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We calculate the electromagnetic form factors of a bound proton. The chiral quark-soliton model provides
the quark and antiquark substructure of the proton, which is embedded in nuclear matter. This procedure yields
significant modifications of the form factors in the nuclear environment. The sea quarks are almost completely
unaffected, and serve to mitigate the valence quark effect. In particular, the ratio of the isoscalar electric to the
isovector magnetic form factor decreases by 20% atQ2=1 GeV2 at nuclear density, and we do not see a strong
enhancement of the magnetic moment.
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I. INTRODUCTION

Recent polarization transfer experiments at the Thomas
Jefferson National Accelerator Facility(TJNAF) [1] ob-
served a difference in the electromagnetic form factors of a
proton bound in a helium nucleus compared to a free one.
This, along with other effects, such as the nuclear European
Muon Collaboration(EMC) effect [2], seems to suggest the
modification of hadrons in the nuclear medium.

There is extensive work on the medium modifications of
electromagnetic properties of the nucleon in the literature
(for example, see Refs.[3–7]). This includes effective
Lagrangians as well as models that include the quark sub-
structure of hadrons. While in principle these effects could
be couched in terms of effective field theory operators, it is
our thesis that such results may be more transparent, physi-
cally intuitive, or straightforward to calculate when viewed
as a change in the internal structure of the hadrons.

We will use the chiral quark-soliton(CQS) model
[8–10], which has a direct connection to QCD via the instan-
ton liquid model, to provide our subnuclear degrees of free-
dom. The primary motivation is that this model includes sea
quarks which we have seen to be important in the nuclear
EMC effect[11]. In that case, the large medium modification
in the valence quark sector is reduced through the lack of
such an effect in the sea(which can be seen directly in Drell-
Yan experiments[12]). The CQS model is combined with the
nuclear medium in a self-consistent quark-meson coupling
calculation as in our previous work[11], and the electromag-
netic form factors are extracted via the wave functions of the
quarks using the results of Ref.[13]. The overall procedure is
similar to the quark-meson coupling(QMC) model [3],
which uses the MIT bag model for the nucleon. The bag
model does not include sea quarks. It is a confining model,
whereas the CQS model is not. Additionally, the QMC model
calculation, when coupled with a relativistic distorted wave
impulse approximation(RDWIA) calculation[14] or a rela-
tivistic multiple-scattering glauber approximation(RMSGA)
calculation[15,16], improves the agreement between theory
and the TJNAF data[1]. With our study, we hope to reinforce
the interpretation of the medium effect in terms of quark
degrees of freedom, as well as provide an alternate model
when the accuracy of the data is improved.

We begin with a brief description of the CQS model in
Sec. II. In Sec. III, we motivate and present our procedure to

embed this model in nuclear matter. This description differs
only slightly from that in our previous work[11]; it is re-
peated for completeness. Subsequently, we describe the nu-
merical methods, and proceed to the results in Sec. IV.

II. CHIRAL QUARK-SOLITON MODEL

The CQS model Lagrangian with(anti)quark fieldsc̄ ,c,
and profile functionQsrd is [8]

L = c̄si]” − Meig5n·tQsrddc, s2.1d

whereQsr →`d=0 andQs0d=−p to produce a soliton with
unit winding number. The quark spectrum consists of a
single bound state and a filled negative energy Dirac con-
tinuum; the vacuum is the filled negative continuum with
Q=0. The wave functions in this spectrum provide the input
for the electromagnetic form factors.

We work to leading order in the number of colorssNC

=3d, with Nf =2, and in the chiral limit. While the former
characterizes the primary source of theoretical error, one
could systematically expand inNC to calculate corrections.
We take the constituent quark mass to beM =420 MeV,
which reproduces, for example, theN-D mass splitting at
higher order in theNC expansion, as well as many electro-
magnetic properties[9,13].

The theory contains divergences that must be regulated.
We use a single Pauli-Villars subtraction. The Pauli-Villars
mass is determined by reproducing the measured value of the
pion decay constant,fp=93 MeV, with the relevant diver-
gent loop integral regularized usingMPV.580 MeV.

The nucleon mass is given by a sum of the energy of a
single valence levelsEvd and the regulated energy of the
soliton (EQ, equal to the sum of energy levelsEn in the
negative Dirac continuum with the sum of the energy levels
in the vacuum,En

s0d, subtracted)
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MN = NCEv + EQsMd −
M2

MPV
2 EQsMPVd, s2.2ad

EQsM8d = u o
En,En

s0d
ø0

En − En
s0duM=M8. s2.2bd

The field equation for the profile function, which follows
from the Lagrangian(2.1) is

Qsrd = arctan
rps

q srd
rs

qsrd
, s2.3d

wherers
q andrps

q are the quark scalar and pseudoscalar den-
sities, respectively, and are given by sums of the wave func-
tions of every occupied energy level.

