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We examine cross sections for the processesgN→NKK̄ in the framework of a phenomenological Lagrang-
ian. We include contributions fromL andS resonances up to spin 3/2, as well as those from an exoticQ+. We
allow theQ+ to have spin 1/2 or 3/2, with either positive or negative parity in each case. We also allow the
state to be either isovector or isoscalar. We find that the scenario that most closely matches observations at
Jefferson Laboratory requires a moderately large coupling of theQ+ to NK* .
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I. INTRODUCTION

A. Experimental indications

In the past several months, a number of experimental
groups have reported signals for a pentaquark state called the
Q+ [1–9]. The first evidence for such a state was reported by
the Spring-8 Collaboration[1]. The search by Spring-8 was
motivated by predictions, made within the framework of the
chiral soliton model, by Diakonovet al. [10]. Most searches
that have reported evidence for the state put its mass around
1540 MeV. However, in all cases, the experimental resolu-
tion has been such that only upper limits for the width of the
state could be given. Evidence for other pentaquarks pre-
dicted as partners to theQ+, particularly theJ−−, has also
been reported by the NA49 Collaboration[11]. Using the
time-delay technique, Kelkaret al. have found evidence of
not only theQ+ in K+N scattering data, but also a possible
spin-orbit partner[12] along with a third possible state.

Despite the number of pentaquark sightings, the situation
is far from clear. Two members of the NA49 Collaboration
produced a minority report pointing out that there was no
strong evidence for the existence of theJ−− in older, higher-
precision data[13]. The HERA-B Collaboration sees no evi-
dence for theQ+ [14], and the BES Collaboration also report
no evidence in their searches[15]. Searches at RHIC have
also yielded no evidence so far[16]. Because some experi-
ments have reported signals for the pentaquarks, while others
have seen no sign of them, Karliner and Lipkin[17] have
postulated the existence of a “crypoexotic”N* that plays a
significant role in production of theQ+. In addition, none of
the experiments that report a signal for any of the pen-
taquarks can say anything about their spin or parity.

Quite apart from the question of the existence of theQ+,
the question of its width is also very interesting. Nussinov
[18] has examined the implication of such a state for existing
K+d data, and has concluded that the width of the state had to
be less than 6 MeV. Arndt and collaborators[19] have per-
formed a similar analysis onK+N scattering data, and have
concluded that the width has to be less than 1 MeV, while
Haidenbauer and Krein[20] conclude that the width of the
state must be less than 5 MeV, or that its mass must be much
lower than reported. Cahn and Trilling[21] have suggested
that the width is 0.9±0.3 MeV, based on their analysis of

data fromK+ collisions on xenon. Gibbs[22] has also exam-
ined K+d data and has extracted a width of 0.9±0.2 MeV.
Sibirtsevet al. [23] have come to similar conclusions.

B. Theoretical implications

The existence of a pentaquark state would not be too jar-
ring for most QCD practitioners, as multiquark states have
been anticipated for decades. However, its light mass and
apparently narrow width are difficult to explain in a “con-
ventional” scenario, and have stimulated much discussion
and many postulates. Dzierbaet al. have raised the possibil-
ity that the “signal” is really a kinematic reflection[24]. Jaffe
and Wilczek[25] have constructed a diquark scenario for the
Q+. One consequence of their scenario is that the state
should have a spin-orbit partner, for which there is little or
no evidence to date. Capstick and collaborators[26] have
suggested that the state is as narrow as it is because it has
isospin 2. This means that there should be isospin partners,
none of which have been seen.

Jennings and Maltman[27] have examined pentaquark
phenomenology in a number of scenarios, and conclude that
such a state fits into the quark model picture if its parity is
positive, but this implies the existence of spin-orbit partners.
Karliner and Lipkin [28] invoke the mixing of two nearly
degenerateKN resonances to explain the narrow width of the
Q+. They have also speculated on the phenomenology of
pentaquark states containing a charm quark[29]. In addition,
there are many papers that examine the phenomenology of
pentaquarks using QCD sum rules[30], various quark mod-
els [31], and string theory[32]. A number of unique sce-
narios have also been proposed[33]. There have even been
suggestions that the states seen are in fact heptaquarks[34],
or NKp bound states[35]. Some lattice simulations suggest
that the parity of the state is negative[36,37], while the work
of Chiu and Hsieh suggests that it is positive[38]. More
recent lattice work reports no signal for the pentaquark state
[39].

