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Baryon structure in a quark-confining nonlocal Nambu—Jona—Lasinio model
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We study the nucleon and diquarks in a nonlocal Nambu—Jona—Lasinio model. For certain parameters the
model exhibits quark confinement, in the form of a propagator without real poles. After truncation of the
two-body channels to the scalar and axial-vector diquarks, a relativistic Faddeev equation for nucleon bound
states is solved in the covariant diquark—quark picture. The dependence of the nucleon mass on diquark masses
is studied in detail. We find parameters that lead to a simultaneous reasonable description of pions and
nucleons. Both the diquarks contribute attractively to the nucleon mass. Axial-vector diquark correlations are
seen to be important, especially in the confining phase of the model. We study the possible implications of
quark confinement for the description of the diquarks and the nucleon. In particular, we find that it leads to a
more compact nucleon.
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[. INTRODUCTION excluded at zero density by a projection onto the physical
) . ~channels, but dominate the behavior at finite density. The
The NJL model is a successful phenomenological fieldnodel is not able to describe nuclear matter, even in the
theory inspired by QCO1]. The model is constructed to |ow-density regime5].
obey the basic symmetries of QCD in the quark sector, but We do not know how to implement color confinement in
unlike the case of low-energy QCD, quarks are not confinedthe model and, anyway, the exact confining mechanism of
The basic ingredient of the model is a zero-range interactio@CD is still unknown. In the context of an effective quark
containing four fermion fields. This means that the model isheory, a slightly different mechanism of “quark confine-
not renormalizable. Therefore at one-loop level an ultravioletment” can be described by a quark propagator which van-
cutoff supplemented with a regularization method is requiredshes due to infrared singulariti¢] or which does not pro-
from the outsets. The value of the cutoff can be related to théuce any poles corresponding to asymptotic quark states
scale of physical processes not included in the model, ant¥.8]. Another realization of quark confinement can be found
thus determines its range of validity. Consequently, processeg Ref. [9]. It has been shown that a nonlocal covariant ex-
involving a large momentum transfer cannot be described byension of the NJL model inspired by the instanton liquid
the model. At higher orders in the loop expansion, which arénodel[10] can lead to quark confinement for acceptable val-
necessary for calculating mesonibaryonig fluctuations Y€S .Of the paramete{d1]. Th|s' model has p're.vlously' been
[2,3), one needs extra cutoff parameters. It is hard to dete@PPlied to mesongl1-13 and in this paper it is applied to
mine these parameters from independent physics, and thus tegryons based on the relativistic Faddeev approach.

build a viable phenomenology. A similar problem appears in The quark propagator in the model has no real pole and

) . e onsequently quarks do not appear as asymptotic states. In-
the diquark-quark picture of baryons where an addmonagtead the quark propagator has pairs of complex poles. This

cutoff parameter is required to regularise the diquark'q“aﬂbhenomenon was also noticed in Schwinger-Dyson equation
Ioops[?%. drawback of th del is the ab f f studies in QED and QCD14-14. One can simply accept
Another drawback of the model is the absence of confineg,q 5nearance of these poles as an artifact of the naive trun-

ment, which makes it questionable for the description Ofcation scheme involved. However, it has been recently sug-

few-quark states and for quark matter. If energetically al-

I 4. th  th del g it kgested that it might be a genuine feature of the full theory,
owed, the mesons of the model can decay Into free quarks 4 e connected with the underlying confinement mecha-
antiquark pairs, and the presence of unphysical channels

Kism[15,16. For example, it has been shown by Maris that
another limitation on the applicability of NJL model. At the [15,19 xamp'e, | Wn By I

) it is also k hat the NIL model exhibi if one removes the confining potential in QED in 2+1D the
same time, It Is asoh nown that the mo I('a ex ”' 't‘T‘ 4mass singularities are located almost on the time axis, and if
zero—tempergture phase trans[tlon at unrealistically Whereis a confining potential, the masslike singularities move
baryon density4]. This problem is caused by the formation from the time axis to complex momenta6]. In this paper,

of unphysical colored diquark states. These may be explicitl)(Ne study this kind of confinement from another viewpoint.

We show that when we have quark confinement in the non-

local NJL model, the baryons become more compact, com-
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lations of QCD[17]. There various methods are available for r =E(iﬂ— M)+ L (1)
construction of a conserved current in the presence of non- b

local interactions[18]. In general, one can preserve theherem, is the current quark mass of theandd quarks and

gauge invariance and anomalies by introducing additional, is a chirally invariant nonlocal interaction Lagrangian.

nonlocal terms in the currenf$8]. A Noether-like method of Here we restrict the interaction terms to four-quark interac-

construction for these nonlocal pieces for the nonlocal NJljon vertices.

model was developed in Reffl1]. The regulator makes the  There exist several versions of such nonlocal NJL models.

theory finite to all orders in the loop expansion and leads tQRegardless of what version is chosen, by a Fierz transforma-

small next-to-leading order correctiofis2]. As a result, the tion one can rewrite the interaction in either the quark—

r?onlocal version of the NJL model should have more prediCantiquark or quark_quark channels. We therefore use the in-

tive power. teraction strengths in those channels as independent
We use a separable nonlocal interactions, similar to that oharameters. For simplicity we truncate the mesonic channels

the instanton-liquid mod€tL0,19. This considerably simpli- to the scalaf0*, T=0) and pseudoscalg®, T=1) ones. The

fies the calculation. Other approaches also give nonlocalityyark—quark interaction is truncated to the sc&@r T=0)

but in different formg8,20]. Nonlocality also emerges natu- and axial vectof1*, T=1) color 3quark—quark channelghe

rally in the Schwinger—Dyson resummati and in vari- .
y 9 Y £ D color 6 channels do not contribute to the colorless three-

ous types of gluonic field configuration within the QC . .
vacuuymp' see f%r an example Rél] Q quark state considered hgréVe parametrize the relevant
! 8 ' ) part of interaction Lagrangian as

Considerable work has been done on these nonlocal NJ
models including applications to the mesonic se¢1dr-13, 1 o o
phase transitions at finite temperature and dendi#igf and L= 20941 X o(X) + gJs(X)Io(X) + gaJa(X)Ia(X),
the study of chiral soliton§23]. 2

In this paper we present our first results from a calculation
of the relativistic Faddeev equation for a nonlocal NJL ) i —
model, based on the covariant diquark—quark picture of bary- ~ Ja(¥) = J A" d™%aF (X = X3) F (X = X) ¢h(x) I th(Xa) ,
ons [24-33. Such an approach has been extensively em-
ployed to study baryons in the local NJL model; see, e.g.,

