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We study the nucleon and diquarks in a nonlocal Nambu–Jona–Lasinio model. For certain parameters the
model exhibits quark confinement, in the form of a propagator without real poles. After truncation of the
two-body channels to the scalar and axial-vector diquarks, a relativistic Faddeev equation for nucleon bound
states is solved in the covariant diquark–quark picture. The dependence of the nucleon mass on diquark masses
is studied in detail. We find parameters that lead to a simultaneous reasonable description of pions and
nucleons. Both the diquarks contribute attractively to the nucleon mass. Axial-vector diquark correlations are
seen to be important, especially in the confining phase of the model. We study the possible implications of
quark confinement for the description of the diquarks and the nucleon. In particular, we find that it leads to a
more compact nucleon.
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I. INTRODUCTION

The NJL model is a successful phenomenological field
theory inspired by QCD[1]. The model is constructed to
obey the basic symmetries of QCD in the quark sector, but
unlike the case of low-energy QCD, quarks are not confined.
The basic ingredient of the model is a zero-range interaction
containing four fermion fields. This means that the model is
not renormalizable. Therefore at one-loop level an ultraviolet
cutoff supplemented with a regularization method is required
from the outsets. The value of the cutoff can be related to the
scale of physical processes not included in the model, and
thus determines its range of validity. Consequently, processes
involving a large momentum transfer cannot be described by
the model. At higher orders in the loop expansion, which are
necessary for calculating mesonic(baryonic) fluctuations
[2,3], one needs extra cutoff parameters. It is hard to deter-
mine these parameters from independent physics, and thus to
build a viable phenomenology. A similar problem appears in
the diquark-quark picture of baryons where an additional
cutoff parameter is required to regularise the diquark-quark
loops [3].

Another drawback of the model is the absence of confine-
ment, which makes it questionable for the description of
few-quark states and for quark matter. If energetically al-
lowed, the mesons of the model can decay into free quark-
antiquark pairs, and the presence of unphysical channels is
another limitation on the applicability of NJL model. At the
same time, it is also known that the NJL model exhibits a
zero-temperature phase transition at unrealistically low
baryon density[4]. This problem is caused by the formation
of unphysical colored diquark states. These may be explicitly

excluded at zero density by a projection onto the physical
channels, but dominate the behavior at finite density. The
model is not able to describe nuclear matter, even in the
low-density regime[5].

We do not know how to implement color confinement in
the model and, anyway, the exact confining mechanism of
QCD is still unknown. In the context of an effective quark
theory, a slightly different mechanism of “quark confine-
ment” can be described by a quark propagator which van-
ishes due to infrared singularities[6] or which does not pro-
duce any poles corresponding to asymptotic quark states
[7,8]. Another realization of quark confinement can be found
in Ref. [9]. It has been shown that a nonlocal covariant ex-
tension of the NJL model inspired by the instanton liquid
model[10] can lead to quark confinement for acceptable val-
ues of the parameters[11]. This model has previously been
applied to mesons[11–13] and in this paper it is applied to
baryons based on the relativistic Faddeev approach.

The quark propagator in the model has no real pole and
consequently quarks do not appear as asymptotic states. In-
stead the quark propagator has pairs of complex poles. This
phenomenon was also noticed in Schwinger–Dyson equation
studies in QED and QCD[14–16]. One can simply accept
the appearance of these poles as an artifact of the naive trun-
cation scheme involved. However, it has been recently sug-
gested that it might be a genuine feature of the full theory,
and be connected with the underlying confinement mecha-
nism [15,16]. For example, it has been shown by Maris that
if one removes the confining potential in QED in 2+1D the
mass singularities are located almost on the time axis, and if
there is a confining potential, the masslike singularities move
from the time axis to complex momenta[16]. In this paper,
we study this kind of confinement from another viewpoint.
We show that when we have quark confinement in the non-
local NJL model, the baryons become more compact, com-
pared to a situation where we have only real poles for quark
propagator.

There are several other advantages of the nonlocal version
of the model over the local NJL model: the dynamical quark
mass is momentum-dependent, as also found in lattice simu-

*Present address: Institute for Theoretical Physics, University of
Heidelberg, Philosophenweg 19, D-69120 Heidelberg, Germany.
Electronic address: Rezaeian@dirac.phy.umist.ac.uk

†Electronic address: Niels.walet@umist.ac.uk
‡Electronic address: Mike.birse@man.ac.uk

PHYSICAL REVIEW C 70, 065203(2004)

0556-2813/2004/70(6)/065203(15)/$22.50 ©2004 The American Physical Society065203-1



lations of QCD[17]. There various methods are available for
construction of a conserved current in the presence of non-
local interactions[18]. In general, one can preserve the
gauge invariance and anomalies by introducing additional
nonlocal terms in the currents[18]. A Noether-like method of
construction for these nonlocal pieces for the nonlocal NJL
model was developed in Ref.[11]. The regulator makes the
theory finite to all orders in the loop expansion and leads to
small next-to-leading order corrections[12]. As a result, the
nonlocal version of the NJL model should have more predic-
tive power.

We use a separable nonlocal interactions, similar to that of
the instanton-liquid model[10,19]. This considerably simpli-
fies the calculation. Other approaches also give nonlocality
but in different forms[8,20]. Nonlocality also emerges natu-
rally in the Schwinger–Dyson resummation[8] and in vari-
ous types of gluonic field configuration within the QCD
vacuum; see, for an example, Ref.[21].

Considerable work has been done on these nonlocal NJL
models including applications to the mesonic sector[11–13],
phase transitions at finite temperature and densities[22], and
the study of chiral solitons[23].

In this paper we present our first results from a calculation
of the relativistic Faddeev equation for a nonlocal NJL
model, based on the covariant diquark–quark picture of bary-
ons [24–32]. Such an approach has been extensively em-
ployed to study baryons in the local NJL model; see, e.g.,
Refs. [24–28]. We include both scalar and the axial-vector
diquark correlations. We do not assume a special form for the
interaction Lagrangian, but we rather treat the coupling in
the diquark channels as free parameters and consider the
range of coupling strengths which lead to a reasonable de-
scription of the nucleon. We construct diquark and nucleon
solutions and study the possible implications of the quark
confinement for the solutions. The dependence of the baryon
masses and waves on the diquarks parameters is investigated
and the role of diquarks in the nucleon solutions, for both the
confining and the nonconfining phase of the model is consid-
ered separately. The nucleon wave function is studied in de-
tails. Due to the separability of the nonlocal interaction, the
Faddeev equations can be reduced to a set of effective
Bethe–Salpeter equations. This makes it possible to adopt the
numerical method developed for such problems in Refs.
[29–32].

