dimensions expressed by E¢$0)—13) and(15) can be pre-
sented as

i () = (M i = Pug 2
(9= T2 W2 up) + M2 WE)g(), (35) 0,(x) =(M[d(0)y,9'(x)|M) - a((pX),x%)

+ix,md! ((px),x?). (43)
P = f2M2WE)WP(p, B), (36 o
Each of the functions on the RHS of E@3) can be pre-
€' = (MZWA)t(p, B) (37) sented as the sum of the proton and neutron contributions:
with the dependence gmand 3 being contained in the fac- D) = PpPhaty + Pndpat- (44)

tors
As a result of the S(2) invariance, they can be presented in

v(p)=3p, VP(p.f) = 3p<1 B g) t(p, B) = plicy + ZuB). terms of the proton functiong, = &y, 4p):

(38) <I>;<b) = de’%(b) + Pnd’la(b), (45
while the condensaig(p) is given by Eq(15). The functions ~ with i=u,d, i’ #i.
fg are[18] Expansion in powers ok? corresponds to expansion of
5 4 the functionIl,(q) in powers ofg?. To obtain terms of the
fAM2WR) = — 812(5_ m*)M?Egn — M*Eyy order ofq2 it is sufficient to include the two lowest terms of
v 3 mL*° ' the expansions in powers &f. One can preserjo,26]
2 —
fQ(MZ \Aﬂ)zm The numerical solution, which will be considered in Sec. 1V,
grT o m Ly provides indeed\? (p, B) =W2 (p,0) with an accuracy of 10%.
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1 XY, XY, XY XY
) ] _ H ,B)=H2"(0) + pn "+ phs T,
Bl (X)) = f da P (apd),  (46) m (P) =i (0)+ oty ™+ pphy
0
Ry (p,8) = REY(0) + por X + por 3. (52

The characteristichY

with XY

andry’ can be presented as
flio) (@ X?) = () + lx2m25' (). (47) wy 5 _ _ _
alb) a 8 a h{ =6(<0|uI‘Xu|O><N|uFYu|N)+<0|uFYu|O)(N|uFXu|N))
Here 7,(a)=f(«,0) is the contribution of the quarks with

the flavori to the asymptotic of the proton structure function
(@)= 74(a)+ na(a) Their moments are well known—at

least those which are numerically important. The lowest mo- v - —((O|dFXd|O><N|uI‘Yu|N> + (O[ul™u|O)(N|dI™d|N))
ments of the functionsy, can be expressed in terms of the

+(N|(Ul™u - Ul u)id N, (53

moments of the funct|on$a andg' [9].
In asymmetric matter the two combinatiods,, +<Da(b)

and &, - (Da(b) contribute, while at3=0 only the former
one survives. Thus we can present

W(M?) =[ul ,(M?) + Bul ,(M?)]p (48)

(j=q,p) for the fun.ctionsuj(_Mz) to the RHS of Eq(34). In
symmetric matte!(M?)=ul ,(M?)p. These functions were
calculated in Ref[18]. In asymmetric matter we must in-
clude

87

Uﬁ,z(Mz) = 3L4%m

[ ~MPMZEo((7' = 7Na) | (49)

772
= 3L4/9[3[M4E1m - (S - mZ) M 2E0m]<( 77u - 77d) a’>

9 27
+ ngMZEOm((n“ - 7%a?) - EmZMZEOm(<§U>

- <§d>)] : (50)

while u'(M?)=0, as well as in symmetric matter. Here
we denote L=L(M?), E,,=E;(W&/M?, and Eg,
:EO(%/MZ)—see Sec. lll A. The values @)=-0.24 and
(%=0.09 were calculated in Ref27]. We defined(F)

= [3daF () for any functionF(a).

C. Inclusion of the four-quark condensates

+(N|(dDXd - UL YW)igND. (54)

The first and second “factorized” terms on the RHS of Eqgs.
(53) and (54) describe two quark operators, acting on the
vacuum state, while the other two operators act inside the
nucleon. Of course, these terms obtain nonvanishing values
only in the scalar cas€*=1 (or I'Y=I). The last terms de-
scribe the “internal” action of all four operators inside the
nucleon. This is shown by the subscript. The coefficients
5/6 and 2/3 on the RHS of Eqé&53) and (54) present the
weights of the color-antisymmetric statglg].