Refs.[24-28. We include both scalar and the axial-vector 77\ _ 4, 4 _ oo AT/T,
diquark correlations. We do not assume a special form for the’s ™) = f 0GP0 =X PO =X X 1sCrB719 ),
interaction Lagrangian, but we rather treat the coupling in

the diquark channels as free parameters and consider the

range of coupling strengths which lead to a reasonable de- J(X) :f d*%A*%4F (X = X4) F(Xp = X) 4T (X5)
scription of the nucleon. We construct diquark and nucleon
solutions and study the possible implications of the quark X[C L ys BN M(Xa),

confinement for the solutions. The dependence of the baryon

masses and waves on the diquarks parameters is investigated

and _th_e role of diquarks m_the nucleon solutions, for_ both the J.(%) :f A%, d*XaF (X = Xa) F (X = X) (%)
confining and the nonconfining phase of the model is consid-

ered separately. The nucleon wave function is studied in de- AT

tails. Due to the separability of the nonlocal interaction, the X[y LrimaB e (%),

Faddeev equations can be reduced to a set of effective

Bethe—Salpeter equations. This makes it possible to adopt the . T
numerical method developed for such problems in Refs. Ja(¥) = | d%dF(x = X F(xo = ) (x)
[29-37.

This paper is organized as follows: In Sec. Il the model is X[CHmom B (Xg) 2

introduced. We also discuss the pionic sector of the model ] ) A SE A
and fix the parameters. In Sec. Il the diquark problem igwhere I',=(1,ivs7). The matricesp™=\3/20"(A=2,5,7)
solved and discussed. In Sec. IV the three-body problemproject onto the color 3channel with normalization
based on diquark-quark picture is investigated. The numeritr(ﬂAlgA’):gaAA' and ther's are flavorSU(2) matrices with
cal technique. inv_olvgd in solving the effective Bethe—tr(ﬂﬁ):zgij_ The objectC=iv,ys is the charge conjugation
Salpeter equation is given and the results for three-body segnatrix. It is exactly this four-way separability of the nonlocal
tor are presented. Finally, a summary and outlook is given ifinteraction that is also present in the instanton liquid model
Sec. V. [19].
Since we do not restrict ourselves to a specific choice of
underlying interaction, we shall treat the couplingis g.,
Il. ANONLOCAL NJL MODEL and g, as independent parameters. We assuing,>0,
which leads to attraction in the given channg@lad repulsion
We consider a nonlocal NJL model Lagrangian within the quark—antiquark color octet and quark—quark color
SU(2); X SU(3). symmetry. antisextet channelsThe coupling parametsg,, is respon-
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FIG. 1. A graphical representation of the Bethe—Salpeter equa—m©fm +

tion for the'qq T-matrix in RPA approximation. The solid lines de-

note the dressed quark propagators @&yjand shaded boxes denote FIG. 2. One-pion-to-vacuum matrix element in RPA, contribut-

meson propagators. ing to the weak pion decay. The lines are as defined in Fig. 1. The
wavy line denotes a weak decay.

sible for the pions and their isoscalar partaeiThe coupling
strengthsg, and g, specify the behavior in the scalar and ample, if one allows mixing of channels, the cutoff and the
axial-vector diquark channel, respectively. positions of poles will changeEven though the confinement
We define the Fourier transform of the form factor by  in this model has no direct connection to the special proper-
” ties of the pion, there is an indirect connection through the
F(x—x) =J _pe—i(x—xi)-pf(p)_ 3) determination of the parameters from the pionic properties.
' (2m)* The quark—antiquark-matrix in the pseudoscalar channel

. can be solved by using the Bethe—Salpeter equation in the
The dressed quark propagatbik) is now constructed by random phase approximatigRPA), as shown in Fig. 1, see

means of a Schwinger-Dyson equati@@DE) in the Ref. [11]
rainbow-ladder approximation. Thus the dynamical constitu- '

ent quark mass, arising from spontaneously broken chiral ) g, ]
symmetry, is obtained in Hartree approximatior! as T(P1.P2:Ps,Pa) = f(PIF (R v67] =5~ v9.J (qz)[| ¥s7ilf(p3)
d* - D.-—
m(p) = m + igwf'é‘(p)f oy TISRIPK, (@ X T(Pa)Olp1* P2~ P3P, ®
m where
where ™
SHK) = k= m(Kk). (5) L) =iTr f = 212K v57S(K) y57S(q + K FA(q + K),
One can simplify this equation by writingy(p) in the form
d*k
m(p) =m, + [M(0) - mJf*(p). (6) =6i f WtrD[yss(k) ysSk+ )2k (g +k), (9)
The nonlinear equation can then be solved iteratively for
m(0). whereq denotes the total momentum of the quark—antiquark

Following Ref. [11], we choose the form factor to be Pair. The pion mase, corresponds to the pole tmatrix.
Gaussian in Euclidean spadépE):ex;i—pE/AZ), wherepg One immediately finds thah,=0 if the current quark mass
denotes the Euclidean four-momentum ahds a cutoff of Mc IS zero, in accordance with Goldstone’s theorem. The
the theory. This choice respects Poincaré invariance and f¢fSidue of theT-matrix at this pole has the form
certain values of the parameters it leads to quark, but not V7(P1,P2) = G mgd le ® 7 © ¥5lf (P (P2, (10)
color, confinement. For values af(0) satisfying
s ) where g,.qq is the pion—quark-antiquark coupling constant
_mO-m }exp<— M) and is related to the corresponding loop integraby

2 2A? ’

—_— (7)
et 2= U (12)
the dressed quark propagator has no poles at péah Graq = de? | gzen?