This paper is organized as follows: In Sec. II the model is
introduced. We also discuss the pionic sector of the model
and fix the parameters. In Sec. III the diquark problem is
solved and discussed. In Sec. IV the three-body problem
based on diquark-quark picture is investigated. The numeri-
cal technique involved in solving the effective Bethe–
Salpeter equation is given and the results for three-body sec-
tor are presented. Finally, a summary and outlook is given in
Sec. V.

II. A NONLOCAL NJL MODEL

We consider a nonlocal NJL model Lagrangian with
SUs2d f 3SUs3dc symmetry.

L = c̄si]” − mcdc + LI , s1d

wheremc is the current quark mass of theu andd quarks and
LI is a chirally invariant nonlocal interaction Lagrangian.
Here we restrict the interaction terms to four-quark interac-
tion vertices.

There exist several versions of such nonlocal NJL models.
Regardless of what version is chosen, by a Fierz transforma-
tion one can rewrite the interaction in either the quark–
antiquark or quark–quark channels. We therefore use the in-
teraction strengths in those channels as independent
parameters. For simplicity we truncate the mesonic channels
to the scalars0+,T=0d and pseudoscalars0−,T=1d ones. The
quark–quark interaction is truncated to the scalars0+,T=0d
and axial vectors1+,T=1d color 3̄quark–quark channels(the
color 6 channels do not contribute to the colorless three-
quark state considered here). We parametrize the relevant
part of interaction Lagrangian as

LI =
1

2
gp jasxd jasxd + gsJ̄ssxdJssxd + gaJ̄asxdJasxd,

jasxd =E d4x1d
4x3Fsx − x3dFsx1 − xdc̄sx1dGacsx3d,

J̄ssxd =E d4x1d
4x3Fsx − x3dFsx1 − xdc̄sx1dfg5Ct2bAgc̄Tsx3d,

Jssxd =E d4x2d
4x4Fsx − x4dFsx2 − xdcTsx2d

3fC−1g5t2bAgcsx4d,

J̄asxd =E d4x1d
4x3Fsx − x3dFsx1 − xdc̄sx1d

3fgmCtit2bAgc̄Tsx3d,

Jasxd =E d4x2d
4x4Fsx − x4dFsx2 − xdcTsx2d

3fC−1gmt2tib
Agcsx4d, s2d

where Ga=s1,ig5td. The matricesbA=Î3/2lAsA=2,5,7d
project onto the color 3̄channel with normalization
trsbAbA8d=3dAA8 and theti’s are flavorSUs2d matrices with
trstit jd=2di j . The objectC= ig2g5 is the charge conjugation
matrix. It is exactly this four-way separability of the nonlocal
interaction that is also present in the instanton liquid model
[19].

Since we do not restrict ourselves to a specific choice of
underlying interaction, we shall treat the couplingsgs, ga,
and gp as independent parameters. We assumegp,s,a.0,
which leads to attraction in the given channels(and repulsion
in the quark–antiquark color octet and quark–quark color
antisextet channels). The coupling parametergp is respon-
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sible for the pions and their isoscalar partners. The coupling
strengthsgs and ga specify the behavior in the scalar and
axial-vector diquark channel, respectively.

We define the Fourier transform of the form factor by

Fsx − xid =E d4p

s2pd4e−isx−xid·pfspd. s3d

The dressed quark propagatorSskd is now constructed by
means of a Schwinger–Dyson equation(SDE) in the
rainbow-ladder approximation. Thus the dynamical constitu-
ent quark mass, arising from spontaneously broken chiral
symmetry, is obtained in Hartree approximation as1

mspd = mc + igpf2spd E d4k

s2pd4TrfSskdgf2skd, s4d

where

S−1skd = k/− mskd. s5d

One can simplify this equation by writingmspd in the form

mspd = mc + fms0d − mcgf2spd. s6d

The nonlinear equation can then be solved iteratively for
ms0d.

Following Ref. [11], we choose the form factor to be
Gaussian in Euclidean space,fspEd=exps−pE

2 /L2d, wherepE

denotes the Euclidean four-momentum andL is a cutoff of
the theory. This choice respects Poincaré invariance and for
certain values of the parameters it leads to quark, but not
color, confinement. For values ofms0d satisfying

ms0d − mc

Îmc
2 + L2 − mc

.
1

2
expS−

sÎmc
2 + L2 + mcd2

2L2 D , s7d

the dressed quark propagator has no poles at realp2 in
Minkowski spacefp2+m2sp2dÞ0g. The propagator has many
pairs of complex poles, both for confining and nonconfining
parameter sets. This is a feature of these models and due care
should be taken in handling such poles, which cannot be
associated with asymptotic states if the theory is to satisfy
unitarity. One should note that the positions of these poles
depend on the details of the chosen form factor and the cut-
off; hence one may regard them as a pathology of the regu-
larization scheme. Since the choice of the cutoff is closely
related to the truncation of the mesonic channels,(for ex-

ample, if one allows mixing of channels, the cutoff and the
positions of poles will change). Even though the confinement
in this model has no direct connection to the special proper-
ties of the pion, there is an indirect connection through the
determination of the parameters from the pionic properties.

The quark–antiquarkT-matrix in the pseudoscalar channel
can be solved by using the Bethe–Salpeter equation in the
random phase approximation(RPA), as shown in Fig. 1, see
Ref. [11],

Tsp1,p2,p3,p4d = fsp1dfsp2dfig5tig
gpi

1 + gpJpsq2d
fig5tigfsp3d

3fsp4ddsp1 + p2 − p3 − p4d, s8d

where

Jpsq2d = i TrE d4k

s2pd4 f2skdg5tiSskdg5tiSsq + kdf2sq + kd,

=6i E d4k

s2pd4trDfg5Sskdg5Ssk + qdgf2skdf2sq + kd, s9d

whereq denotes the total momentum of the quark–antiquark
pair. The pion massmp corresponds to the pole ofT-matrix.
One immediately finds thatmp=0 if the current quark mass
mc is zero, in accordance with Goldstone’s theorem. The
residue of theT-matrix at this pole has the form

Vpsp1,p2d = igpqqf1c ^ ta
^ g5gfsp1dfsp2d, s10d

where gpqq is the pion–quark–antiquark coupling constant
and is related to the corresponding loop integralJp by

gpqq
−2 = UdJp

dq2U
q2=m

p
2
. s11d

1The symbol Tr denotes a trace over flavor, color, and Dirac indi-
ces and trD denotes a trace over Dirac indices only.