Note that there are the terms which depend on the quark
masses explicitly. In a somewhat straightforward approach
one substitutes the current quark masses. Following more
sophisticated models of piorf28] one should substitute the
constituent quark masses, thus obtaining the values, which
are negligibly small in our scale.

Thus we obtain

(M)aq= (Aﬁq(ﬁ>ﬁ+Aﬁq<ﬂ>(p“) -

| a
+A4q(B)m >(2 )2P, (55)
with the coefficientsﬁ\ltq(ﬁ) being determined by the nucleon
four-quark expectation valug49] while

a=-(2m*0[uul0). (56)

We use the valuéO[uu|0)=(-241 Me\W)3, corresponding to
a=0.55 GeV?, employed in Ref[3]. Note thata is just a
convenient scale for presentation of the results. It does not
reflect the chiral properties @f1) 4

The exchange by two quark-antiquark pairs between the The coefficientsAj, results mainly as the sum of the ex-
current(23) and matter is described in terms of the four- pectation value of the product of the fowrquark operators,

quark expectation values
HXY(p) = (MUlXutl™ u/M),  R(p) = (M|dI*dulYu|M),
(52)

with T*Y being the basic % 4 matricesI''=I, I'PS=y;, TV
=Y, I*=v,%, andT'"=(i/2)(y,v,~7,7,), acting on the

described by the firgt'factorized”) term on the RHS of Eq.
(53) and that of the product of twa- and twod-quark op-
erators in the vector channel—E4). The former contri-
butions depend o, while the latter do not. Thus, the coef-
ficient A}, depends onp strongly. The factorAj, is
determined mostly by the expectation val@) in the vec-

tor channel, with the protons and neutrons providing the

Lorentz indices of the quark operators. We did not displayequal contributions. This explains the weak dependence of

the color indices in Eq(51), keeping in mind that the quark
operators are color antisymmetric.
In the gas approximation,

the parameteﬁ\ﬁq on B. The coefficien'rA'4q is dominated by
the first term on the RHS of Eq54), providing stronger
dependence op. The calculations give
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qu =-0.11-0.28B, qu =-0.57+0.08, o.n=45 MeV [22], leading to xy=8. Thus, to be self-
| consistent, we must use this value as the basic one in the
A=1.90-0.98. (57)  general equations, which include the contributiasis Note

In the simplified model of the pion, which does not in- also that the values df ,y extracted from the experimental
clude renormalization of the quark masses by the interacdata are correlated with the assumption on the strange quark
tions, the value of the coefficiedt}, is somewhat different: ~content yn=2(p[ss|p)/(pluu+dd|p) [15]. The values .\

q_ ~77 MeV correspond tyy=0.35, with a large part of the
Ayq=0.25-0.28, (58) nucleon mass being due to the strange quarks. The smaller
while the values ofA}, and A}, remain unchanged. values ofX .y require much smaller values gk. In the

The contributions of the four-quark condensates to thd’CQM one findsyy=0.08 [22], in agreement with the
LHS of the Borel-transformed sum rulgg9)—31) can be Smaller values of.y. The PCQM value/y=0.54 can be

presented in the same way as for the symmetric case: ~ Obtained by using the results of R¢21].
_ _ ) ) _ We shall present most of the numerical results for the
o' =wlp, o= ALq(ﬁ)qu, values
R ky=8, y=0.54. (60)

fg,=—8m%a, fh,=-8a? Mo fiq = = 87°ma
2m Anyway, in Sec. IV B the nucleon characteristics will be
(59 presented as an explicit function of the condensates—e.g., of
the parametergy and {y.
We shall find the values of the parameters which mini-

mize the relative difference between the RHS and LHS of

Now we present the solutions of the sum rule equationsEds:(29+31) at values ofM? in the interval(32).
focusing on the function&, (p,8) and m* (p,8). We shall
include the termd!, ul, and ' [Eq. (34)] in the succession A. Solution of the general equations
on the LHS of Egs(29—31). Two lowest-order OPE con-
tributions to the vector structurd$y, and I}, are presented
in terms of the vector and gluon condensates and of th
nucleon structure functions. These characteristics are eith
calculated in a model-independent way or determined in th
experiments. The lowest-order OPE terms in the scalar cha
nel are expressed in terms of isotope-symmetric and isotop