Minkowski spacd p?+m?(p?) # 0]. The propagator has many

pairs of complex poles, both for confining and nonconfining _
parameter sets. This is a feature of these models and due care /ABLE |. The parameters for the sets A and B, fitted ftp
should be taken in handling such poles, which cannot bg 52 MeV andm,=139.6 MeV. The resuiting values of the dy-
associated with asymptotic states if the theory is to satisf\,r/]am'Cal quark mass\(0) are also shown.

unitarity. One should note that the positions of these pole

depend on the details of the chosen form factor and the cu _arameter SetA SetB
off, hence one may regard them as a pathology of the regun(o) (Mev) 297.9 351.6
larization scheme. Since the choice of the cutoff is closelymo(o) (MeV) 250 300
related to the truncation of the mesonic channéis; ex- m. (MeV) 79 11.13
- A (MeV) 1046.8 847.8
The symbol Tr denotes a trace over flavor, color, and Dirac indi-g_(GeVv?) 31.6 55.80

ces and t denotes a trace over Dirac indices only.
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TABLE II. The first two sets of poles of the quark propagdiar — -~ 1 1
magnitude in the Minkowski frame. 1k i
SetA Set B T T -
+391 MeV +408+238 MeV . 0 i Y
+675 MeV +1575+307 MeV 2L N

s - - Transverse \
2L -— Longitudinal Y
\‘ ]
The pion decay constaifit. is obtained from the coupling 3 A T R T
0 200 400 600 800

of the pion to the axial-vector current. Notice that due to the
nonlocality the axial-vector current is modifi¢dll,18 and
consequently the one-pion-to-vacuum matrix element gets
;hsiggggll?gac:rg%?tt”obLrjr:g)ilr?ntz?r?v(\;gIlln l\[jllgnr? (-gr;llfees)(tlr?ae;erzg 'rsfor the longitudinal and transverse axial vector channel, for param-
lation [11] and makes a significant contribution. The pioneEter set A ar=0.44. Note that there is no longitucinal pole.
decay constant is given by

q[MeV]

FIG. 3. (Color online The denominator of the diquafk matrix

_ 197 d*k Ta istence of complex poles in the form of complex-conjugate
fr= m2 J(27.,)4Tr{q7’55[s(p—)]7573[S(p+)]]f(p—) pairs. Since there is no unique analytical continuation
i method available for such problems, any method must be
<f 4 19x d*k TSk d* regarded as a part of the model assumptiphk,13,34.
(p.) on? ) (2m)? 1Sk)] (2m)? Here, we follow the method used in R¢L1].

Our model contains five parameters: the current quark
XTIV (P, p.) S(P-) ¥57aS(P) LK) (F2(p,) + F2(p.)) massm,, the cutoff(A), the coupling constants,, g and
_ _ 0.. We fix the first three to give a pion mass af,
fp)f(pTl(f(k+ ) +f(k =), (12 =139.6 MeV with decay constarit,=92.4 MeV, while we
take the value of the zero-momentum quark mass in the chi-
ral limit my(0) as an input. We analyze two sets of param-
eters, as indicated in Table I, where gets a nonconfining
parameter set, while s8tleads to quark confinemefite., it
satisfies the condition Eq7)]. The position of the quark

whereV_(p_,p,) is defined in Eq.(10), with the notation

_ 1
P+=p*30.

The loop integrations in Eq$9) and(12) are evaluated in
Euclidean spaceFor the current model, the usual analytic
continuation of amplitudes from Euclidean to Minkowski oles are given in Table II. The real part of the first pole of

space cannot be used. This is _due to the fact that qua e dressed quark propagataf, can be considered in much
propagators of the model contain many poles at comple,e same as the quark mass in the ordinary NJL model. Since
energies leading to opening of a threshold for decay of gye o not believe in on-shell quarks or quark resonances,
meson into other unphysical states. Any theory of this typepis is also a measure for a limit on the validity of the theory.
unitarity and macrocausality. Let us define a fictitious two-momentumm(0), as can be seen in Table I. As we will see
body threshold as twice the real part of the first pOle of th%g appears as an important parameter in the diquark and
dressed quark propagatog. For a confining parameter set, nucleon solution, rather than the constituent quark mass. The
each quark propagator has a pair of complex-conjugateame feature has been seen in the studies of the soliton in
poles. Above the two-body pseudothreshaf< -4(m})?,  this model, wheren?, determines the stability of the soliton
whereq is the meson momentum, the first pair of complex[23]. The parametergs and g, will be treated here as free
poles of the quark propagator has a chance to cross the readrameters, which allows us to analyse baryon solutions in
axis. According to the Cutkosky prescriptif®3], if oneisto  terms of a complete set of couplings. This is permissible as
preserve the unitarity and the microcausality, the integratiotiong as the interactions in Lagrangian are not fixed by some
contour should be pinched at that point. In this way, one caminderlying theory via a Fierz transformatidithe coupling-
ensure that there is no spurious quark—antiquark productiooonstant dependence is expressed through the ratjos
threshold, for energies below the next pseudothreshold, i.e59s/9,, andr,=9./9,,-

twice the real part of the second pole of the quark propaga- The quark condensatex)=i Tr S0) is closely related to

tor. Note t_hat it has been show&4] _that the removal of the 1o gap equation, EG4). In the latter there appears an extra
quark—antiquark pseudothreshold is closely related to the ex-

v 3Notice as well that the Hartree—Fock approximation is equivalent
We work in Euclidean space with metrgg”= 6" and a Hermit-  to the Hartree approximation with properly redefining coupling con-
ian basis of Dirac matrice§y,,, v,}=24,,, with standard transcrip- ~ stants. Therefore, the Hartree approximation here is as good as the
tion rules from Minkowski to Euclidean momentum spa¢€:  Hartree—Fock one, since the interaction terms are not fixed by a

—iky, kKM — —KE, Fierz transformation.
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FIG. 5. (Color onling The scalar diquark—quark—quark coupling

600k as a function ofrs. The dotted and dash-dotted lines indicate the
I~ quark—quark pseudothreshold for set A and B, respectively.
Q
2. 400}
=

200f k

DT 2= T [ LK IS TC s
o %02 04 06 08 1 s (2m)*
T
XS(q+k)f2(q+k)

FIG. 4. (Color onling The scalar and axial-vector diquark mass
as a function of g andr,, respectively, for both parameter sets. The

i d*k
dotted and the dash-dotted lines denote the quark—quark pseudo- =6i f —tr % Kk + a)1F2(k) f2(q + K) .
threshold for set A and B, respectively. (2m* ol 753K 7Sk + Q) Ik G+ k)

(15

In the above equation the quark propagei) is the solu-
form factor inside the loop integral. The quark condensate iion of the rainbow SDE Eq(5). The denominator of Eq.
the chiral limit is {207 MeV)® and {186 MeV)® for sets A (14) is the same as in the expression for the pion channel,
and B, respectively. These values fall within the limits ex-Ed. (8), if gs=g,. One may thus conclude that at=1 the
tracted from QCD sum ruleg35] and lattice calculations diquark and pion are degenerate. This puts an upper limit to
[36], having in mind that QCD condensate is a renormalizedhe choice ofrg, since diquarks should not condense in
and scale-dependent quantity. In contrast to the local NJvacuum. One can approximaiéq) by an effective diquark
model, here the dynamical quark mass &j.is momentum “exchange” between the external quarks, and parametrize
dependent and follows a trend similar to that estimated from(g) near the pole as
lattice simulationg17].