TABLE I. The parameters for the sets A and B, fitted tofp

=92.4 MeV andmp=139.6 MeV. The resulting values of the dy-
namical quark massms0d are also shown.

Parameter Set A Set B

ms0d (MeV) 297.9 351.6

m0s0d (MeV) 250 300

mc (MeV) 7.9 11.13

L (MeV) 1046.8 847.8

gp sGeV−2d 31.6 55.80

FIG. 1. A graphical representation of the Bethe–Salpeter equa-
tion for the q̄q T-matrix in RPA approximation. The solid lines de-
note the dressed quark propagators Eq.(5) and shaded boxes denote
meson propagators.

FIG. 2. One-pion-to-vacuum matrix element in RPA, contribut-
ing to the weak pion decay. The lines are as defined in Fig. 1. The
wavy line denotes a weak decay.
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The pion decay constantfp is obtained from the coupling
of the pion to the axial-vector current. Notice that due to the
nonlocality the axial-vector current is modified[11,18] and
consequently the one-pion-to-vacuum matrix element gets
the additional contribution shown in Fig. 2. This extra term is
essential in order to maintain Gell–Mann–Oakes–Renner re-
lation [11] and makes a significant contribution. The pion
decay constant is given by

fp =
igpq̄q

mp
2 E d4k

s2pd4TrFq/g5
ta

2
fSsp−dgg5tafSsp+dgG fsp−d

3fsp+d +
igp

2mp
2 E d4k

s2pd4TrfSskdg E d4k

s2pd4

3TrfVpsp−,p+dSsp−dg5taSsp+dgff2skd„f2sp+d + f2sp−d…

− fsp+dfsp−dfskd„fsk + qd + fsk − qd…g, s12d

where Vpsp−,p+d is defined in Eq.(10), with the notation
p±=p± 1

2q.
The loop integrations in Eqs.(9) and(12) are evaluated in

Euclidean space.2 For the current model, the usual analytic
continuation of amplitudes from Euclidean to Minkowski
space cannot be used. This is due to the fact that quark
propagators of the model contain many poles at complex
energies leading to opening of a threshold for decay of a
meson into other unphysical states. Any theory of this type
needs an alternative continuation prescription consistent with
unitarity and macrocausality. Let us define a fictitious two-
body threshold as twice the real part of the first pole of the
dressed quark propagatormR

q. For a confining parameter set,
each quark propagator has a pair of complex-conjugate
poles. Above the two-body pseudothresholdq2,−4smR

qd2,
whereq is the meson momentum, the first pair of complex
poles of the quark propagator has a chance to cross the real
axis. According to the Cutkosky prescription[33], if one is to
preserve the unitarity and the microcausality, the integration
contour should be pinched at that point. In this way, one can
ensure that there is no spurious quark–antiquark production
threshold, for energies below the next pseudothreshold, i.e.,
twice the real part of the second pole of the quark propaga-
tor. Note that it has been shown[34] that the removal of the
quark–antiquark pseudothreshold is closely related to the ex-

istence of complex poles in the form of complex-conjugate
pairs. Since there is no unique analytical continuation
method available for such problems, any method must be
regarded as a part of the model assumptions[11,13,34].
Here, we follow the method used in Ref.[11].

Our model contains five parameters: the current quark
massmc, the cutoff sLd, the coupling constantsgp , gs and
ga. We fix the first three to give a pion mass ofmp

=139.6 MeV with decay constantfp=92.4 MeV, while we
take the value of the zero-momentum quark mass in the chi-
ral limit m0s0d as an input. We analyze two sets of param-
eters, as indicated in Table I, where setA is a nonconfining
parameter set, while setB leads to quark confinement[i.e., it
satisfies the condition Eq.(7)]. The position of the quark
poles are given in Table II. The real part of the first pole of
the dressed quark propagatormR

q can be considered in much
the same as the quark mass in the ordinary NJL model. Since
we do not believe in on-shell quarks or quark resonances,
this is also a measure for a limit on the validity of the theory.
The massmR

q is larger than the constituent quark mass at zero
momentumms0d, as can be seen in Table I. As we will see
mR

q appears as an important parameter in the diquark and
nucleon solution, rather than the constituent quark mass. The
same feature has been seen in the studies of the soliton in
this model, wheremR

q determines the stability of the soliton
[23]. The parametersgs and ga will be treated here as free
parameters, which allows us to analyse baryon solutions in
terms of a complete set of couplings. This is permissible as
long as the interactions in Lagrangian are not fixed by some
underlying theory via a Fierz transformation.3 The coupling-
constant dependence is expressed through the ratiosrs
=gs/gp and ra=ga/gp.

The quark condensatekc̄cl= i Tr Ss0d is closely related to
the gap equation, Eq.(4). In the latter there appears an extra

2We work in Euclidean space with metricgmn=dmn and a Hermit-
ian basis of Dirac matriceshgm ,gnj=2dmn, with standard transcrip-
tion rules from Minkowski to Euclidean momentum space:k0

→ ik4,kWM→−kWE.

3Notice as well that the Hartree–Fock approximation is equivalent
to the Hartree approximation with properly redefining coupling con-
stants. Therefore, the Hartree approximation here is as good as the
Hartree–Fock one, since the interaction terms are not fixed by a
Fierz transformation.

TABLE II. The first two sets of poles of the quark propagator(in
magnitude) in the Minkowski frame.

Set A Set B

±391 MeV ±408±238i MeV

±675 MeV ±1575±307i MeV

FIG. 3. (Color online) The denominator of the diquarkT matrix
for the longitudinal and transverse axial vector channel, for param-
eter set A atra=0.44. Note that there is no longitudinal pole.
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form factor inside the loop integral. The quark condensate in
the chiral limit is −s207 MeVd3 and −s186 MeVd3 for sets A
and B, respectively. These values fall within the limits ex-
tracted from QCD sum rules[35] and lattice calculations
[36], having in mind that QCD condensate is a renormalized
and scale-dependent quantity. In contrast to the local NJL
model, here the dynamical quark mass Eq.(6) is momentum
dependent and follows a trend similar to that estimated from
lattice simulations[17].