IV. SOLUTIONS OF THE SUM RULE EQUATIONS

Here we present solutions of the general equations
é29)—(31), which are identical to Eqg25)—<27). Recall that
e approximate the in-medium condensates by the functions
hich are linear both irp and 8. However, the solutions
..(p,B) andm* (p, B) are not linear. One can demonstrate
éhis by presenting Eq$26) and(27) as

asymmetric scalar condensatag=(p[uu+dd|p) and ¢y LP !
_ — m m
=(p|uu—dd|p)—Egs. (12 and (13). Here the situation be- 2U=—L—q, m* = Lo (62)

comes somewhat more complicated.

The expectation valuey is related to therN sigma term b the density ang3 dependence of? leading to nonlin-

o by EQ.(14). The value ofo can be extracted from the o yenhavior oB, andm* (even if we assum@2 =\W2). The
data on low-energyrN scattering. The procedure consists in qiinear deper?dence of the RHS of E§1) nc;n also
m

subtracting the high-order c_hlrallty-\ilolatlng ,terms from  .ouse the nonlinear contributions ¥o and m*. However,
the experimental valug .y—i.e., o,y=2,n—0 . The value they are numerically less important.

o’ ~15 MeV was obtained in Refi29] by the dispersion Now we include the termé/, ul, andw’ in succession on
relation technique. However, there are some uncertainties i, | Hs of Eqs(29<31).

deducing the value of _ from the experimental data. The
canonical valued_\=(60+£8) MeV [14] is now challenged
by the higher values 77+6 MeV15]. Assuming m,+my
=11 MeV [13], we find that3_y=64 MeV corresponds to As we have seen, these are the contributions which con-
kn=8. Additional uncertainties emerge, since the true valudain the vector condensatép), gluon condensatg(p), and
of the summ,+my may be somewhat larger. scalar condensates, and {,—Eqgs. (99«13) and (15). An

There are no experimental data on the expectation valuaccount of these terms corresponds to one-meson exchanges
. If the nucleon is treated as a system of valence quarkbetween the nucleon under consideration and the nucleon of
and an isospin-symmetric sea of the quark-antiquark pairgnatter, with pointlike structures of the meson-nucleon verti-
the expectation valug is determined by the contribution of ces, Fig. 2a). The solution can be obtained by using Egs.
the valence quarks. Thus, reasonable values/grel for  (35—(37) for the functionst!. As we have seen, there is a
nonrelativistic models angly <1 in the relativistic case. Un- simple solution expressed by Eqg0)—(42). The procedure
til we include only the leading OPE ternt$, we can solve of minimization of the difference between the LHS and RHS
the sum rule equations for any valuess@fand(y. However, of Egs. (29—31) indeed prefers the value®V(p,B)
the four-quark condensates are obtained in the framework ot W,(p,0). Thus Eqs(40) and (41) appear to be true with
a specific perturbative chiral quark model. Within this model,good accuracy. Hence,

1. Role of the lowest-order local condensates
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B 0.8
3P(p, ) =Ev(p,0)<1 _Z)’ 0.7
0.6
0.5
50,623,501+ 5) , o4
4 0.3 .
. 0.2 z, / m """" .
m (p)(PaB- KN:gN) =m* (P10aKN + BgN!o)! 01 »
0
% 0 0.25050.75 1 1.2561.51.75 2
m ™ (p, B, kn, dn) = M* (p, 0,k = BN, 0). (62) 0/ P
Thus, in matter with an excess of neutr@@s>0), we obtain FIG. 3. The density dependence of the vector self-enéigy

zl()n)>21()p) andm™>m'®_ For example, using the value [solution of Eqgs.(29—31)]. The solid line shows the results for

Eu(p,o) obtained by the sum rule approach in R§ES] symmetric matter(8=0). The d.ash)ed and(n()thted lines show the
[S.(p,0)=335 MeV], we find z(n)_z(p)_]-?o MeV. ™ proton and neutron self-energlég,vp and EU in neutron matter
v l - ) v v )

-m (P=50 MeV for neutron mattef8=1) at p=py. (B=D).