C. Cross-section ramifications

Among the many unanswered questions regarding theQ+

(and other pentaquark candidates) is that of the cross section
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for its production in a particular reaction. To address this, a
number of authors have examined cross sections for produc-
ing them in a number of reactions[40–49]. Most of these
have been aimed at determining the spin and parity of the
state, but they have all provided estimates for the production
cross section. Various photoproduction mechanisms and ob-
servables are examined in Refs.[40–49], while the authors
of Ref. [42] treat the reactionK+p→p+K+n with kinematics
suited to production of theQ+. The authors of Ref.[45] also
examine production of theQ+ using a pion as the incident
particle.

The calculation of Ref.[49] is closest in spirit to the work
that we present here. Those authors use a phenomenological
Lagrangian to describe the reactiongn→nK+K−. In addition
to the contribution of theQ+, they also included twoS−

hyperons: theS−s1197d and theS−s1660d. These hyperons
provided the background contribution in their calculation.
Close and Zhao[41] have emphasized the importance of
comparing the cross section for producing the pentaquark
states with those for producing nonexotic hyperons.

In this paper, we examine the cross section for the process
gN→NKK̄. We include many contributions, and examine all
of the channels that are allowed. By including a number of
contributions, we are able to understand the roles played by
nonexotic hyperons, and by thefs1020d. More specifically,
since some of the properties of the nonexotic hyperons are
known, these can be used to get a handle on how big are the
cross sections for their production, and for the production of
the Q+.

The results of this calculation are relevant to past, presnt,
and future searches using photon beams. For the published
results so far, this means the searches at JLab[3,5], the
search by the Saphir Collaboration[4], and, of course, the
search by the Spring-8 Collaboration[1]. We note, however,
that in Ref. [5], the process studied isgp→np+K+K−, not
any of the ones discused in this paper. While the main focus
of our discussion will be the JLab searches, we will also
comment on the other two searches where appropriate.

The rest of this paper is organized as follows. The next
two sections focus on establishing the framework for the
calculation: the general amplitude, kinematics, and cross sec-
tion are discussed in the next section, and the phenomeno-
logical Lagrangian terms and most of the coupling constants
needed for building the model are presented in Sec. III. The
diagrams representing the contributions that are included in
this calculation are also shown in that section. We present
our results in Sec. IV, and a summary and outlook in Sec. V.

II. GENERAL AMPLITUDE, KINEMATICS,
AND CROSS SECTION

A. Kinematics and cross section

We begin by describing the kinematics of the process.k is
the momentum of the photon,p1 is that of the target nucleon,
p2 is that of the scattered nucleon, andq1 andq2 are the kaon
momenta. Momentum conservation gives

k + p1 = p2 + q1 + q2. s1d

This means that when we construct the amplitude for the
process using all the four-vectors at our disposal, we can
eliminate one of these from consideration.

The total center-of-mass energy of the process isÎs,
wheres=sk+p1d2. We may define a variablet as the square
of the momentum transfered to the nucleon, namelyt=sp2

−p1d2, and this is related to the scattering angle of the
nucleon in the center-of-mass frame.

The differential cross section for this process is described
in terms of five kinematic variables. These may be, for in-
stance, two Lorentz invariants and three angles. One obvious
choice for one of the invariants iss. The choice of the other
four quantities can be fairly arbitrary, and depends on what
information is being presented. One choice is the scattering
angle of the nucleon,u, or equivalently,t. For the other three
variables, we can choose, for example,sKK̄;sq1+q2d2 and
dV

KK̄

* ;dQ
KK̄

*
dF

KK̄

*
. Here,Q

KK̄

*
and F

KK̄

*
are determined in

the rest frame of theKK̄ pair, relative to az8 axis defined by
the direction of motion of the pair of kaons. Another equally
valid choice would besNK;sp2+q1d2 anddVNK

* , where the
solid angle is defined in the rest frame of the nucleon-kaon
pair.

The differential cross section is

] s

] MNK
2 ] M

NK̄

2 =
1

s2pd5

1

p1 ·k
E uMu2d cosudF

KK̄

*
, s2d

whereu is the scattering angle of theKK̄ pair relative to the
momentum of the incident photon, in the rest frame of the
initial photon and nucleon.