III. DIQUARK CHANNELS

In the rainbow-ladder approximation the scalar quark–
quark T-matrix can be calculated from a very similar dia-
gram to that shown in Fig. 1(the only change is that the
antiquark must be replaced by a quark with opposite momen-
tum). It can be written as

Tsp1,p2,p3,p4d = fsp1dfsp2dfg5Ct2bAgtsqdfC−1g5t2bAg

3fsp3dfsp4ddsp1 + p2 − p3 − p4d, s13d

with

tsqd =
2gsi

1 + gsJssq2d2 , s14d

where q=p1+p2=p3+p4 is the total momentum of the
quark–quark pair, and

Jssq2d2 = i TrE d4k

s2pd4 f2s− kdfg5Ct2bAgSs− kdTfC−1g5t2bAg

3Ssq + kdf2sq + kd

=6i E d4k

s2pd4trDfg5Sskdg5Ssk + qdgf2skdf2sq + kd.

s15d

In the above equation the quark propagatorSskd is the solu-
tion of the rainbow SDE Eq.(5). The denominator of Eq.
(14) is the same as in the expression for the pion channel,
Eq. (8), if gs=gp. One may thus conclude that atrs=1 the
diquark and pion are degenerate. This puts an upper limit to
the choice of rs, since diquarks should not condense in
vacuum. One can approximatetsqd by an effective diquark
“exchange” between the external quarks, and parametrize
tsqd near the pole as

tsqd = 2igdsqq
2 VssqdDsqd, D−1sqd = q2 − Mds

2 , s16d

whereMds is the scalar diquark mass, defined as the position
of the pole oftsqd. The strength of the on-shell coupling of
scalar diquark to quarks,gdsqq is related to the polarizationJs
by

gdsqq
−2 = U dJs

dq2U
q2=Mds

2
, s17d

and Vssqd is the ratio between the exactT-matrix and on-
shell (one-pole) approximation and describes the off-shell
correction of theT-matrix around the diquark solutions[37].
For the “on-shell approximation” we haveVssqd=1 [1,3],
and by definition on the mass shellq2=Mds

2 , one has
Vssqduq2=Mds

2 =1.
There is no mixing between the axial-vector diquark and

other channels, and so one can write the axial-vector diquark
T-matrix in a similar form

FIG. 4. (Color online) The scalar and axial-vector diquark mass
as a function ofrs andra, respectively, for both parameter sets. The
dotted and the dash-dotted lines denote the quark–quark pseudo-
threshold for set A and B, respectively.

FIG. 5. (Color online) The scalar diquark–quark–quark coupling
as a function ofrs. The dotted and dash-dotted lines indicate the
quark–quark pseudothreshold for set A and B, respectively.
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Tsp1,p2,p3,p4d = fsp1dfsp2dfgmCtit2bAgtmnsqdfC−1gnt2tib
Ag

3fsp3dfsp4ddsp1 + p2 − p3 − p4d, s18d

with

tmnsqd = 2gaiFgmn − qmqn/q2

1 + gaJa
Tsq2d

+
qmqn/q2

1 + gaJa
Lsq2dG , s19d

where we decompose the axial polarization tensor into lon-
gitudinal and transverse components:

Ja
mnsq2d = i TrE d4k

s2pd4 f2s− kdfgmCtit2bAgSs− kdT

3fC−1gnt2tib
AgSsq + kdf2sq + kd

=6i E d4k

s2pd4trDfgmSskdgnSsk + qdgf2skdf2sq + kd

=Ja
Tsq2dsgmn − qmqn/q2d + Ja

Lsq2dqmqn/q2. s20d

We find that the longitudinal channel does not produce a pole
(see Fig. 3), and thus the bound axial-vector diquark solution
corresponds to a pole of the transverseT-matrix. The trans-
verse component oftmnsqd matrix can be parametrized as

tmnsqd = 2igdaqq
2 VasqdDmnsqd, Dmnsqd =

gmn − qmqn/q2

q2 − Mda
2 ,

s21d

whereVasqd includes the off-shell contribution to the axial-
vectorT-matrix. The coupling constantgdaqq is related to the
residue at the pole of theT-matrix,

gdaqq
−2 = UdJa

T

dq2U
q2=Mda

2
. s22d

Diquark solution

The loop integrations in Eqs.(15) and(20) are very simi-
lar to that appeared in mesonic sector Eq.(9). Therefore, we
can employ the same method to evaluate these loop integra-
tions.

We use the parameter sets determined in the mesonic sec-
tor shown in Table I. Our numerical computation is valid
below the first quark–quark pseudothreshold. Note that the
longitudinal polarizabilityJa

Lsqd defined in Eq.(20) does not
vanish here. This term will be neglected in our one-pole
approximation since it does not produce any poles in the
T-matrix, and so makes a very small contribution compared
to the transverse piece(see Fig. 3). The longitudinal polariz-
ability is not important in the local NJL model as well[5,26].
We find that for a wide range ofrs and ra, for all parameter
sets, a bound scalar and axial-vector diquark exist(the results
for additional sets can be found in[38]). This is in contrast to
the normal NJL model where a bound axial-vector diquark
exists only for very strong couplings[26]. The diquark
masses for various values ofrs and ra are plotted in Fig. 4.
As already pointed out, the scalar diquark mass is equal to

the pion mass atrs=1. It is obvious from Fig. 4 that forrs
=ra the axial-vector diquark is heavier than the scalar di-
quark, and consequently is rather loosely bound. For very
small rs and ra, one finds no bound state in either diquark
channels. In Fig. 5, we show the scalar diquark–quark–quark
coupling defined in Eq.(17) with respect to various scalar
diquark couplings.

One should note that the nucleon bound state in the
diquark–quark picture does not require asymptotic-diquark
states since the diquark state is merely an intermediate de-
vice which simplifies the three-body problem. Nevertheless,
evidence for correlated diquark states in baryons is found in
deep-inelastic lepton scatterings and in hyperon weak decays
[39]. At the same time, diquarks appear as bound states in
many phenomenological models, and are seen in lattice cal-
culations[40,41]. In contrast to our perception of QCD color
confinement, the corresponding spectral functions for these
supposedly confined objects in the color anti-triplet channel
are very similar to mesonic ones[41].