The minimization procedure choosed\?(B=-1)  important in our case. The nonlocality is included by putting
=250 Ge\¥ and \an(,@:O):z_:;o GeV, M(ﬁ:l) L'=¢'+ o' +u with U defined by Eqs(49) and(50). We use
=2.05GeV, 3M-3P=170MeVv, and m®-m'®  the structure functions obtained in R¢BO] for the calcula-
=50 MeV. Thus, Eqs(62) work well indeed. However, this tion of the termsu? and uP. ,
approximation is not sufficient for a description of the poten- AN account of the nonlocality of the vector condensate

tial U(p.B), Eq.(19), idina U= 0 for both . corresponds to inclusion of the form factor of the vertex of
%aetﬁgea:% a(g yr[ri )met?ic( C;sepsrow g Of DO SYM™ the interaction between the vector meson and the nucleon of

the matter—Fig. @l). Recall that a similar contribution for

the effective scalar meson exchanges vanishes in our
2. Role of the four-quark condensates approximation—Sec. Ill B.

Now we include the four-quark condensate; i.e., we use We find the dependence of the nucleon vector self-energy
Eq. (33) for Li=¢i+wl, with o described by Eqg59). In- 3, and of the effective mass* on the density of matter a}nd
clusion of these terms mimics several contributions on thén the asymmetry parametgrand show the results in Figs.
RHS of the dispersion relation&4). In the condensates 3 and 4. For exampl_e,'the' differences between the neutron
ul™Xuul™*u, presented by Eq53), the first term, which has a @nd proton characteristics in the neutron mattep=ap, are
nonvanishing value only iFX=1, generates a contribution to 3" ->\”=110 MeV, and m'™-m'®=-70 MeV. In the
the I19, structure due to the anomalous Lorentz structure ofimplified model for the pion with current quark masses,
the interaction between the scalar field and the nucleonyhere Aj,(8) is given by Eq.(58), we obtain>" ="
caused by the chiral-odd vacuum condens@fgg0). Ina =115 MeV andm ™ -m'P'=-65 MeV at these values ¢f
similar way the first term on the RHS of E¢54) describes andB. The minor change is due to the small change inghe
the contribution of the vector meson exchange to the scalatependence of the condens#@. The nucleon residugy,
structure of the nucleon propagator. The anomalous Lorentand the spectrum threshol;, exhibit very weak depen-
structures emerge if the nucleon-meson vertices are treatgtence ons. Thus we can assume
beyond the lowest order. These contributions are illustrated 2 —\2 _
by Fig. 2b). The last terms on the RHS of Eq53) and(54) AP B)=N(p.0), - Wip,B) =Wh(p.0). (63
describe exchanges by the four-quark strongly correlatedhe consistency between the RHS and LHS of Egs.
system[see Fig. 2c)]. The condensates presented by EQq.(29—31) is illustrated by Fig. 5.

(54) have the same values for the proton and neutron. Thus
their contributions do not depend gh

The differences between the neutron and proton charac- 0.8
teristics in neutron matter ap=p, become E,(J”)—Efjp)
=140 MeV andm'™-m"P=-110 MeV. In the simplified 0.6
model for the pion with the current masses of the constituent
quarks, whereAj(B) is given by Eq.(58), we obtaian}“)
—Ef)p>=l45 MeV, whilem ™ -mP’=-110 MeV at these val- o2f m’/m
ues ofp and .

1

0.4

0

0 0.250.50.75 1 1.251.51.75 2
p/Po

o FIG. 4. The density dependence of the effective nmsgsolu-
The nonlocal contributions come from the account of theion of Eqgs.(29)~31)]. The solid line shows the results for sym-

x dependence of the eXPeCtQtion values of the vector opergnetric matter(3=0). The dashed and dotted lines show the proton
tors (M[q'(0) y,,9'(x)|M) with g'(x)=(1+x,D#+---)q'(0). AS  and neutron effective masse®® andm'™ in neutron matte(s3
we have seen, the nonlocality of the scalar condensates is net).