The electromagnetic form factors are also given in terms
of the wave functions, and are derived in Ref.[13]. The
formulas are reproduced here, with a Pauli-Villars regulator,
for convenience. To leading order inNC, we have only the
isoscalar electric and isovector magnetic form factors
sGX

T=0,1=GX
p ±GX

nd

GE
T=0sq2dNC=

→`
NC

3
E dr eiq·rH o

EnøEv

cn
†srdcnsrd − o

En
s0d

ø0

cn
s0d†srdcn

s0dsrdJ , s2.4ad

GM
T=1sq2dNC=

→`
NCMN

3
« jkl iqj

uq2u E dr eiq·rH o
EnøEv

cn
†srdg0gktlcnsrd −

M2

MPV
2 o

En
sPVd

ø0

cn
sPVd†srdg0gktlcn

sPVdsrdJ . s2.4bd

The cn
sPVdsrd are the solutions of the Dirac equation with the

replacementM→MPV. In the nuclear medium, Eqs.(2.4)
acquire a dependence on the Fermi momentumGX

T=0,1sq2d
→GX

T=0,1sq2,kFd through the wave functions. This depen-
dence is the subject of the next section.

III. NUCLEAR PHYSICS

We will begin with some motivation for our procedure to
couple the quark substructure of the nucleon to the nuclear
medium. Through the use of QCD sum rules, Ioffe[17] de-
rived a relationship between the vacuum scalar condensate

kc̄cl0 and the nucleon mass. One can rederive this estimate
in a constituent quark field theory such as we are using here.
We begin with the scalar condensate

kc̄cl0 = − trEL d4p

s2pd4

1

p” − M
, −

NCML2

4p2 , s3.1d

where the divergent integral is regulated by a momentum
cutoff (playing the role of the Borel mass in the QCD sum
rule approach). Using the fact that constituent quarks are
essentially defined as having a mass,MN/NC, we can re-
write Eq. (3.1) as

MN , −
4p2

L2 kc̄cl0. s3.2d

Although Eq.(3.2) is not a very accurate estimate, it does
highlight the role of the condensate. It will be modified in the
presence of other nucleons.

The condensate at finite density can be written in terms of
the nuclear scalar densityrs

N and the nucleon sigma termsN
[18] as

kc̄clr = kc̄cl0 − kc̄cl0
sN

mp
2 fp

2 rs
N. s3.3d

We can then substitute Eq.(3.3) into Eq. (3.2) to obtain a
schematic picture of the effect of the nuclear medium on the
nucleon mass

MNsrd,
4p2

L2 fkc̄cl0 − csrs
Ng, s3.4d

wherecs is the combination of the vacuum condensate, pion
mass, decay constant, and the the sigma term in Eq.(3.3).

Using this dependence of the nucleon mass on the nuclear
medium as a guide, we incorporate the medium dependence
in the model by simply letting the quark scalar density in the
field equation(2.3) contain a(constant) contribution arising
from other nucleons present in symmetric nuclear matter.
This models a scalar interaction via the exchange of multiple
pairs of pions between nucleons. We take the scalar density
to consist of three terms:(1) the constant condensate value

kc̄cl0 (in the vacuum or at large distances from a free
nucleon), (2) the valence contributionrs

v, and(3) the contri-
bution from the medium, which takes the form of the convo-
lution of the nucleonrs

N and valence quark scalar densities as
in the QMC model[3]:

rs
qsrd . kc̄cl0 + rs

vsrd + c̃sE dr8rs
Nsr − r8drs

vsr8d

s3.5ad

=kc̄cl0 + rs
vsrd + c̃srs

NS, s3.5bd
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S;E dr8rs
vsr8d. s3.5cd

We take the pseudoscalar density to have only the valence
term rps

q .rps
v ; the two other contributions analogous to the

first and third terms of Eq.(3.5) vanish due to symmetries of
the QCD vacuum and nuclear matter. These approximations
to the densities neglect the precise form of the negative con-
tinuum wave functions in Eq.(2.3). The resulting free
nucleon profile function has no discernible difference from a
fully self-consistent treatment, demonstrating the excellence
of this approximation. We takec̃s=cs/S in Eqs. (3.4) and
(3.5) to be a free parameter, which we vary to fit nuclear
binding. This can be seen as either varyingsN in Eq. (3.3) or
the vacuum value of the condensate in Eq.(3.5) with rG