Next we study the off-shell behavior of the diquark
T-matrix. In Fig. 6 we show the discrepancy between the
exactT-matrix and the on-shell approximationVs,asqd. At the
pole we have by definition thatVs,asqduq2=Ms,a

2 =1. We see
elsewhere that the off-shell contribution is very important
due to the nonlocality of our model. We find that the bigger
the diquark mass is, the bigger the off-shell contribution. The
off-shell behavior of the scalar and the axial-vector channel
for both parameter setsA andB are rather similar.

FIG. 6. The ratio of the on-shell approximation compared to the
exact diquarkT-matrix for the various scalar and axial diquark
masses.
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IV. THREE-BODY SECTOR

In order to make the three-body problem tractable, we
discard any three-particle irreducible graphs. The relativistic
Faddeev equation can be then written as an effective two-
body BS equation for a quark and a diquark due to the lo-
cality of the form factor in momentum space[see Eq.(3)]
and accordingly the separability of the two-body interaction
in momentum space. We adopt the formulation developed by
the Tübingen group[29–31] to solve the resulting BS equa-
tion. In the following we work in momentum space with
Euclidean metric. The BS wave function for the octet bary-
ons can be presented in terms of scalar and axialvector di-
quarks correlations,

csp,PdusP,sd = Sc5sp,Pd
cmsp,Pd

DusP,sd, s23d

whereusP,sd is a basis of positive-energy Dirac spinors of
spin s in the rest frame. The parametersp=s1−hdpi −hspj

+pkd andP=pi +pj +pk are the relative and total momenta in
the quark–diquark pair, respectively. The Mandelstam pa-
rameterh describes how the total momentum of the nucleon
P is distributed between quark and diquark.

One may alternatively define the vertex function associ-
ated withcsp,Pd by amputating the external quark and di-
quark propagators(the legs) from the wave function,

fsp,Pd = S−1spqdD̃−1spddSc5sp,Pd
cnsp,Pd

D , s24d

with

D̃−1spdd = SD−1spdd 0

0 fDmnspddg−1,
D s25d

whereDspd , Dmnspd, andSspd are Euclidean versions of the
diquark and quark propagators which are obtained by the
standard transcription rules from the expressions in
Minkowski space, Eqs.(16), (21), and(5), respectively. The
spectator quark momentumpq and the diquark momentumpd
are given by

pq = hP + p, s26d

pd = s1 − hdP − p, s27d

with similar expressions forkq,d, where we replacep by k on
the right-hand side. The Mandelstam parameterh, parame-
trises different definitions of the relative momentum within
the quark–diquark system. In the ladder approximation, the
coupled system of BS equations for octet baryon wave func-
tions and their vertex functions takes the compact form,

fsp,Pd =E d4k

s2pd4KBSsp,k;Pdcsk,Pd, s28d

where KBSsp,k;Pd denotes the kernel of the nucleon BS
equation representing the exchange quark within the diquark
with the spectator quark(see Fig. 7), and in the color singlet
and isospin1

2 channel we find(see Ref.[26])

KBSsp,k;Pd = − 3S x5sp1,kddSTsqdx̄5sp2,pdd − Î3xasp1,kddSTsqdx̄5sp2,pdd

− Î3x5sp1,kddSTsqdx̄msp2,pdd − xasp1,kddSTsqdx̄msp2,pdd
D s29d

wherex and xm (and their adjointx̄ and x̄m) stand for the
Dirac structures of the scalar and the axial-vector diquark–
quark–quark vertices and can be read off immediately from
Eqs. (13), (16), and Eqs.(18), (21), respectively. Therefore
we have

x5sp1,kdd = gdsqqsg5CdÎ2Vsskddffp1 + s1 − sdkdg

3fs− p1 + skdd,

xmsp1,kdd = gdaqqsgmCdÎ2Vaskddffp1 + s1 − sdkdg

3fs− p1 + skdd, s30d

wheres is the Mandelstam parameter parametrizing differ-
ent definitions of the relative momentum within the quark–
quark system. We have used an improved on-shell approxi-
mation for the contribution of diquarkT-matrix occurring in
the Faddeev equations. Instead of the exact diquark
T-matrices we use the on-shell approximation with a correc-

tion of their off-shell contribution throughVs,aspd. What is
neglected is then the contribution to theT-matrix beyond the
pseudothreshold. We will see this approximation is sufficient
to obtain a three-body bound state. A similar approximation
has been already employed in the normal NJL model in the
nucleon sector; see, for examples, Refs.[3,42]. One should
note that here we do not have continuum states like the nor-
mal NJL model. However, there exist many complex poles
beyond the pseudothreshold which may be ignored, provided
that they lie well above the energies of interest and the cut-
off. For the parameter sets considered here, the next set of
poles would result in another pseudothreshold at energies of
1.3 GeV and 3 GeV for sets A and B, respectively. The
model is not intended to be reliable at such momenta. On the
other hand, as we will see in the next section, in practice, one
may escape these poles far enough away by taking advantage
of the above Mandelstam parametrization of the momenta.

The relative momentum of quarks in the diquark vertices
x and xm are defined asp1=p+k/2−s1−3hdP/2 and p2
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=−k−p/2+s1−3hdP/2, respectively. The momentumkd of
the incoming diquark and the momentumpd of the outgoing
diquark are defined in Eq.(27) (see Fig. 7). The momentum
of the exchanged quark is fixed by momentum conservation
at q=−p−k+s1−2hdP. In the expressions for the momenta
we have introduced two independent Mandelstam parameters
h ,s, which can take any value in[0,1]. Observables should
not depend on these parameters if the formulation is Lorentz
covariant. This means that for every BS solution
csp,P;h1,s1d there exists an equivalent family of solutions.
This provides a stringent check on calculations; see the next
section for details.

It is interesting to note that the nonlocality of the diquark–
quark–quark vertices naturally provides a regularization of
the ultraviolet divergence in the diquark–quark loop.