B. General amplitude

Our starting point is the construction of the most general
form for the transition amplitude for this process. While the
requirements of Lorentz covariance and gauge invariance de-
limit the form of the amplitude, we find that there is never-
theless quite a bit of freedom in the form chosen. The most
general form is

iM = Usp2d«mOmUsp1d, s3d

where

Om = a1p1
m + a2p2

m + a3q1
m + a4gm + k”sa5p1

m + a6p2
m + a7q1

m

+ a8gmd + q”1sa9p1
m + a10p2

m + a11q1
m + a12g

md

+ q”1k”sa13p1
m + a14p2

m + a15q1
m + a16g

md. s4d

Note that we have no terms inp”1 nor p”2, as the initial and
final nucleons each satisfy

p”Uspd = mUspd. s5d

The amplitude coefficientsai are all functions of the ki-
nematic variabless, sKK̄, u, Q* , andF* , or whatever combi-
nation of kinematic variables is chosen. Their exact depen-
dence on each of these variables will be determined by the
specific model constructed.

Gauge invariance of the amplitude requires thatkmOm

=0, which leads to the four relations

a1k · p1 + a2k · p2 + a3q1 ·k = 0, s6d

a4 + a5k · p1 + a6k · p2 + a7q1 ·k = 0, s7d
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a9k · p1 + a10k · p2 + a11q1 ·k = 0, s8d

a12 + a13k · p1 + a14k · p2 + a15q1 ·k = 0. s9d

Note that there is no condition on eithera8 or a16.
From these equations, we can eliminate four of the ampli-

tude coefficients, leaving us with 12 independent ones, or
Lorentz-Dirac structures, to describe the amplitude. One
choice would be to eliminatea1, a4, a9, a12, which gives

«mOm = H 1

p1 ·k
fsa2 + a10q”1dp2mp1n + sa3 + a11q”1dp2mp1ng

+ sa5 + a13q”1dp1ngm + sa6 + a14q”1dp2mgn

+ sa7 + a15q”1dq1mgn −
1

2
sa8 + a16q”1dgmgnJFmn,

where Fmn=«mkn−«nkm. Another choice isa1, a5, a9, a13,
giving

«mOm = H 1

p1 ·k
fsa2 + k”a6 + q”1a10 + q”1k”a14dp2mp1n

+ sa4 + q”1a12dp1ngm + sa3 + k”a7 + q”1a11

+ q”1k”a15dq1mp1ng −
1

2
sa8 + a16q”1dgmgnJFmn.

Note that these two forms contain a potential kinematic sin-
gularity at p1·k=0. However, this singularity is outside the
physically accessible region for the process we are discuss-
ing, and since this calculation involves no loop integrations,
such singularities are of no real concern.

A further four structures may be eliminated by use of
so-called equivalence relations, leaving a total of eight. A
more detailed discussion of this is beyond the scope of this
paper.

III. PHENOMENOLOGICAL LAGRANGIANS

The framework in which we treat the processgN

→NKK̄ is the phenomenological Lagrangian. In this ap-
proach, all particles are treated as pointlike. Their structure is
accounted for by inclusion of phenomenological form fac-
tors, which we discuss in a later subsection.

A. Ground-state baryons

We begin with the Lagrangians needed for the electro-
magnetic vertices of pseudoscalar mesons and ground-state
baryons. We treat nucleons as an isospin doublet, with

N = Sp

n
D .

Kaons are also treated as isospin doublets

FK = SK+

K0DG .

p andS are treated as isotriplets.
In what should be a transparent notation, the electromag-

netic part of the Lagrangian is(omitting theQ+ for the time
being)

L1 = N̄S−
e

2
s1 + t3dgmAm +

e

4MN
sks

N + t3kv
NdgmgnF

mnDN + S̄S−
e

2
s1 + T3dgmAm +

e

4MS

sks
S + t3kv

SdgmgnF
mnDS

+ L̄
e

4ML

mLgmgnF
mnL + S0̄ e

2sMS
0 + MLd

mSLgmgnF
mnL −

e

2
fK†s1 + t3ds]mKd − s]mK†ds1 + t3dKgAm + H.c., s10d

wheremSL is theS0→L transition magnetic moment,mL is the magnetic moment of theL, ks
N andkv

N describe the anomalous
magnetic moments of the nucleon doublet, and theks,v

S are the corresponding quantities for theS isotriplet.T3 is the isospin
operator for the isotriplet.