q

→rG
q / c̄s, as was done in Ref.[11], since the overall normal-

ization cancels in Eq.(2.3).
The nucleon scalar density is determined by solving the

nuclear self-consistency equation

rs
N = 4EkF d3k

s2pd3

MNsrs
Nd

Îk2 + MNsrs
Nd2

. s3.6d

The dependence of the nucleon mass, and any other proper-
ties calculable in the model, on the Fermi momentumkF
enters through Eq.(3.6). Thus there are two coupled self-
consistency equations: one for the profile, Eq.(2.3), and one
for the density, Eq.(3.6). These are iterated until the change
in the nucleon mass Eq.(2.2) is as small as desired(in our
case,DMN&0.1 MeV) for each value of the Fermi momen-
tum. We use the Kahana-Ripka(KR) basis[19], with mo-
mentum cutoffL and box sizeL extrapolated to infinity
(from a maximum value ofLL=150, comparable to that in
Ref. [13]), to evaluate the energy eigenvalues and wave
functions used as input for the densities, nucleon mass, and
electromagnetic form factors.

While the vacuum value of the condensate does not vary
with the Fermi momentum by definition, the effective con-

densatekc̄cl0+ c̃srs
NskFdSskFd, falls ,30% at nuclear density;

see Eq.(3.3). This is consistent with the model-independent
result [18] that predicts a value 25–50 % below the vacuum
value.

A phenomenological vector meson(massmv=770 MeV)
exchanged between nucleons(but not quarks in the same
nucleon) is introduced as a substitute for uncalculated
soliton-soliton interactions in order to obtain the necessary
short distance repulsion which stabilizes the nucleus. This
does not affect the form factors Eqs.(2.4a) and (2.4b). The
resulting energy per nucleon is

E

A
=

4

rBskFdE
kF d3k

s2pd3
Îk2 + MNskFd2 +

1

2

gv
2

mv
2rBskFd.

s3.7d

The mass of a free nucleon is computed to beMNskF

=0d=1209 MeV. The,30% difference is as expected in the
model at leading order inNC. We evaluate the nucleon mass
Eq. (2.2) and energy per nucleon Eq.(3.7) as a function of
kF. We choose our free parameters to fitE/A−MNs0d;B=

−15.75 MeV at the minimum. We use the valuec̃s=1.27
(corresponding tosN=41.4 MeV), and vector coupling
gv

2/4p=10.55, which gives a Fermi momentum ofkF
=1.38 fm−1 in nuclear matter consistent with the known
value kF=1.35±0.05 fm−1 [20]. We plot the binding energy
per nucleon using Eq.(3.7) in Fig. 1. The compressibility is
K=348.5 MeV which is above the experimental valueK
=210±30 MeV, but well below the Walecka model[21]
value of 560 MeV. The self-consistent calculation results in
the profile functions for zero density, 0.5r0,1.0r0, and 1.5r0
in Fig. 2 (wherer0 is nuclear density).

IV. RESULTS AND DISCUSSION

We use Eqs.(2.4a) and (2.4b) to calculate the form fac-
tors, which we present in Figs. 3 and 4. We also present the
results in terms of the ratios

FIG. 1. Binding energy per nucleonB=E/A−MN. The box and
the gray band correspond to the uncertainty in the known values of
the binding energy, density, and compressibility of nuclear matter
[20].

FIG. 2. Profile functions in nuclear matter. The solid line is the
profile function for 1.5r0; the curves with progressively longer
dashes correspond to 1.0r0,0.5r0, and zero density, respectively.
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GE,M
T=0,1sQ2,kFd

GE,M
T=0,1sQ2,0d

;
GX

* sQ2d
GXsQ2d

, s4.1d

where −q2;Q2,X is EsT=0d or MsT=1d, and the double
ratio

GE
* sQ2d/GM

* sQ2d
GEsQ2d/GMsQ2d

. s4.2d

These ratios are plotted in Figs. 5 and 6 for 0.5r0,1.0r0, and
1.5r0.

The electric form factor is dominated by the valence con-
tribution and shows a dramatic effect, while the magnetic
form factor has equally important contributions from the va-
lence and the sea. The latter shows almost no change in
nuclear matter; it shows only a 1.3% enhancement of the

magnetic moment at nuclear density, and a 2.3% enhance-
ment at 1.5 times nuclear density. These are consistent with
the constraints of a less than 2% increase set by Ref.[22]. In
contrast, the QMC model[3] predicts an enhancement of
roughly 5% for oxygen and 10% for lead. The influence of
the nuclear medium on the nucleon also causes the root mean
square radius of the baryon density to increase by 2.4% in
the CQS model. This swelling is consistent with a less than
6% increase as constrained by quasielastic inclusive
electron-nucleus scattering data[23]. The effect in the elec-
tric form factor calculated here is comparable to that of the
QMC model, the main difference from that calculation lies in
the lack of enhancement in the magnetic form factor, specifi-
cally the practically unchanged value of the magnetic mo-
ment.