We now constrain the Faddeev amplitude to describe a
state of positive energy, positive parity and spins=1/2. The
parity condition can be immediately reduced to a condition
for the BS wave function:

PSc5sp,Pd
cmsp,Pd

D = S g4c5sp̄,P̄dg4

g4LP
mncnsp̄,P̄dg4

D = S c5sp,Pd
− cmsp,Pd

D ,

s31d

where we definep̄=LPp and P̄=LPP, with LP
mn=diags−1,

−1,−1,1d. In order to ensure the positive energy condition,
we project the BS wave function with the positive-energy

projectorL+=s1+P̂/ d, where the hat denotes a unit four vec-

tor (in rest frame we haveP̂=P/ iM ). Now we expand the BS
wave function csp,Pd in Dirac space G
P h1,g5,gm ,g5gm ,smnj. The above-mentioned conditions re-
duce the number of independent component from sixteen to
eight, two for the scalar diquark channel,Si ,si =1,2d and six
for the axial-diquark channel,Ai si =1,… ,6d. The most gen-
eral form of the BS wave function is given by

c5sp,Pd = sS1 − iP̂T/ S2dL+,

cmsp,Pd = fiP̂mp̂T/ A1 + P̂mA2 − p̂T
mp̂T/ A3 + ip̂T

mA4

+ sp̂T
mp̂T/ − gT

mdA5 − sigT
mp̂T/ + ip̂T

mdA6gg5L+.

s32d

Here we writegT
m=gm− P̂/ P̂m. The subscriptT denotes the

component of a four-vector transverse to the nucleon mo-

mentum,pT=p− P̂sp·P̂d. In the same way, one can expand

the vertex functionf in Dirac space, and since the same
constraints apply to the vertex function, we obtain an expan-
sion similar to Eq.(32), with new unknown coefficientsSi
andAi. The unknown functionsSisSid andAisAid depend on
the two scalars which can be built from the nucleon momen-

tum P and relative momentump,z= P̂·p̂=cosv (the cosine
of the four-dimensional azimuthal angle ofpm) and p2. Of
course they depend onP2 as well, but this dependence be-
comes trivial in the nucleon rest frame.

In the nucleon rest frame, one can rewrite the Faddeev
amplitude in terms of tri-spinors each possessing definite or-
bital angular momentum and spin[29]. It turns out that these
trispinors can be written as linear combinations of the eight
components defined in Eq.(32). Thus from knowledge ofSi
andAi, a full partial wave decomposition can be immediately
obtained[29]. Note that the off-shell contributionVs,asqd is a
function of the scalarq2. Moreover, the form factor in our
model Lagrangian is also scalar, hence the total momentum
dependent part of the diquark–quark–quark vertices are sca-
lar functions and carry no orbital angular momentum, i.e.,
L2x5,msqd=0. Therefore, the partial wave decomposition ob-
tained in Ref.[29] for pointlike diquarks can be used here.
Notice that no such partial wave decomposition can be found
for the BS vertex functionf5,m since the axial-vector diquark
propagator mixes the space component of the vertex function
and time component of the axial-vector diquark.

A. Numerical method for the coupled BS equations

To solve the BS equations we use the algorithm intro-
duced by Oettelet al. [32]. The efficiency of this algorithm
has already been reported in several publications; see for
example, Refs.[29–31]. We will focus here only on the key
ingredients of this method. The momentum dependence of
quark mass in our model increases the complexity of the
computation significantly. As usual, we work in the rest
frame of the nucleonP=s0,iMNd. In this frame we are free

FIG. 7. The coupled Bethe–Salpeter equation for the vertex
function f.

FIG. 8. (Color online) The dependence of the nucleon mass on
the Mandelstam parameterh for three choices of the cutoff on the
Chebyshev expansion. Here we use set B, withMds=725 MeV and
Mda=630 MeV. The vertical lines ath1 andh2 denote the position
of the singularities defined in Eq.(39).
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to chose the spatial part of the relative momentump parallel
to the third axis. Thus the momentap andk are given by

pm = upus0,0,Î1 − z2,zd,

km = ukussinu8sinf8Î1 − z82,sinu8cosf8Î1 − z82,

cosuÎ1 − z82,z8d, s33d

where we writez=cosv andz8=cosv8. The wave function
Eq. (32) consists of 232 blocks in Dirac space can be sim-
plified to

c5sp,Pd = S S1sp2,zd 0

s3
Î1 − z2S2sp2,zd 0

D ,

c4sp,Pd = Ss3
Î1 − z2A1sp2,zd 0

A2sp2,zd 0
D

c3sp,Pd = S is3A3sp2,zd 0

iÎ1 − z2A4sp2,zd 0
D ,

c2sp,Pd = S is2A5sp2,zd 0

− s1
Î1 − z2A6sp2,zd 0

D
c1sp,Pd = S is1A5sp2,zd 0

s2
Î1 − z2A6sp2,zd 0

D . s34d

The great advantage of this representation is that the scalar
and the axial-vector components are decoupled. Therefore
the BS equation decomposes into two sets of coupled equa-
tions, two for the scalar diquark channel and six for the axial
diquark channel. We expand the vertex(wave) functions in
terms of Chebyshev polynomials of the first kind, which are
closely related to the expansion into hyperspherical harmon-
ics. This decomposition turns out to be very efficient for such
problems[29–32]. Explicitly,

Fi
csp2,zd = o

n=0

nmax

inFi
csndsp2dTnszd,

Fi
fsp2,zd = o

m=0

mmax

inFi
fsmdsp2dTmszd, s35d

whereTnszd is the Chebyshev polynomial of the first kind.
We use a generic notation where the functionsFi

c (andFi
f)

stand for any of the functionsSi ,Ai (andSi ,Ai),

FIG. 9. (Color online) The nucleon mass without inclusion of
the axial diquark channel. The dotted lines indicate the diquark-
quark threshold. All values are given in GeV.

FIG. 10. (Color online) The nucleon mass as a function of the
scalar diquark mass for various axial vector diquark masses for both
parameter sets. The scalar diquark–quark threshold are shown by
the dotted lines.