The coupling of pseudoscalar mesons to ground-state baryons is described by the Lagrangian

L2 =
gNNp

2MN
N̄gmg5s]mp · tdN +

gNLK

MN + ML

N̄gmg5s]mKdL +
gNSK

MN + MS

N̄gmg5S · t]mK +
gNNh

2MN
N̄gmg5Ns]mhd

− e
gNNp

2MN
N̄gmg5A

mt3p · tN − e
gNLK

MN + ML

N̄gmg5A
mt3KL − e

gNSK

MN + MS

N̄gmg5S · tAmt3K + H.c. s11d

h is an isosinglet field representing theh meson. The last three terms of this Lagrangian are obtained by minimal substitution
in the first three terms.

B. Vector mesons

The vector mesons that enter into our model areK* andf. The K* is treated as a vector isodoublet fieldKm, completely
analogously to theK, while thef is represented by a vector isosinglet fieldfm. The Lagrangian in this sector is
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L3 = N̄SGv
fgmfm + i

Gt
f

2MN
gmgns]nfmdDN + N̄SGv

K*NLgmKm
* + i

Gt
K*NL

MN + ML

gmgns]nKm
* dDL + N̄SGv

K*NSgmS · tKm
*

+ i
Gt

K*NS

MN + MS

gmgnS · t]nKm
* D + eabmnSgfpg

mp

fas]mAbd]np0 +
gfhg

mh

fas]mAbd]nhD +
gfKK

mK
fK†s]mKd − s]mK†dKgfm

+
gK*Kp

mK
fK†s]mp · td − s]mK†dp · tgKm

* . s12d

C. Baryon resonances

There are a number of resonances that need to be taken
into account in a calculation such as this. Since the experi-
mental target is a nucleon, any of the nucleon orD reso-
nances are expected to play a role. For the energy range that
we consider, and more particularly, for the scope of this cal-
culation, we find that the most salient points can be illus-
trated without any nonstrange resonances. Among the hyper-
ons, any number of them can be included, but again we limit
the scope so that only the lowest few hyperon resonances are
taken into account. In either case, we do not consider any
baryon with spin greater than 3/2. With the scope of the
model limited like this, there are only a few Lagrangian
terms that must be considered in this sector. The nonexotic
hyperons that are included are listed in Table II.

1. Spin 1/2

Lagrangian terms needed for spin-1/2 resonances are

L4 = N̄
gS*NK

s1/2d

mK
gmg5S* · t]mK + N̄

gL*NK
s1/2d

mK
gmg5s]mKdL*

+ N̄
gQNK

s1/2d

mK
gmg5s]mKdQ+ + N̄

gS*NK
s1/2d

mK
gmS* · t]mK

+ N̄
gL*NK

s1/2d

mK
gms]mKdL* + N̄

gQNK
s1/2d

mK
gms]mKdQ− + H.c.,

s13d

whereQ± is the field forQ+ with JP=1/2±. The first three
terms of this Lagrangian correspond to states withJP=1/2+,
while the last three terms are forJP=1/2−. In addition, the
Q+ part of the Lagrangian written above assumes that the
state is an isosinglet. For an isotripletQ+ with JP=1/2+, the
Lagrangian would become

L5 = N̄
gQNK

mK
gmg5Q+ · t]mK + N̄

gQNK

mK
gmQ− · t]mK.

s14d

2. Spin 3/2

The Lagrangian terms for spin-3/2 resonances are

L6 = N̄
gS*NK

s3/2d

mK
Sm

* · t]mK + N̄
gL*NK

s3/2d

mK
s]mKdLm

*

+ N̄
gQNK

s3/2d

mK
s]mKdQ+m

+ N̄
gS*NK

s3/2d

mK
g5Sm

* · t]mK + N̄
gL*NK

s3/2d

mK
g5s]mKdLm

*

+ N̄
gQNK

s3/2d

mK
g5s]mKdQ−m + H.c., s15d

where them indices on theL, S, andQ fields indicate that
they are vector-spinor, spin-3/2 fields. In this calculation, we
use the Rarita-Schwinger version of such fields. The first
three terms are for resonances with positive parity, while the
last three are for resonances with negative parity. For an
isovectorQ, the Lagrangian terms are

L7 = N̄
gQNK

mK
Q+m · t]mK + iN̄

gQNK

mK
g5Q−m · t]mK, s16d

where theQ±m represents aQ+ with JP=3/2±, respectively.