3. Final results
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1.4 0
1.2 3
1 1
0.8 -0.1
. =~
%
0.6 2 O
=
0.4 =02 U
0.2
0
07 08 09 1 1.1 12 1.3 1.4 ~0.3
M, (GeV?) ) 0.5 1.0 1.5 2.0

“o/po
FIG. 5. The consistency of the LHS and RHS of E@9)—(31) . . . .
for neutrons in neutron matter At p. The lines 1, 2, and 3 show FIG. 7. The density dependence of the single-particle potential

the LHS to RHS ratio of Eas(29—31) correspondinaly in the energyU, Eq. (19). The solid line shows the results for symmetric
interval (32) of the va:ues on\/CIIZS( 3D spondingly 1 matter (8=0). The dashed and dotted lines show the proton and

neutron self-energied® andU™ in neutron mattef8=1).

As a result of the nonlinear character of E¢&9)—31),
the self-energie&,(p,8) and 3 (p,8)=m* (p, B)—m could
have been nonlinear in boghand 8. The nonlinear behavior
of these characteristics witp manifests itself explicitly. We can present an approximate solution of Egs.
However, the dependence ghappears to be linear in the (29—~31), in which the nucleon self-energies are expressed
framework of the accuracy of our computatiasse the next in terms of the QCD condensates explicitly. We see from Eq.
subsection Thus bothS, and 3, can be approximated by (63) thatW;(p, 8)=Wz(p,0), while W;(p,0) is close to its
linear functions ofg: vacuum valueW? [18]. Thus, we can putW2=W3 on the
RHS of Eqs.(25—27) and(61). This enables us to present
the proton characteristics, andm* as explicit functions of
the quark condensates and of the Borel mdss

_ T(un+3/4Bvy)) + Thy + BT+ TOAR(B) p.

B. Explicit expression for the nucleon parameters in terms
of QCD condensates

S,(p.B) = pﬁowp) + BrN(p)],

D
’ 1+F%p,B) Po
* p (65)
Es(Prﬂ) = ;O[S.L(P) + BTZSZ(P)]- (64)
* = T T A P '
m m+ [T, (kn+ BEN) + T, As(B)] oo 1+Fp. )
with 7,=1 for the proton andr,=-1 for the neutron. The (66)

functionsV; x(p) and S; 5(p) are shown in Fig. 6. They can
be approximated by polynomials of the second order—sewith
Appendix B.

The single-particle potential energy is expressed by Eq. F%(p,8) =[Tjuy+mTigy + T, + ,8T32+Tgqu(,3)]ﬁ_
(19). At p=pq the neutron-proton difference of the potential Po
energy caused by the isovector interaction AdJ,, (67)
~38B MeV at smallB. In Fig. 7 we show the dependence i o i
U(p) for several values o for both neutrons and protons. V€ denoteT{u_—_TJw(M ) and TL=T|(M? W) for otherk and
Recall that the potential energy is determined with an acculntroduce, forj=q.p.1,

racy lower than the self-energies. _ . emiM?
TUMZWo) = pofk (M2 WD =5~ (k= 0,950,
0.6 0
o4 xv/'/’m// g IM?
o2 /f”//’/xS’/ leJI'(MZ'\N(?J) = POUJN r(sz\Né) A2 (r=1,2,
Ofes===m T ’ o
-0.2 XVy/ M o2
—0.4 . .
T, (M?) = pofhe———, 68
—0.6 XS,/ w( ) Po 4q )\% ( )
-0.8 . . .
0 with the functionsf{ andfj, defined by Eqs(39) and(59). It

x is instructive to present the densjtyin units of the observ-
FIG. 6. The density dependence of the functiaig, xV,, x5,  able saturation density of symmetric mattey=0.17 1.
andx$, introduced by Eqs(64), x=p/ po. The dotted lines demon- Note that in the interval determined by E§2) the func-
strate the quality of fitting with the simple functions pnas de- tions T,(M?) defined by Eq. (68 (k=v,g,«,ul,u2;
scribed in Appendix B. j=q,p,!) depend orMi? rather weakly. Thus, approximating
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TUM?) =Cl, (69) V. DISCUSSION

we can replace the functiof§(M?) on the LHS of Eqs(68) Now we compare our results to those obtained by nuclear
by the constant coefficien®}. Numerically the most impor-  physics methods. The lowest-order OPE terms on the LHS of
tant functionsTP(M?) and T'(M?) can be approximated by the sum rules describe mainly the exchanges by locatiged

the constant values with the errors of about 4% and 7%. Theairs. This corresponds to the vector aedfective) scalar
largest errors of about 25% emerge in the averaging of th&1eson exchanges between the nucleon and nucleons of mat-
functionsT) . This solves the problem of expressing the in-ter. These exchanges have pointlike vertices and standard
medium change of nucleon parameters through values of tHeorentz structures.