() = 293, (@D(@), DHQ)=q?-Mi, (16)

whereMs is the scalar diquark mass, defined as the position
In the rainbow-ladder approximation the scalar quark-Of the pole ofr(g). The strength of the on-shell coupling of

quark T-matrix can be calculated from a very similar dia- scalar diquark to quarkgysqqis related to the polarizatiody

gram to that shown in Fig. {the only change is that the by

antiquark must be replaced by a quark with opposite momen-

tum). It can be written as o dd

gdsqq_ E q2:|\/|2,
T(p1, P2, P3, P4) = F(PD) F (P ¥sCB I HQ[C L Y5787 o

X f(pa)f(pa) P+ Po—P3s—pPs), (130 andV¥q) is the ratio between the exadtmatrix and on-
shell (one-polg approximation and describes the off-shell
with correction of theT-matrix around the diquark solutiofi37].
For the “on-shell approximation” we havweé’(q)=1 [1,3],
294 and by definiton on the mass sheif=M3, one has
T 14gJ(?’ VAQ)lqe=paz =1
There is no mixing between the axial-vector diquark and
where q=p;+p,=ps+p, is the total momentum of the other channels, and so one can write the axial-vector diquark
quark—quark pair, and T-matrix in a similar form

IIl. DIQUARK CHANNELS

17

) (14)
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T(P1, P2, P3,Pa) = F(P)F(P2)[,Cr BN ([C Ty, mm BN 4 ' T = My=775 Mey
35f=m - = M, =725 MeV
XF(pa)f(pa) APy + P2 = P3 = Pa), (18) 3FTT <D | M 604 MeV
. 2.5F RRTULR SetA ]
with 2F RGN ]
1.5} NN
v NI L O e A 5 \
™"(q) = 2ga||: T o NE (19 s | —
1 +ga‘]a(q ) 1+ ga‘Ja(q ) 3.5k i -~ 1
3k ~e SetB
where we decompose the axial polarization tensor into lon- 95f T T — "
gitudinal and transverse components: 2 IRRNR
L5F TSN
d4k 1 S

I =i Tr f 2FP= K[ CrmnpNS- KT 0 300 400 600 800
2w (a) q [MeV]

X[C Yy mn NS+ K (g + k)

4 , = M_=775 MeV
4 35F T~ - -- M, =725 MeV
[ d%k , 3F TSI |— M, =604 MeV
=6i f 2ol 7S Y Sk+ QA+ k) 2l T
2F AN .
T2\ (v Vim2) 2 1l 2 V)2 L N T
=J(a9(g*" - g*q"q) + Jz(a)a“a"/g”. (20) g ===t : =
We find that the longitudinal channel does not produce a pole 32 ;_" '\'\.\_ B ]
(see Fig. 3, and thus the bound axial-vector diquark solution 27 T NN i
corresponds to a pole of the transvelseatrix. The trans- 2 RN N
verse component of**(q) matrix can be parametrized as 15F SN
1 1 I Sa s
“Y — gigY/ 2 0 20 400 600 800
(@) = 20 @D (@, D@ = ST ®) 41MeV]
@@ (21) FIG. 6. The ratio of the on-shell approximation compared to the

exact diquarkT-matrix for the various scalar and axial diquark

whereV?3(q) includes the off-shell contribution to the axial- masses.
vector T-matrix. The coupling constaig,qqis related to the

residue at the pole of the-matrix, the pion mass ats=1. It is obvious from Fig. 4 that forg

=r, the axial-vector diquark is heavier than the scalar di-

- ng quark, and consequently is rather loosely bound. For very
Goaaa™ gz | o - (220 smallrg andr,, one finds no bound state in either diquark
4=Mga channels. In Fig. 5, we show the scalar diquark—quark—quark

coupling defined in Eq(17) with respect to various scalar
) _ diquark couplings.
Diquark solution One should note that the nucleon bound state in the
The loop integrations in Eq$15) and(20) are very simi-  diquark—quark picture does not require asymptotic-diquark
lar to that appeared in mesonic sector B). Therefore, we States since the diquark state is merely an intermediate de-
can employ the same method to evaluate these loop integraice which simplifies the three-body problem. Nevertheless,
tions. evidence for correlated diquark states in baryons is found in
We use the parameter sets determined in the mesonic sedeep-inelastic lepton scatterings and in hyperon weak decays
tor shown in Table I. Our numerical computation is valid [39]. At the same time, diquarks appear as bound states in
below the first quark—quark pseudothreshold. Note that th&hany phenomenological models, and are seen in lattice cal-
longitudinal polarizabilityJ}(q) defined in Eq(20) does not ~ culations[40,41]. In contrast to our perception of QCD color
vanish here. This term will be neglected in our one-poleconfinement, the corresponding spectral functions for these
approximation since it does not produce any poles in th&upposedly confined objects in the color anti-triplet channel
T-matrix, and so makes a very small contribution comparedi’e very similar to mesonic on¢41].
to the transverse piedsee Fig. 3 The longitudinal polariz- Next we study the off-shell behavior of the diquark
ability is not important in the local NJL model as wg#,26). ~ T-matrix. In Fig. 6 we show the discrepancy between the
We find that for a wide range af, andr,, for all parameter ~€XactT-matrix and the on-shell approximatiafi?(q). At the
sets, a bound scalar and axial-vector diquark kg results ~ Pole we have by definition tha¥>*(q)|ez-mz =1. We see
for additional sets can be found[i88]). This is in contrastto elsewhere that the off-shell contribution is very important
the normal NJL model where a bound axial-vector diquarkdue to the nonlocality of our model. We find that the bigger
exists only for very strong couplingf26]. The diquark the diquark mass is, the bigger the off-shell contribution. The
masses for various values of andr, are plotted in Fig. 4. off-shell behavior of the scalar and the axial-vector channel
As already pointed out, the scalar diquark mass is equal téor both parameter se#s andB are rather similar.
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IV. THREE-BODY SECTOR

-1
D™ (pgy) 0 ) 25

P-1 -

In order to make the three-body problem tractable, we D (pd)_( 0 [D*(py) 1L,
discard any three-particle irreducible graphs. The relativistic