D. Coupling constants

To evaluate the coupling constants of the ground-state
baryons to pseudoscalar mesons, we use the extended
Goldberger-Treimann relations. For the coupling of the bary-
onsB andB8 to the pseudoscalarM, the relation is

gBB8M = SGA

GV
D

B→B8

MB + MB8

2fM
, s17d

where fM is the meson decay constant for the pseudoscalar
mesonM. sGA/GVdB→B8 is obtained from the semileptonic
decay ofB→B8 or B8→B. The values offM, sGA/GVdB→B8
(taken from theReview of Particle Physics[50]), andgBB8M
obtained from these relations are shown in Table I.

The decay width of a vector meson into two pseudosca-
lars is related to the corresponding coupling constant by

GV→P1P2
=

gVP1P2

2

48pMV
5 l3/2sMV

2,MP1

2 ,MP2

2 d, s18d

where lsa,b,cd is the Ka”llen function lsa,b,cd=a2+b2

+c2−2sab+ac+bcd. From the measured widths and branch-
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ing fractions of thef andK* mesons, we find that

gfKK = 4.3,gK*Kp = 5.6. s19d

In a similar way, the width for the processV→Pg is

GV→Pg =
gVPg

2

192pMV
3 l3/2sMV

2,MP
2,0d, s20d

which leads to

gfhg = 4.3,gfp0g = 0.055,gK0*K0g = 0.35,gK+*K+g = 0.22.

s21d

For a baryonB with JP=1/2+, the width for the decay
into a pseudoscalar mesonP and a ground-state baryonB8 is

GB→B8P =
gBB8P

2

16pMB
3MP

2 sMB + MB8d
2fsMB − MB8d

2 − MP
2g

3 l1/2sMB
2,MB8

2 ,MP
2d, s22d

while the corresponding width for a baryon withJP=1/2− is

GB→B8P =
gBB8P

2

16pMB
3MP

2 sMB − MB8d
2fsMB + MB8d

2 − MP
2g

3 l1/2sMB
2,MB8

2 ,MP
2d. s23d

For baryons withJP=3/2±, the widths are

GB→B8P =
gBB8P

2

192pMB
5MP

2 fsMB + MB8d
2 − MP

2g

3 l3/2sMB
2,MB8

2 ,MP
2d,

GB→B8P =
gBB8P

2

192pMB
5MP

2

l5/2sMB
2,MB8

2 ,MP
2d

fsMB + MB8d
2 − MP

2g
, s24d

where the first expression is for a positive-parity parent
baryon. The nonexotic hyperons that are used in this calcu-
lation, along with their masses, total widths, spins, parities,
and theirNK branching fractions and coupling constants, ob-
tained from Eqs.(22)–(24), are shown in Table II.

As mentioned above, we allow theQ pentaquarks to have
four different combinations of spin and parity in this calcu-
lation. In addition, since the width of this particle has not yet
been ascertained, we also allow different widths. Table III
shows the values of the coupling constants we obtain for the
different spins, parities, and total widths of theQ, assuming
that theNK final state saturates its decays.

Finally, we note that there are a number of coupling con-
stants for which little information is available. Perhaps the
most important of these in terms of contributions to the cross
sections are the couplings of the vector mesonsK* and f,
particularly those of thef to the ground-state baryons. The
couplings of the two hyperon resonances that lie below the
NK threshold, namely theSs1385d and theLs1405d, are also
not known with much certainty. When we display and dis-
cuss our results, we will comment further on the effects that
these coupling constants have on the graphs that we show.

E. Diagrams

The diagrams that we include in this calculation are
shown in Figs. 1–3. In these diagrams, solid lines represent
baryons. If a solid line is unlabeled, it represents a nucleon.

TABLE II. Values of gYNK for nonexotic hyperons appearing in
the model.