condensates. For the proton, Inclusion of the higher-order OPE terms Corresponds to a
b3 more complicated picture of the meson exchanges between
3, =-[Clon+ BCuy’ + mC; + BMC, the nucleons. Turning to the four-quark condensates, we can

separate the two types of terms. In the “factorized” contribu-

+ mCﬂAﬁq(ﬁ)]ﬁ , (70) tions one of thayg operators is averaged over vacuum. In the
po(1=Fg) “‘internal” terms bothqq pairs act inside the nucleons, Egs.
(53) and(54). The first(factorized term on the RHS of Eq.
. | | Ul P 1 (53) describes the contribution to the structdid, of the
m* = | m+[Cory+ BCLn+ CAg(B)] o) (L-Fy)' polarization operator, which contains the scalar expectation

value(N[uu|N). In a similar way the firstfactorized term on

(72) the RHS of Eq(54) contributes to the scalar structure of the
with polarization operator, being proportional to the vector expec-
tation value (Njuy,ulN). These terms correspond to the
P .
Fo=~[Cly+mClgy +mC% + BmCY, + mCIAL(B)] . anomalous Lorentz structures of the nucleon-meson vertices.
K v Cg N G G I po As to the “internal” terms—i.e., the last terms on the RHS of

(72) Egs.(53) and(54)—they can be interpreted as exchanges by
o two-meson systems with their local interactions with the
The coefficients on the RHS of Eq§.0)«72) are nucleon or as the exchanges by four-quark mesirteere
CJ=-0.062, CJ=0.011GeV*, CI=-0.070, are any. _

Inclusion of the nonlocal vector condensatg8)y,q(x)
means that the vertices of the interactions between the nucle-
ons of the matter and the vector mesons do not have a point-

| | like structure, requiring rather a description by form factors.
Ci=-0.042GeV, C;=-0.042 GeV, The nonlocality of the scalar condensate does not influence
c'w: -0.063 GeV, the results in our approach.
A usual subject of calculation is the difference between
CP=-0.090 GeV, CP. =-0.068 GeV, CP=-0.095, the characteristics of the neutron and proton. If only the low-
! v ¢ est OPE terms are included, the vector self-energies are de-
P =0.094. CP.=—0.020 (73) termined by the vector condensates. The neutron-proton dif-
Lo ferenceEf}”)—Eip), usually attributed t@ meson exchange, is
Note that the dependence &} on B is very weak(Recall 170 MeV atp=p, and=1. Inclusion of the four-quark con-
that the lowest-order OPE terms in thE! structure of the densates and of the nonlocalities subtract 30 MeV and
polarization operator do not depend 8n Thus, on the LHS 28 MeV from this value. The lowest-order OPE terms pro-
of Egs.(70) and(71) only the dependence of the numeratorsvide the difference of the effective masses™-m'®
on B is important. This explains the linear dependence of the=50 MeV at the same values of and 8. Inclusion of the
self-energies,, andE; on B. four-quark condensates and of the nonlocalities adds
The values of%,, m*, and 7, for the neutron are de- (-160 MeV) and 40 MeV. This leads toEf}”)—Ef}p)
scribed by Eqs(70)~«(72) with B changed to 8. Equations =110 MeV andm'™-m"(P’=-70 MeV in neutron matter at
(70) and(71) enable us to obtailx, andm* during succes- p=py.
sive inclusion of condensates of higher dimensions. If only The structure of the equations f&r, and m*, Egs. (70)
the leading OPE terms are included the values provided bgnd (71), is similar to that, Eq(18), employed in nuclear
Egs. (70) and (71) actually coincide with the solutions of physics. Recall that in the Hartree approximation depen-
Egs.(29)—31). If all the contributions are included, Eq§0)  dence of3, on the density deviates from the linear law due
and(71) reproduce the values &f, andm* with an accuracy  to the term in denominator of the first ratio on the RHS of
of 15% and 10% correspondingly for symmetric matter. TheEq. (18). (The same refers tE; if the nucleon Fermi motion
precision of Eqs(70) and(71) changes with3. For neutron is neglected.In our approach the nonlinear behavior of the
matter these equations provide the valud"-3P  self-energies is due to nonzero values7f