Faddeev equation can be then written as an effective twayhereD(p), D#*(p), andS(p) are Euclidean versions of the
body BS equation for a quark and a diquark due to the logiqyark and quark propagators which are obtained by the
cality of the form factor in momentum spagsee EQ(3)]  gandard transcription rules from the expressions in
and accordingly the separability of the two-body interactiony yinkowski space, Eqg16), (21), and(5), respectively. The

in momentum space. We adopt the formulation developed bgpectator quark momentupg and the diquark momentupy
the TUbingen group29-3] to solve the resulting BS equa- are given by

tion. In the following we work in momentum space with
Euclidean metric. The BS wave function for the octet bary-

ons can be presented in terms of scalar and axialvector di- Pq= 7P+ P, (26)
quarks correlations,
¥(p,P) pa=(1-7P-p, 27
P)u(P,s) = ( u(P,s), (23)
/P V(p.P)

with similar expressions fdk, 4, where we replace by k on
whereu(P,s) is a basis of positive-energy Dirac spinors of the right-hand side. The Mandelstam paramejeparame-
spin s in the rest frame. The parameters (1-7)p;~ 7(p; trises differe_nt definitions of the relative momentum _Within
+p) andP=p;+p;+py are the relative and total momenta in the quark—diquark system. I.n the ladder approximation, the
the quark—diquark pair, respectively. The Mandelstam pagoupled system of BS equations for octet baryon wave func-
rametery describes how the total momentum of the nucleonfions and their vertex functions takes the compact form,
P is distributed between quark and diquark. "
One may alternatively define the vertex function associ-

ated with zp{p,P) by amgutating the external quark and di- ¢(p.P) :f (27r)4KBS(p'k’P)¢(k’ P),
quark propagatoréhe legs from the wave function,
:,bS(p,P)) where KBp,k;P) denotes the kernel of the nucleon BS

) , (24) equation representing the exchange quark within the diquark
¥'(p.P) with the spectator quargsee Fig. 7, and in the color singlet

(28)

#(p,P) =S 1(pq)5‘1(pd)(

with and isospin% channel we findsee Ref[26])
|
5 T(N\ 5 _ 2. T(\TB
KPSp.kP) = - 3( kS @O Pap)  — 3 (puk)S @Y (pz,pd>> 29
= V3x(PL k) S (ADX (P2, Pe)  — X*(P1.Ka)S (A X" (P2, Pa)

where y and x* (and their adjoinfy and y*) stand for the tion of their off-shell contribution through/>3(p). What is
Dirac structures of the scalar and the axial-vector diquark-neglected is then the contribution to tienatrix beyond the
quark—quark vertices and can be read off immediately fronpseudothreshold. We will see this approximation is sufficient
Egs.(13), (16), and Eqgs(18), (21), respectively. Therefore to obtain a three-body bound state. A similar approximation

we have has been already employed in the normal NJL model in the
5 — nucleon sector; see, for examples, R¢&42. One should

X°(P1.Kg) = Qusqd ¥’C)V2Vi(kg) flpy + (1 = 0)ky] note that here we do not have continuum states like the nor-

X f(=py + oky), mal NJL model. However, there exist many complex poles

beyond the pseudothreshold which may be ignored, provided
—_— that they lie well above the energies of interest and the cut-
X*(P1,Kg) = Ggagd ¥ CIN2VA(kflpy + (1~ o)kg] off. For the parameter sets considered here, the next set of
X f(=py+ oky), (30) poles would result in another pseudothreshold at energies of
1.3 GeV and 3 GeV for sets A and B, respectively. The
where o is the Mandelstam parameter parametrizing differ-model is not intended to be reliable at such momenta. On the
ent definitions of the relative momentum within the quark—other hand, as we will see in the next section, in practice, one
quark system. We have used an improved on-shell approximay escape these poles far enough away by taking advantage
mation for the contribution of diquark-matrix occurring in  of the above Mandelstam parametrization of the momenta.
the Faddeev equations. Instead of the exact diquark The relative momentum of quarks in the diquark vertices
T-matrices we use the on-shell approximation with a correcy and x* are defined ap,;=p+k/2-(1-3%)P/2 and p,
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FIG. 7. The coupled Bethe—Salpeter equation for the vertex = I /.’ 1
function ¢. 088F s ]
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| 7 g m,=0.33 n,=0.43 |
. \
0.841 R AN N T T R TR S
=-k-p/2+(1-375)P/2, respectively. The momentuty of 025 03 035 04 045 03
the incoming diquark and the momentypof the outgoing
diquark are defined in Eq27) (see Fig. 7. The momentum FIG. 8. (Color onling The dependence of the nucleon mass on

of the exchanged quark is fixed by momentum conservatiothe Mandelstam parameterfor three choices of the cutoff on the

at q=—p-k+(1-27)P. In the expressions for the momenta Chebyshev expansion. Here we use set B, Mf=725 MeV and

we have introduced two independent Mandelstam parameteldda=630 MeV. The vertical lines ap, and 7, denote the position

7,0, which can take any value if9,1]. Observables should ©f the singularities defined in E¢39).

not depend on these parameters if the formulation is Lorentz

covariant. This means that for every BS solution

#(p,P; 7,0 there exists an equivalent family of solutions.

This provides a stringent check on calculations; see the nexhe vertex functiong in Dirac space, and since the same

section for details. constraints apply to the vertex function, we obtain an expan-
It is interesting to note that the nonlocality of the diquark—sion similar to Eq.(32), with new unknown coefficients;

guark—quark vertices naturally provides a regularization ofaind A;. The unknown function§(S;) andA;(A;) depend on

the ultraviolet divergence in the diquark—quark loop. the two scalars which can be built from the nucleon momen-
We now constrain the Faddeev amplitude to describe @ym p and relative momenturp,z=P-p=cose (the cosine

state of positive energy, positive parity and spil/2. The ~ of the four-dimensional azimuthal angle pf) and p?. Of
parity condition can be immediately reduced to a conditioncoyrse they depend oP? as well, but this dependence be-

for the BS wave function: comes trivial in the nucleon rest frame.
— In the nucleon rest frame, one can rewrite the Faddeev
A A ’
(ws(p’ P) ) =7 ¢,5(HP)_7 = ( ¥7(p,P) ) amplitude in terms of tri-spinors each possessing definite or-
(p,P) VALY (P, P) - §“(p,P) bital angular momentum and spiia9]. It turns out that these