FIG. 11. (Color online) Range of parameterssrs,rad where we
find a nucleon mass of 940 MeV.
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S1,2→ F1,2
c , A1…6 → F3…8

c ,

S1,2→ F1,2
f , A1…6 → F3…8

f . s36d

We truncate the Chebyshev expansions involved inFi
c and

Fi
f at different ordersnmax and mmax, respectively. We also

expand the quark and diquark propagators into Chebyshev

polynomials. In this way one can separate theP̂·p̂ and P̂·k̂
dependence in Eqs.(24) and (28). Using the orthogonality
relation between the Chebyshev polynomials, one can reduce
the four dimensional integral equation into a system of
coupled one-dimensional equations. Therefore one can re-
write Eqs.(24), (28), in the matrix form

Fi
csndsp2d = o

j=1

8

o
m=0

mmax

gij
nmsp2dFj

fsmdsp2d,

Fi
fsmdsp2d = o

j=1

8

o
n=0

nmaxE
0

`

dukuuku3Hij
mnsk2,p2dFj

csndsk2d.

s37d

Heregij
nm andHij

mn are the matrix elements of the propagator
and the quark-exchange matrices, respectively. The indices
n,m refer to the Chebyshev moments andi , j denote the
individual channels. To solve Eq.(37), we first rewrite it in
the form of linear eigenvalue problem. Schematically

lsP2dw = KsP2dw, s38d

with the constraint thatlsP2d=1 at P2=−MN
2. This can be

used to determine the nucleon massMN iteratively.
As already pointed out, the BS solution should be inde-

pendent of the Mandelstam parametersh ,s. As can be seen
in Fig. 8, there is indeed a large plateau for theh dependence
if we use a high cutoff on the Chebyshev moments. The
limitations on the size of this area of stability can be under-
stood by considering where the calculation contains singu-
larities due to quark and diquark poles,

h P F1 −
Mds

MN
,
mR

q

MN
G, if Mds, Mda,

h P F1 −
Mda

MN
,
mR

q

MN
G, if Mda , Mds. s39d

A similar plateau has been found in other applications
[29–31]. The singularities in the quark-exchange propagator
put another constraint on the acceptable range ofh ;h
.

1
2s1−mR

q /MNd. No such constraint exists fors, which re-
lates to the relative momentum between two quarks. To sim-
plify the algebra we takes=1/2.

In what follows we use a momentum mesh of 60360 for
p,k, mapped in a nonlinear way to a finite interval. In the
nonsingular regime of Mandelstam parameterh Eq. (39), the
Faddeev solution is almost independent of the upper limit on
the Chebyshev expansion, and formmax=10,nmax=12, see
Fig. 8, this seems to be satisfied. This limit is somewhat
higher than the reported values for simple models[29–32].

B. Nucleon solution

In order to understand the role of the axial diquark in
nucleon solution, we first consider the choicera=0. For this
case we find that the nonconfining set A cannot generate a
three-body bound state without the inclusion of the off-shell
contribution. For the confining set B one also has to enhance
the diquark–quark–quark couplinggdsqq by a factor of about
1.73 over the value defined in Eq.(17) (as we will show, this
extra factor is not necessary when the axial-vector diquark is
included). The situation is even more severe in the on-shell
treatment of the local NJL model, since one needs to include
the quark–quark continuum contribution in order to find a
three-body bound state when the axial-vector diquark chan-
nel is not taken into account[24].

As can be seen from Fig. 4 a decrease inrs leads to a
larger diquark mass, and an increase in the off-shell contri-
bution to the quark–quarkT-matrix (see Fig. 6). This off-

TABLE III. Diquark masses and coupling of diquarks to quarks obtained forMN=940 MeV. All masses
are given in MeV.EdssEdad denote the binding energy of diquarks in the nucleon;EN

dssEN
dad denote the binding

energy of the nucleon measured from scalar(axial) diquark mass.

Set A Set B

Set A1 Set A2 Set A3 Set B1 Set B2 Set B3

Mds 775 748 698 802 705 609

gdsqq 0.74 0.83 1.04 0.73 1.31 1.79

rs 0.09 0.12 0.17 0.06 0.14 0.24

Eds 7 34 84 14 111 207

EN
ds 226 199 149 270 173 77

Mda 705 725 775 604 660 725

gdaqq 1.08 0.98 0.79 1.99 1.67 1.28

ra 0.20 0.17 0.11 0.32 0.23 0.15

Eda 77 57 7 212 156 91

EN
da 156 176 226 72 123 193

p'
RMS 194.88 181.51 163.70 283.99 232.86 209.95
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shell correction is crucial for forming a bound nucleon. If the
off-shell contributionVssqd is omitted, a bound nucleon can-
not be found.

The nucleon result is shown in Fig. 9. We also show a
fictitious diquark–quark threshold defined asMds+mR

q. The
nucleon mass can be seen to depend roughly linearly on the
scalar diquark mass. A similar behavior is also seen in the
local NJL model[25]. Increasing the diquark mass(or de-
creasingrs) increases the nucleon mass, i.e., the scalar di-
quark channel is attractive. In order to obtain a nucleon mass
of 940 MeV, we need diquark masses of 608 and 623 MeV
for set A and B, respectively. The corresponding nucleon

binding energy measured from the diquark–quark threshold
are 56 and 91 MeV for set A and B, respectively, compared
to the binding of the diquarks(relative to the quark–quark
pseudo threshold) of about 174 and 193 MeV for set A and
B, respectively. Such diquark clustering within the nucleon is
also observed in the local NJL model[25], and is qualita-
tively in agreement with an instanton model[43] and lattice
simulations[44].

Next we investigate the effect of the axial-vector diquark
channel on nucleon solution. We find that the axial-vector

FIG. 12. (Color online) Chebyshev moments(labeled byn) of
the scalar and axial-vector(AV ) diquark amplitudes of the nucleon
BS wave function given by set A1. FIG. 13. (Color online) Chebyshev moments(labeled by the

ordern) of scalar and axial-vector(AV ) diquark amplitudes for the
nucleon BS wave function obtained for parameter set B1.
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diquark channel contributes considerably to the nucleon
mass and takes away the need for the artificial enhancement
of the coupling strength for set B. In Fig. 10 we show the
nucleon mass as a function of the scalar and axial-vector
diquark mass. As in the scalar diquark channel, we define the
axial-vector diquark–quark threshold asMda+mR

q. We see
that as one increases the axial-vector diquark(and scalar di-
quark) masses, the quark–quark interaction is weakened and
consequently the nucleon mass increases. Therefore the con-
tribution of the axial-vector channel to the nucleon mass is
also attractive.

In Fig. 11 we plot the parameter space of the interaction
Lagrangian with variablers and ra which leads to the
nucleon massMN=940 MeV. The trend of this plot for the
nonconfining set A is very similar to the one obtained in the
local NJL model[26].

If the scalar diquark interactionrs is less than 0.14, we
need the axial-vector interaction to be stronger than the sca-
lar diquark channelra. rs in order to get the experimental

value of nucleon mass. For set B, as we approachra=0, the
curve bends upward, reflecting the fact that we have no
bound state with only the scalar diquark channel.

In Fig. 11 we see for the confining set B that the interac-
tion is again shared between the scalar and the axial-vector
diquark and for smallrs,0.19 one needs a dominant axial-
vector diquark channelra. rs. It is obvious that the axial-
vector diquark channel is much more important in the con-
fining than the nonconfining phase of model.