CY,=-0.074, C%=0.008,

=120 MeV andm ™W-m"®=-60 MeV, comparing to the Now we compare the numerical results. Considering the
values of 110 MeV and —70 MeV, obtained in the previouspapers containing relativistic calculations, we can compare
subsection from the general solution of E(&9)—31). the vector and scalar self-energesand>,=m*-m. In the
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case of works carried out in the nonrelativistic approxima-we can expresAs:%[VﬁSl— BAV,+S,)]. To find the total
tion, we can compare the nucleon potential energi®d We  contribution of the potential energy one must include the
analyze also the contribution to the parameter, conventionterm caused by the exclusion effect, mentioned above. This
ally denoted asy [31], which is defined as adds 9 MeV ta, [32]. Including also the contribution of the
_ > kinetic energy, we obtain,=29 MeV. The various calcula-

5(po,B) = &(po,0) + a4+ O(B), 74 ions of thi%y parameter4provide values around 30 MeV
being thus the lowest-order term of ti# expansion of the [33—41. Thus, our result agrees with those obtained by
averaged binding energy per nucleon at the saturation nuclear physics methods.
value of density.

Of course, we cannot expect very good agreement, since VI. SUMMARY

our calculations are carried out in the gas approximation. .
Future and more sophisticated calculations should include W& €xpressed the vector and scalar self-energies of a

scalar and four-quark condensates beyond the gas appro)ﬂ_ycleon in asymmetric nuclear matter as a function of den-
mation. This would correspond to an account of the renorSItY p and of the asymmetry parametgr We presented the
malization of the nucleon interactions with matter by nucleon characteristics in terms of the in-medium expecta-

particle-hole excitations on the RHS of the sum rules. An-ion values of QCD operators. The main ingredients are the

other reason is that the results should be corrected for theonlocal vector condensatés! |U(0)VQJ(X)15(O)70d(X)|M>,
effects of antisymmetrization of the total final-state wavethe scalar condensatéd[u(0)u(0)+d(0)d(0)|M), and the
function (“exclusion effect) [32]. four-quark condensates. The local vector condensates are

The general feature of the relativistic calculations is thaicy|cylated easily. The nonlocality of the vector condensates

they provide the positive value of the different” ~3P' s expressed in terms of the nucleon structure functions. The
>0 in the matter with the neutron excess. AIS(_) thg pmtonscalar condensate(p)=(M[uu+dd|M) is presented in terms
effective masses are above the neutron ones in this case—]c th b bl ) ¢ Th I d t
i.e., m™-m®<0. Our calculations show the same ten-©' M€ Observable sigma term. The scalar condensate
dency. As to the quantitative results, our valuesSci'P) {(p,B)=(M[uu-dd|M) and the four-quark condensates are

_El()p) andm" ™ —m" (P appear to be about twice smaller than calculated in the framework of the perturbative chiral quark

those obtained in Ref33]. Our value of the effective mass Model(PCQM). . _

splitting is also about 2 times smaller than the result of Ref, Although we treat the condensates in the gas approxima-
[34] but is only 30% smaller than that of R¢85]. However, tion, the nugleon cha_racterlstlcs are not linear in density. The
we find a somewhat smaller discrepancy with the relativisticcorrésponding equatiorig0) and (71) are analogous to the
Brueckner-Hartree-FockRBHF) calculations presented in €duations of nuclear physics beyond the mean-field approxi-
Ref. [36]. They found> ™ -3 ~30 MeV andm'™-m®  Mation. Also Eqs(70) and(?l} p_rovgde an explicit expres-