Y sMassd JP GsMeVd ĠNK/G gYNK

Ls1520d 3
2

− 16 0.45 15.2

Ls1600d 1
2

+ 150 0.2 1.05

Ls1670d 1
2

− 35 0.25 0.32

Ls1690d 3
2

− 60 0.25 5.53

Ls1800d 1
2

+ 300 0.35 0.86

Ls1810d 1
2

+ 150 0.35 0.71

Ls1890d 3
2

+ 100 0.3 1.09

Ss1580d 3
2

− 15 0.45 1.95

Ss1620d 1
2

− 80 0.22 0.52

Ss1660d 1
2

+ 100 0.2 0.67

Ss1670d 3
2

− 60 0.1 3.88

Ss1750d 1
2

− 90 0.26 0.44

Ss1880d 1
2

+ 80 0.06 0.19

Ss1940d 3
2

− 220 0.13 3.19

TABLE I. Values of gBB8M obtained using the Goldberger-
Treimann relations.

Coupling fM sGeVd sGA/GVdB→B8 gBB8M

gpNNp 0.13/Î2 1.22 12.8

gNSK 0.16/Î2 0.34 3.2

gNLK 0.16/Î2 −0.718 −6.51

gNNh <1.2fp 1.22 10.37

TABLE III. Values of gQNK for different spins, parities, and total
widths of theQ.

J P G sMeVd gQNK

1
2 + 1 0.27
1
2 + 10 0.87
1
2 − 1 0.16
1
2 − 10 0.50
3
2 + 1 0.61
3
2 + 10 1.94
3
2 − 1 4.35
3
2 − 10 13.76
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Dashed lines represent pseudoscalar mesons, with unlabeled
dashed lines representing kaons. Wavy lines are photons and
dotted lines are vector mesons. Each diagram shown actually
represents a set of diagrams, as all allowed permutations of
external meson and photon legs are taken into account.

We include a number of hyperon resonances in this cal-
culation. These are listed in Table II. For each of the reso-
nances, there is a corresponding set of diagrams of the kind
shown in Fig. 3.

There are a number of contributions that have been omit-
ted from this calculation. For instance, we have omitted all
but the ground-state nucleon, and all of theD resonances. In
fact, with the information that is available on how these
states couple to final states with hidden strangeness, we have
found that their contributions to the cross section are small.
We have also neglected couplings to higher moments of any
of the hyperon resonances[Fig. 3(d)], as well as any contri-
butions that would arise from electromagnetic transitions be-
tween excited hyperons and their ground states. In principle,
there is noa priori reason to expect such contributions to be
small, but little is known of those couplings. Including such
contributions would add too many unknown parameters to
the model.

F. Form factors

Apart from the photon, none of the states that enter this
calculation are elementary particles: they all have substruc-
ture, and this substructure is reflected in the need to include
some kind of form factor at each interaction vertex. Indeed,
without such form factors, cross sections grow with energy,
and the unitarity limit is quickly violated.

Inclusion of any form factors in a calculation like this
must be done in a manner that preserves gauge invariance,
and a detailed discussion of all of the issues that arise, and all
of the methods and prescriptions for preserving gauge invari-
ance, are beyond the scope of this paper. In this calculation,
we adopt the prescription of assigning an overall form factor
to gauge invariant sets of diagrams. This means, for instance,
that all of the diagrams of the type shown in Fig. 1 have the
same form factor as a multiplicative factor. For all of the
form factors, we choose the form[43,45]

F = S X4

spi
2 − mi

2d2 + X4Dn

. s25d

In this expression,pi is usually the momentum of the
off-shell particle with massmi. In this calculation, we make
the simplification of setting all of thepi

2 to be equal tos, the
total energy in the cm frame, squared.X is chosen to be
1.8 GeV, as has been used by other authors. In addition,
since we apply this form factor to sets of diagrams, we
choosemi to be the mass of the lightest off-shell particle in a
particular set. The exception to this occurs in the diagrams of
Figs. 2(d) and 2(f), wheremi is chosen to be the mass of the
vector meson in the diagram. The value of the integern
depends on the spin of baryons in the diagram. If there are
only spin-1/2 baryons in the set of diagrams,n is chosen to
be unity, while for spin- 3/2 baryons,n is chosen to be two.

The form that we have chosen for the form factors, as
well as the manner in which we apply them, is simply a
prescription, and is not meant to be rigorous. We note that
the form factors chosen have the desired effect, producing
cross sections that are roughly of the correct order of mag-

FIG. 2. Diagrams containing vector mesons. The dotted lines
represent the vector mesons.