FIG. 3. The isoscalar electric form factor at nuclear density
(solid) and at zero density(dashes).

FIG. 4. The isovector magnetic form factor at nuclear density
(solid) and at zero density(dashes).

FIG. 5. The electric(lower three curves) and magnetic(upper
three curves) form factor ratios in Eq.(4.1) for 0.5r0 (long dashes),
1.0r0 (solid), and 1.5r0 (short dashes).

FIG. 6. The double ratio Eq.(4.2) of the electric to magnetic
form factors in nuclear matter and in the vacuum from the CQS
model (heavy) and the QMC model[3] (light). Three densities are
shown: 0.5r0 (long dashes), 1.0r0 (solid), and 1.5r0 (short dashes).
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While both form factors use the same wave functions, the
isovector magnetic form factor includes an extra weighting
by a factor of the angular momentum of the state(relative to
the electric form factor) due to theg k in Eq. (2.4b). This
extra factor is responsible not only for making the regular-
ization of Eq.(2.4b) necessary, but for making the sea con-
tribution as important as the valence. In the CQS model, the
orbital angular momentum carried by the sea is comparable
to the orbital angular momentum carried by the valence
quarks[24] (the sum of which make up about 60% of the
total angular momentum of the nucleon state, with the re-
mainder belonging to the intrinsic spin of the constituent
quarks).

Conversely, the isoscalar electric form factor(which is
finite, after the vacuum subtraction) does not have as large of
a contribution from the sea. The valence level is the most
important piece, even atQ2.0, since theQ2 dependence in
the form factors arises from the wave functions[13]. The
negative Dirac continuum wave functions largely cancel in
the vacuum subtraction in Eq.(2.4a).

The magnetic form factors are sensitive to the tail of the
quark wave functions, and the mere existence of a tail is due
to the lack of confinement. This is one reason for the discrep-
ancy between the current results and the QMC model[3], but
the primary source is due to the resistance to change of the
sea. The former accounts for only a few percent of the dif-
ference; it is the latter that is our most important result. We
see that the role of antiquarks is again prevalent as in our
previous work[11].

The double ratio obtained in Fig. 6 has the same trend as
the QMC model[3], but differs in the details. Since we ob-
tain a similar double ratio, we expect to have similar results
if we compare these results with the polarization transfer
data[1]. This requires one to take the final state and relativ-
istic effects into account through the use of the RDWIA[14]
or the RMSGA[16], which accounts for a few percent of the
discrepancy between the results for bound and free protons.
A RMSGA calculation for the helium reaction studied in Ref.
[1] has been done with these CQS model results[25], and it
delivers remarkably similar results to the same calculation
done with the QMC model[16]. The CQS model predicts a

smaller deviation than the QMC model from a relativistic
plane wave impulse approximation(RPWIA) calculation,
which is taken as a baseline in Ref.[1]. While it slightly
worsens the agreement with the data atQ2&1, the differ-
ences are of the same order of magnitude as the current ex-
perimental error, and both models underpredict the observed
deviation from a RPWIA calculation. At higherQ2, the two
models produce nearly identical results for helium.

We ignore potentially important corrections that follow
from integrating out the rotational and translational zero
modes of the soliton that are suppressed by 1/NC. These
corrections break theN-D degeneracy, and improve the
agreement of the vacuum form factors with experiment[13].
More relevant to the calculation presented here, the rota-
tional corrections do not affect theQ2 dependence, but in-
stead affect the normalization of the form factors[13]. How-
ever, there is no reason at that level to continue to ignore
quantum fluctuations of the the pion field(quark loops, also
suppressed by 1/NC) or center of mass corrections, and treat
the soliton as a purely self-consistent, static mean field. We
will save this difficult problem for the future.

We have calculated the electric and magnetic form factors
at leading order inNC at nuclear density using the CQS
model. Our results help validate the apparent success of the
QMC model in describing the polarization transfer experi-
ment [1,3], and provide a counterpoint consistent with con-
straints on the nucleon radius and magnetic moment in nuclei
to be distinguished when finer resolution becomes available
in the data. In fact, the difference between the CQS model
double ratio and the QMC model[3] is roughly the size as
the current experimental error. Specifically, data on the
bound nucleon magnetic form factor at lowQ2, particularly
the magnetic moment, could serve to determine the role of
sea quarks in nuclei.
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