(31) trispinors can be written as linear combinations of the eight
components defined in E¢32). Thus from knowledge o§

where we defing=A,p and E:APP, with A4'=diag-1, andAy, a full partial wave decomposition can be immediately

~1,-1,9. In order to ensure the positive energy condition,°Ptained29]. Note thatzthe off-shell contributiow™*(q) is a

we project the BS wave function with the positive—energyf“ncnon of the scalag®. Moreover, the form factor in our

. . - . model Lagrangian is also scalar, hence the total momentum
projectorA”=(1+), where the hat denotes a unit four vec- dependent part of the diquark—quark—quark vertices are sca-

tor (in rest frame we have=P/iM). Now we expand the BS ' |ar functions and carry no orbital angular momentum, i.e.,
wave function ¢(p,P) in Dirac space I [2)5#(q)=0. Therefore, the partial wave decomposition ob-
e{1, s, ¥, ¥s¥*,0*"}. The above-mentioned conditions re- tained in Ref.[29] for pointlike diquarks can be used here.
duce the number of independent component from sixteen tfotice that no such partial wave decomposition can be found
eight, two for the scalar diquark channgl,(i=1,2) and six  for the BS vertex functioms®* since the axial-vector diquark
for the axial-diquark channehy; (i=1,...,6). The most gen- propagator mixes the space component of the vertex function
eral form of the BS wave function is given by and time component of the axial-vector diquark.

YP(p,P) = (S, - iPT SHA™,

A. Numerical method for the coupled BS equations

P*(p,P) = [iP“pr A + PA, - PiDr Ag+ipEA, . Todsk?lvce) ttrleéfﬁsl (Egg]at_irohns \;vf_e use th?tﬁ!gorlithmﬂi]ntro-
. , . . uced by Oettebt al. [32]. The efficiency of this algorithm
+ (Prbr — v)As — (ivrbr +iPT)AglysA™ has already been reported in several publications; see for

(32 example, Refs[29-3]. We will focus here only on the key
ingredients of this method. The momentum dependence of

Here we write y4=y*~PP*. The subscriptl denotes the quark mass in our model increases the complexity of the
component of a four-vector transverse to the nucleon mocomputation significantly. As usual, we work in the rest

mentum,psz—lAD(p-lAD). In the same way, one can expand frame of the nucleor?=(0,iMy). In this frame we are free

065203-8
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FIG. 9. (Color online The nucleon mass without inclusion of
the axial diquark channel. The dotted lines indicate the diquark-
quark threshold. All values are given in GeV.

to chose the spatial part of the relative momentuparallel
to the third axis. Thus the momenpeandk are given by

p“=|p|(0,01-7,2),

k= |k|(sin @' sin ¢’ \1-2'2sin# cos¢’\V1 -2’2,
costh1-2'%7), (33
where we writez=cosw andz' =cosw’. The wave function
Eq. (32) consists of 22 blocks in Dirac space can be sim-
plified to
Su(p%2) 0)

V(pP)= <03\1 -2S(p%2) O

0'3\““’1 _ZzAl(pz,Z) O)

4 —
lﬂ (p! P)_ ( Az(pz,Z) O

whereT,(z) is the Chebyshev polynomial of the first kind.
iosAs(p22) O We use a generic notation where the functiéifs(and Fi"’)
S ) stand for any of the function§,A; (ands;, A;)),

P = (i\"l -ZA,p%2) O

io,As(p% 2) 0 )

Y (p,P) = (- Ul\f'nAﬁ(pz'Z) 0

io1As(p?,2) 0 ) | 34

Vi(p.P)= (crz\’l -ZAg(p?2) 0

The great advantage of this representation is that the scalar
and the axial-vector components are decoupled. Therefore
the BS equation decomposes into two sets of coupled equa-
tions, two for the scalar diquark channel and six for the axial
diquark channel. We expand the vertgxave) functions in
terms of Chebyshev polynomials of the first kind, which are
closely related to the expansion into hyperspherical harmon-
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FIG. 10. (Color online The nucleon mass as a function of the
scalar diquark mass for various axial vector diquark masses for both
parameter sets. The scalar diquark—quark threshold are shown by
the dotted lines.

Nmax

Fl(p%2) = 2 i"FY(pAT,(2),

n=0

mmax

FA(p22) = 2 iI"FPM(pA)T(2), (35

0.3

0.25

0.2
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m=0

0
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a

ics. This decomposition turns out to be very efficient for such  FIG. 11. (Color online Range of parameterss,r,) where we

problems[29-33. Explicitly,
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TABLE lll. Digquark masses and coupling of diquarks to quarks obtainedvige940 MeV. All masses
are given in MeVEy4{Ey,) denote the binding energy of diquarks in the nucleﬁﬂ'ﬁ(Eﬂa) denote the binding
energy of the nucleon measured from scaadial) diquark mass.

Set A Set B
Set Al Set A2 Set A3 Set B1 Set B2 Set B3
Mgs 775 748 698 802 705 609
Jasqq 0.74 0.83 1.04 0.73 1.31 1.79
rs 0.09 0.12 0.17 0.06 0.14 0.24
Egs 7 34 84 14 111 207
EdS 226 199 149 270 173 77
Mga 705 725 775 604 660 725
Odagq 1.08 0.98 0.79 1.99 1.67 1.28
ra 0.20 0.17 0.11 0.32 0.23 0.15
Ega 77 57 7 212 156 91
Eda 156 176 226 72 123 193
pMs 194.88 181.51 163.70 283.99 232.86 209.95
Sz Fle Ae—Fie ne {1—M—ds,ﬂg], if Myo< My,
My My
S1,2—> Ff,z, A1 6— Fe(f)...s- (36)
We trur!cate the Chebyshev expansions in_volveﬁ{’(nand nel|l- Mda,ﬂg], if Mya< Mg (39)
F? at different ordera,,, and m,,,,, respectively. We also My My

expand the quark and diquark propagators into Chetiyshex similar plateau has been found in other applications

polynomials. In this way one can separate e and P-k  [29-31. The singularities in the quark-exchange propagator
dependence in Eq$24) and (28). Using the orthogonality put another constraint on the acceptable rangenoh
relation between the Chebyshev polynomials, one can reduce 1

) ! X THTHIG 5(1-mi/My). No such constraint exists far, which re-
the four dimensional integral equation into a System Ofjasaq 16 the relative momentum between two quarks. To sim-

coupled one-dimensional equations. Therefore one can r%]ify the algebra we take=1/2

write Egs.(24), (28), in the matrix form In what follows we use a momentum mesh of>660 for