In order to study the implications of the quark confine-
ment for the description of the nucleon, we compare in Table
III three representative cases for both the nonconfining and
confining parameter sets, which all give a nucleon mass of
about 940 MeV. The first three columns contain results for
set A, and the last three columns for the confining set B.

Given the definition of diquark–quark thresholds, in the
presence of both scalar and axial-vector diquark channels,
the diquarks in the nucleon can be found much more loosely
bound, although one obtains a very strongly bound nucleon
solution near its experimental value; see Table III. Next we
study the nucleon BS wave function for the various sets
given in Table III. The nucleon wave and vertex function are
not physical observables, but rather they suggest how ob-
servables in this model will behave. In Figs. 12 and 13 we
show the leading Chebyshev moments of the scalar functions
of the nucleon BS wave function for various sets(A1 and
B1). They describe the strengths of the quark–diquark partial
waves withS as a total quark–diquark spin andL as a total
orbital angular momentum. They are normalized to
F1

fs0dsp1d=1, wherep1 is the first point of the momentum
mesh. Very similar plots are found for the other sets of pa-
rameters given in Table III. It is seen that the contribution of
higher moments are considerably smaller than lower ones,

FIG. 14. Diagram corresponding to the definition of density Eq.
(40).

FIG. 15. (Color online) Shows the nucleon
density (M =940 MeV, set A) with respect to
relative momentum between diquark and quark
for different sets of A1, A2, and A3.
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indicating a rapid convergence of the expansion in terms of
Chebyshev polynomials. In the confining case, Fig. 13, there
is a clear interference which is not present in the nonconfin-
ing one, Fig. 12. Therefore in the confining case, all wave
function amplitudes are shifted to higher relative four-
momenta between the diquark and quark.

In order to understand the effect of this interference, we
construct a density function for the various channels in the
nucleon rest frame. This density is defined as

rsp',Pd =E dp4c†sp',p4,PdD̃−1spddcsp',p4,Pd, s40d

where p' stands for the space component of the relative

momentump, andD̃−1spdd is defined in Eq.(25). This defi-
nition corresponds to a very naive diagram describing the
quark density within the nucleon; see Fig. 14. In the above
definition of the density function, we have integrated over
the time component of the relative momentum. In this way
the density function becomes very similar to its counterpart
in Minkowski space. Although the above definition of den-
sity is not unique, it does provide a useful measure of the
spatial extent of the wave function. Similar calculations have
been done for the quark condensate in Ref.[27]. The results
are plotted in Figs. 15 and 16.

It is noticeable that in all cases, thes-wave in scalar di-
quark channel is the dominant contribution to the ground
state. The relative importance of the scalar and the axial
diquark amplitude in the nucleon changes with the strength
of the diquark–quark couplingsgdsqqsgdaqqd and accordingly
with rssrad. There are indications that in the confining sets,
the nucleon density extends to higher relative momentum

between the diquark and the quark. These imply a more com-
pact nucleon in the confining cases. In order to find a quan-
titative estimate of the confinement effect in our model, we
calculatep'

RMS=skp'
2 l−kp'l2d1/2; the results can be found in

Table III.
We also see in the both confining and nonconfining cases

a decrease inp'
RMS with weakening axial-vector diquark in-

teraction(and consequently increasing the scalar diquark in-
teraction strength). This can be associated with the important
role of the axial-vector diquarks. If we comparep'

RMS for the
two sets A2 and B2, which have very similar interaction
parametersrssrad, an increase of about 25% is found.

V. SUMMARY AND OUTLOOK

In this work we have investigated the two- and three-
quark problems in a nonlocal NJL model. We have truncated
the diquark sector to the scalar and the axial-vector channels.
We have solved the relativistic Faddeev equation for this
model and have studied the behavior of the nucleon solutions
with respect to various scalar and the axial-vector interac-
tions. We have studied the dependence of the baryon masses
and waves on the interaction parametersrs andra (and on the
scalar and the axial-vector diquark mases), which can de-
scribe the pion and the nucleon simultaneously. In order to
put more restrictions on these parameters, one would need to
calculate theD mass as well.

Although the model is quark confining, it is not diquark
confining (at least in the rainbow-ladder approximation). A
bound diquark can be found in both scalar and the axial-
vector channel for a wide range of couplings. We have found
that the off-shell contribution to the diquarkT-matrix is cru-

FIG. 16. (Color online) Shows the nucleon
density (M =940 MeV, set B) with respect to
relative momentum between diquark and quark
for different sets of B1, B2, and B3.
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cial for the calculation of the nucleon: without it the attrac-
tion in the diquark channels is too weak to form a three-body
bound state. We have also found that both the scalar and the
axial-vector contribute attractively to the nucleon mass. The
role of axial-vector channel is much more important in the
confining phase of model. The nucleon in this model is
strongly bound even though the diquarks are rather loosely
bound. The confining aspects of the model are more obvious
in three-body, rather than the two-body sector. We decom-
posed the nucleon BS wave function in the nucleon rest
frame in terms of spin and orbital angular momentum eigen-
states and constructed the quark density function in the vari-
ous channels. It was revealed thats-wave in scalar diquark
channel is the dominant contribution to the ground state. By
investigating the nucleon wave function we found that quark
confinement leads to a more compact nucleon. The size of
nucleon is reduced by about 25% in the confining cases.

For both confining and nonconfining cases, an increase in
the scalar diquark channel interactionrs leads to a lower
nucleon mass; see Fig. 10. However, the mass of theD
should be independent ofrs since it does not contain scalar
diquarks[26,29,43]. In the standard NJL model the differ-
ence between the nucleon andD masses is strongly depen-
dent on the scalar diquark interaction[26]. In the current

model where the axial-vector diquark makes a larger contri-
bution to the nucleon mass, a detailed calculation of theD is
needed to understand the mechanism behind theD-N mass
difference. Note also that neglectingpN-loops may lead to a
quantitative overestimate of the axial-vector diquark role in
the nucleon[45].

In order to understand the implications of this model in
baryonic sector fully one should investigate other properties
of the nucleons such as the charge radii, magnetic moments
and axial coupling. On the other hand, the role of quark
confinement in this model may be better clarified by inves-
tigating quark and nuclear matter in this model. Such prob-
lems can also be studied within the same Faddeev approach
[5,46].
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