~-25 MeV at,B:O.Z(Fijg. 3 of Ref.[36]), while our results ~ SION of the nucleon characteristics in terms of the QCD con-

are E(U”)—Ef)p)QZO MeV and i ™—mi®P~—15 Mev. An-  densates.

other RBHF analysi§37] provided results which are very The SUCC.eSS'Ve.mCIUS'On of O.PE terms on the LHS of the
| to ours. One can extract the valugd’—s® sum rules finds direct analogs in the meson-exchange de-
close . S

- )t (D) _ v scription of the interactions of the nucleon in nuclear matter.
;982 I\fgvan?jnglmoi‘ )Rgf][:(;;f O?J? \I\//Ia(TL\J/esa;rIBe _5671\5/|e(502:1 d The lowest-order OE’E terms correspond_to the_ e>_<chang¢s by
s .MeV correspondinély Note however, that the split Ofthe vector _anc(effe_ctlva scala_r mesons with pointlike verti-
the effective Masses obt.ained,in RE37] ,is due to ex. CES of the interactions. The higher-order terms corr_esponpl to
change effects only ' o the nonlocal structure of nucleon-meson vertices, including
The nonrelativisti.c calculations, carried out in various ap—a{] 0m8|.|OUS L?rf I’:jth structurlizs, atnd 0 Athe eygl:he}ntges by
proacheq38.39, provide U™ —U® =~ 60 MeV at p=py and strongly correlated four-quark systems. A possible interpre-

B=1. This is consistent with the earlier calculatiop0)] tation of the latter contributions is a local two-meson ex-
Our value is 40 MeV ap=p, and g=1. change(or the exchanges by the four-quark mesons, if there

Another important parameter is the symmetry are any[42]), Figs. 1 and 2.
energy—EQq(74). Note that we calculate the quantity We obtained the functionX,(p,8) andm* (p,B) for all

values of 8. We calculated also the single-particle potential
1 energyU(p, B). The results are presented in Figs. 3-7.
Ae = 2_p(U(n)Pn+ UPpp), (75) Note that we did not need phenomenological parameters
of the nucleon-meson interactions. We used the condensates
which is the true contribution to the energy per nucleon. Theyhich have been either calculated or expressed in terms of
value the observables. For the four-quark condensates we used,
_ 2 however, the already known input parameters of the PCQM.
Ae(po.B) ~ Ae(po,0) = B*Aay + O(BY), (76) While including condensates of higher dimension in succes-
thus being the true contribution of the isovector forces. Oussion, we found direct analogs of the meson-nucleon ex-
value isAa,~10 MeV. This is close to the one obtained in change mechanisms of nuclear physics.
Ref.[32]. The 82 law is true up toB%=1 with 10% accuracy Our results for the nucleon self-energies are in reasonable
in agreement with Refg36], [38], and[39]. Using Eq.(64)  agreement with the results of nuclear physics. The value of
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the symmetry energy is close to the one obtained by nuclear TABLE I. The values of the coefficients, (GeV) of the poly-
physics methods. nomials P, defined by Eq.(B1), which approximate the nucleon
self-energies.
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APPENDIX A Vs -0.036 -0.008 -0.011
To i th | f OPE d oh logical -0.254 0.150 -0.114
o improve the overlap o and phenomenological _
descriptions one usually applies the Borel transform defined = 0.034 0.035 0.034
as
2\n+1 n APPENDIX B
d ~
Bf(¢?) = lim %(— —) f(g?) = f(M?),
Q@noe MM d@? The functionsV; 5(p) and S, ,(p) introduced by Eq(64)
can be approximated by polynomials of the second order:
Q=-¢% M?*=Q%n (A1)
with M called the Borel mass. It is important in applications P,(X) = by + byx + byx?, (B1)

to the sum rules that the Borel transform eliminates the poly-
nomials and emphasizes the contribution of the lowest statg;, x=p/ po.

: The values of the coefficients are presented
on the RHS of Eq(24) due to the relation

in Table I. This leads to parametrization of the proton poten-

tial energy:
B—1 S =g M, (A2) ¥
m’ —q ,
Thus, the terms on the RHS of Eq25)—(27) are just Borel UG =[x(=0.15+0.1% = 0.096) + Ax(~ 0.04
transforms of the first term on the RHS of EG4). +0.02?)]GeV. (B2)
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