8 Mmax p.k, mapped in a nonlinear way to a finite interval. In the
FAOp)=> > g{}m(pz)FJ?[’(m)(pz), nonsingular regime of Mandelstam paramejeiq. (39), the
j=1 m=0 Faddeev solution is almost independent of the upper limit on
the Chebyshev expansion, and fog,,,=10,n,=12, see
8 Mmax (o Fig. 8, this seems to be satisfied. This limit is somewhat
FP™(p?) = 21 Eo , dlk|[KIPHIM(K2, P R/ (k). higher than the reported values for simple modeg—32.
j=1 n=
(37) B. Nucleon solution

Hereg|™ andH;" are the matrix elements of the propagator In order to understand the role of the axial diquark in

and the quark-exchange matrices, respectively. The indicasucleon solution, we first consider the choige 0. For this
n,m refer to the Chebyshev moments ang denote the case we find that the nonconfining set A cannot generate a
individual channels. To solve E@37), we first rewrite it in  three-body bound state without the inclusion of the off-shell
the form of linear eigenvalue problem. Schematically contribution. For the confining set B one also has to enhance
2y 2 the diquark—quark—quark couplirgys,q by a factor of about
MPIe=K(Pe, (38) 1.73 over the value defined in E(d.?)qgas we will show, this
with the constraint thah(P?)=1 at PZ:—Mﬁ. This can be extra factor is not necessary when the axial-vector diquark is
used to determine the nucleon madg iteratively. included. The situation is even more severe in the on-shell
As already pointed out, the BS solution should be indetreatment of the local NJL model, since one needs to include
pendent of the Mandelstam parametersr. As can be seen the quark—quark continuum contribution in order to find a
in Fig. 8, there is indeed a large plateau for thdependence three-body bound state when the axial-vector diquark chan-
if we use a high cutoff on the Chebyshev moments. Thenel is not taken into accourfi24].
limitations on the size of this area of stability can be under- As can be seen from Fig} a decrease ing leads to a
stood by considering where the calculation contains singutarger diquark mass, and an increase in the off-shell contri-
larities due to quark and diquark poles, bution to the quark—quarK-matrix (see Fig. ¢ This off-

065203-10



BARYON STRUCTURE IN A QUARK-CONFINING...

200
100

-100
-200
-300
-400
-500
-600
=700,

L=0, S=1/2, Scalar Diquark

0102 03 04 05
IpliGeV]

L=1, S=1/2, AV Diquark

700
600
500
400
300
200
100

01 02 03 04 05
[pl[GeV]
L=0, S=1/2, AV Diquark

1/3 A 4203 A
T

S~ 70 N f " "
0.1 0.2 03 04 0.5
Ipl [Ge V]

L=1, S=1/2, AV Diquark
13 A3 A

FIG. 12. (Color onling Chebyshev momentdabeled byn) of
the scalar and axial-vect@AV) diquark amplitudes of the nucleon

01 02 03 04 05
[pl [GeV]

L=1, S=1/2, Scalar Diquark
S,

15
10

-5
-10
-15

BS wave function given by set Al.

01 02 03 04 05
[pl[GeV]

L=0, S=1/2, AV Diquark

[plIGeV]

L=2, S=3/2, AV Diquark

ArA

01 02 03 04 05
[pl [GeV]

L=1, S=3/2, AV Diquark
AqAg

01 02 03 04 05
pl [GeV]

PHYSICAL REVIEW C 70, 065203(2004)

L=0, S=1/2, Scalar Diquark

20 T ————
,/, e
=T\ e
0 - =N
20} - / ]
\ -I th
7o) N 1 —
N7 -1
60} = “T4
= — 3m
.. th
80 A
0 01 02 03 04 05
Ip| [GeV]
L=1, S=1/2, AV Diquark
A
80 ————

1500

1200

900

600

300

pl [GeV]

L=0, S=1/2, AV Diquark

O0 0.1 02 03 04 05

13A#23 A
T

Ipl [GeV]

L=1, S=1/2, AV Diquark
1BAF2B AL

-60

FIG. 13. (Color onling Chebyshev momentdabeled by the
ordern) of scalar and axial-vectqiAV) diquark amplitudes for the

0 01 02 03 04 05

Ip| [GeV]

-20

<

0 01 02 03 04 05

L=1, s=1/2, Scalar Diquark
SZ

0 010203 04 05

p| [GeV]

L=0, S=1/2, AV Diquark
AZ

0.1 0.2 03 04 05
[pl [GeV]

L=2, S=3/2, AV Diquark
AA

Ipl [GeV]

L=1, S=3/2, AV Diquark

120 T T T T T

100
80
60
40

./ e

201,

1] - )
0 0.1 02 03 04 05
[pl [GeV]

L

shell correction is crucial for forming a bound nucleon. If the nucleon BS wave function obtained for parameter set B1.

off-shell contributionV(q) is omitted, a bound nucleon can-

not be found.

fictitious diquark—quark threshold defined B +mg. The

local NJL model[25]. Increasing the diquark mager de-

quark channel is attractive. In order to obtain a nucleon massimulations[44].

of 940 MeV, we need diquark masses of 608 and 623 MeV Next we investigate the effect of the axial-vector diquark
for set A and B, respectively. The corresponding nucleorchannel on nucleon solution. We find that the axial-vector

065203-11

binding energy measured from the diquark—quark threshold
The nucleon result is shown in Fig. 9. We also show aare 56 and 91 MeV for set A and B, respectively, compared
to the binding of the diquarké&elative to the quark—quark
nucleon mass can be seen to depend roughly linearly on thgseudo threshojdof about 174 and 193 MeV for set A and
scalar diquark mass. A similar behavior is also seen in th, respectively. Such diquark clustering within the nucleon is
also observed in the local NJL modg5], and is qualita-
creasingr,) increases the nucleon mass, i.e., the scalar ditively in agreement with an instanton moddB] and lattice
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value of nucleon mass. For set B, as we appraget®, the
curve bends upward, reflecting the fact that we have no
bound state with only the scalar diquark channel.

In Fig. 11 we see for the confining set B that the interac-
tion is again shared between the scalar and the axial-vector
diguark and for smalt;<0.19 one needs a dominant axial-
vector diquark channel,>r.. It is obvious that the axial-
vector diquark channel is much more important in the con-
fining than the nonconfining phase of model.