FIG. 3. Diagrams containing excited baryons. In(a)–(d), the
thick solid lines may be eitherL* , S* , or Q, while the thin solid line
is a nucleon. In diagram(d), the photon couples to the charge of the
intermediate resonance: in this model, we neglect couplings to any
higher moments of the resonance.

FIG. 1. “Born” diagrams: continuous, unlabeled lines are nucle-
ons. Unlabeled dashed lines are kaons and wavy lines are photons.
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nitude. Without these form factors, calculated cross sections
are much too large.

IV. RESULTS

There are six possible channels to be explored, namely

gp→pK+K−, gp→pK0K̄0, gp→nK+K̄0, gn→nK+K−, gn

→nK0K̄0, andgn→pK0K−. It will be impossible to present
results for all of these channels without making this paper
overly long. We therefore choose a few examples to illustrate
the main features of the model. We note, however, that the
first result reported from JLab used a deuteron target, while
searches using proton targets have been and are being carried
out. Examining the cross sections for both kinds of targets is
therefore relevant.

In the following subsections, we present the results of our
model calculation. We begin with the results of the full
model, including thef andLs1520d. We then exclude these
two states to more closely simulate the pentaquark searches
that have been carried out at JLab, and examine the effects of
the spin, parity, width, and isospin of the pentaquark on the
cross section. We also examine the role of theK* in increas-
ing the cross section for production of theQ+.

We note that theSs1385d plays very little role in the
results we present, as its contribution to the cross section is
small. The same is true of theN* states that we consider, as
their couplings toLK andSK final states are generally small,
at least for the ones we have examined. TheLs1405d, on the
other hand, can significantly affect the cross section near

threshold in theNK̄ mass distributions. If the value for the

coupling of this state to theNK̄ channel is chosen to be
sufficiently large, a sharp shoulder at lower masses arises in

the mass distribution of theNK̄. The absence of such a shoul-
der in the experimental data limits the size of this coupling
constant. We use a value of 5.3 for this constant.

In Ref. [3], the process studied wasgd→pnK+K−. The
Ls1520d was identified in the mass distribution of thepK−

pair, thef in the K+K− pair, and theQ+ in the nK+ pair. We
assume that either one of the initial nucleons takes an active
part in the scattering process, while the other acts as a spec-
tator. This would mean that the two processes contributing to
the pnK+K− final state aregp→pK+K− andgn→nK+K−. In
addition, this means that in the mass distributions observed,
only the proton component of the target contributes to the
production of theLs1520d, and only the neutron component
contributes to the production of the isoscalarQ+. The two
processesgp→pK+K− andgn→nK+K− are therefore the fo-
cus of much of our discussion. However, searches in other
channels have been and are being carried out, and some dis-
cussion is devoted to those channels as well.

A. Full model

For all of the results that we display, we present]s /]mij
2,

wheremij
2 =spi +pjd2, andpi is the momentum of theith par-

ticle in the final state. Thus, we expect to see strong resonant

effects from thef in the KK̄ subsystem, and similar effects

arising from theLs1520d in the NK̄ subsystem. We also ex-

pect to see weaker resonant effects from the other hyperons
that are included in the calculation.

While the coupling of theLs1520d to NK can be deter-
mined from theNK partial width of the state, there is no
simple way of determining thefNN coupling constants, ex-
cept by a detailed analysis off photoproduction cross sec-
tions. Indeed, the angular distributions would have to be ana-
lyzed in order to determine the relative magnitudes and signs
of the vector and tensor couplings. Such an analysis is well
beyond the scope of this work. In the results that we show
for the full calculation, we chooseGv

f=4 and Gt
f=5. The

actual values are of no import for the main topic of the paper.
We must also point out that we have not included any dif-
fractive production of thef.

The results that we show are forw=2.5 GeV. We have
examined some of the cross sections for smaller values ofw,
and we will comment on those results later in the paper.

1. Isoscalar, spin-1/2Q+

Figure 4 shows the differential cross section,]s /]MNK
2 ,

for an isoscalarQ+ with spin 1/2. The curves in(a) and (b)
are for the processgn→nK+K−, while (c) is for gp
→pK+K−. In (a) and(b), the width of theQ+ is allowed to be
1 MeV (solid curves) or 10 MeV (dashed curves). In addi-
tion, (a) results from aQ+ with positive parity, while(b)
corresponds to one with negative parity. Since the isoscalar
Q+ is not produced off the proton in this channel, neither its
parity nor its width affects the curve that results in(c). The
structures seen in this plot arise from kinematic reflections of
the Ls1520d and thef.