In order to study the implications of the quark confine-

_ _ _ _ ment for the description of the nucleon, we compare in Table

FIG. 14. Diagram corresponding to the definition of density Eq.|| three representative cases for both the nonconfining and
(40). confining parameter sets, which all give a nucleon mass of

about 940 MeV. The first three columns contain results for
diquark channel contributes considerably to the nucleoet A, and the last three columns for the confining set B.
mass and takes away the need for the artificial enhancement Given the definition of diquark—quark thresholds, in the
of the coupling strength for set B. In Fig. 10 we show thepresence of both scalar and axial-vector diquark channels,
nucleon mass as a function of the scalar and axial-vectahe diquarks in the nucleon can be found much more loosely
diquark mass. As in the scalar diquark channel, we define theound, although one obtains a very strongly bound nucleon
axial-vector diquark—quark threshold &44,+m%. We see solution near its experimental value; see Table Ill. Next we
that as one increases the axial-vector diquarid scalar di- study the nucleon BS wave function for the various sets
quark masses, the quark—quark interaction is weakened angiven in Table Ill. The nucleon wave and vertex function are
consequently the nucleon mass increases. Therefore the comt physical observables, but rather they suggest how ob-
tribution of the axial-vector channel to the nucleon mass isservables in this model will behave. In Figs. 12 and 13 we
also attractive. show the leading Chebyshev moments of the scalar functions

In Fig. 11 we plot the parameter space of the interactiorpf the nucleon BS wave function for various séfsl and
Lagrangian with variablers and r, which leads to the B1). They describe the strengths of the quark—diquark partial
nucleon mas$vly=940 MeV. The trend of this plot for the waves withS as a total quark—diquark spin ahdas a total
nonconfining set A is very similar to the one obtained in theorbital angular momentum. They are normalized to
local NJL model[26]. Ff(o)(pl)zl, wherep; is the first point of the momentum

If the scalar diquark interactiory is less than 0.14, we mesh. Very similar plots are found for the other sets of pa-
need the axial-vector interaction to be stronger than the scaameters given in Table Ill. It is seen that the contribution of
lar diquark channet,>rg in order to get the experimental higher moments are considerably smaller than lower ones,
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indicating a rapid convergence of the expansion in terms obetween the diquark and the quark. These imply a more com-
Chebyshev polynomials. In the confining case, Fig. 13, ther@act nucleon in the confining cases. In order to find a quan-
is a clear interference which is not present in the nonconfintitative estimate of the confinement effect in our model, we
ing one, Fig. 12. Therefore in the confining case, all wavecalculatepT™®=((p%)-(p,)?)? the results can be found in
function amplitudes are shifted to higher relative four-Table Ill.

momenta between the diquark and quark. We also see in the both confining and nonconfining cases
In order to understand the effect of this interference, wea decrease ipT™* with weakening axial-vector diquark in-
construct a density function for the various channels in thaeraction(and consequently increasing the scalar diquark in-
nucleon rest frame. This density is defined as teraction strength This can be associated with the important
role of the axial-vector diquarks. If we compa&¥s for the

_ + ~_1 two sets A2 and B2, which have very similar interaction
p(p.L,P)= f dPa¢ (P P2, P)D (P (P, P4, P), (40) parameters(r,), an increase of about 25% is found.

where p, stands for the space component of the relative
momentump, andD(py) is defined in Eq(25). This defi-
nition corresponds to a very naive diagram describing the In this work we have investigated the two- and three-
quark density within the nucleon; see Fig. 14. In the aboveyuark problems in a nonlocal NJL model. We have truncated
definition of the density function, we have integrated overthe diquark sector to the scalar and the axial-vector channels.
the time component of the relative momentum. In this waywe have solved the relativistic Faddeev equation for this
the density function becomes very similar to its counterparinodel and have studied the behavior of the nucleon solutions
in Minkowski space. Although the above definition of den-with respect to various scalar and the axial-vector interac-
sity is not unique, it does provide a useful measure of theions. We have studied the dependence of the baryon masses
spatial extent of the wave function. Similar calculations haveand waves on the interaction parameterandr, (and on the
been done for the quark condensate in R27]. The results  scalar and the axial-vector diquark maseshich can de-
are plotted in Figs. 15 and 16. scribe the pion and the nucleon simultaneously. In order to
It is noticeable that in all cases, tisewave in scalar di-  put more restrictions on these parameters, one would need to
quark channel is the dominant contribution to the groundcalculate theA mass as well.
state. The relative importance of the scalar and the axial Although the model is quark confining, it is not diquark
diquark amplitude in the nucleon changes with the strengtlzonfining (at least in the rainbow-ladder approximatioA
of the diquark—quark coupling$ysqddaaqq @nd accordingly  bound diquark can be found in both scalar and the axial-
with r4(r,). There are indications that in the confining sets,vector channel for a wide range of couplings. We have found
the nucleon density extends to higher relative momentunthat the off-shell contribution to the diquaikmatrix is cru-

V. SUMMARY AND OUTLOOK
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cial for the calculation of the nucleon: without it the attrac- model where the axial-vector diquark makes a larger contri-
tion in the digquark channels is too weak to form a three-bodybution to the nucleon mass, a detailed calculation ofihs
bound state. We have also found that both the scalar and theeeded to understand the mechanism behindAtiN: mass
axial-vector contribute attractively to the nucleon mass. Theifference. Note also that neglectingN-loops may lead to a
role of axial-vector channel is much more important in thequantitative overestimate of the axial-vector diquark role in
confining phase of model. The nucleon in this model isthe nucleon{45].

strongly bound even though the diquarks are rather loosely |n order to understand the implications of this model in
bound. The confining aspects of the model are more obviougayonic sector fully one should investigate other properties
in three-body, rather than the two-body sector. We decomat the nycleons such as the charge radii, magnetic moments

posed_the nucleon .BS Wave.function in the nucleon' "eShnd axial coupling. On the other hand, the role of quark
frame in terms of spin and orbital angular momentum €igenc, inement in this model may be better clarified by inves-

states and constructed the quark density function in the Varﬁgating quark and nuclear matter in this model. Such prob-

ous chaljnels. It was revealeq ”‘?Wa"e in scalar diquark lems can also be studied within the same Faddeev approach
channel is the dominant contribution to the ground state. B 5,46]

investigating the nucleon wave function we found that quar
confinement leads to a more compact nucleon. The size of

nucleon is reduge_d by about 25%_ir_1 the confining_ cases. ACKNOWLEDGMENTS
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