If there were free neutron targets, the curves in(a) suggest
that theQ+ would be relatively easy to observe above back-
ground, modulo detector efficiency, resolution, and accep-

FIG. 4. The differential cross section]s /]MNK
2 as a function of

MNK, for a spin-1/2Q+. The curves in(a) and (b) are for the
processgn→nK+K−, while the curve in(c) is for gp→pK+K−. In
(a) and (b), the solid curves arise for a pentaquark with a width of
1 MeV, while the dashed curves correspond to a width of 10 MeV.
The curves in(a) arise from a pentaquark with positive parity, while
those in(b) are for a pentaquark of negative parity.
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tance issues. However, for deuteron targets, the presence of
the proton would modify this somewhat.

Figure 5 shows the same differential cross sections, but as
functions of different invariant masses. Figures 5(a) and 5(b)
show the differential cross sections as a function of the mass
of the nucleon-antikaon pair, while Figs. 5(c) and 5(d) show
it as a function of the mass of theKK̄ pair. In addition,(a)
and (c) result from a neutron target, while(b) and (d) are
from a proton. In the case of the proton target, theLs1520d
dominates the cross section in(b), while the contribution of
the f can be seen as the structure at larger values ofMNK̄.
The roles are reversed in(d): thef gives the prominent peak,
while theLs1520d provides the “plateau” at larger invariant
mass. For the neutron target[(a) and(c)], L’s do not contrib-
ute to this channel, but the effects of theS resonances in-
cluded in the calculation can be seen in(a). In this case, the
bulk of the cross section comes from thef, as can be seen
from (c).

Figure 6 shows the differential cross section,]s /]MNK
2 ,

for the processesgp→pK0K̄0 [(a) and (c)] andgp→nK+K̄0

[(b) and (d)]. The graphs in(a) and (b) assume that theQ+

has positive parity, while those in(c) and (d) are for a pen-
taquark with negative parity. From these curves, particularly
those in(b) and (d), it should be clear that observing aQ+

signal could be somewhat problematic unless the contribu-
tions from theLs1520d and thef were excluded. We discuss
this in a later subsection.

2. Isoscalar, spin-3/2Q+

Figure 7 shows the differential cross section if theQ+ is
assumed to be an isoscalar with spin 3/2. As with the spin-
1/2 discussion, the curves in(a) and (b) are for the process

FIG. 5. The differential cross section]s /]M
NK̄

2
as a function of

MNK̄ [(a) and(b)], and]s /]M
KK̄

2
as a function ofMKK̄ [(c) and(d)].

The curves in(a) and (c) are for the processgn→nK+K−, while
those in(b) and (d) are forgp→pK+K−.

FIG. 6. The differential cross section]s /]MNK
2 as a function of

MNK. The curves in(a) and (c) are for the processgp→pK0K̄0,

while those in(b) and(d) are forgp→nK+K̄0. (a) and(b) are for a
positive parityQ+ while (c) and (d) are for aQ+ with negative
parity.

FIG. 7. The differential cross section]s /]MNK
2 as a function of

MNK, for a spin-3/2Q+. The curves in(a) and (b) are for the
processgn→nK+K−, while (c) is for gp→pK+K−. In (a), the Q+

has positive parity, while in(b), its parity is negative.
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gn→nK+K−, while those in(c) are for gp→pK+K−. In (a)
and (b), the width of theQ+ is allowed to be 1 MeV(solid
curves) or 10 MeV (dashed curves). In addition, (a) results
from a Q+ with positive parity, while(b) corresponds to one
with negative parity. It is interesting to note that the height of
the peak of theQ+ for the 3/2− case is comparable to that of
the Ls1520d [seen in Fig. 5(b), for instance]. This is not
surprising, since the states are almost degenerate, and the
height of the peak at resonance depends only on kinematics,
which would be largely the same for the two resonances.

Figure 8 shows the same differential cross section, but as
functions of different invariant masses. The curves in(a) and
(b) show the differential cross sections as a function of the
mass of the nucleon-antikaon pair, while the curves in(c)
and (d) show it as a function of the mass of theKK̄ pair. In
each case, the upper graph results from a neutron target,
while the lower graph is from a proton. Unlike the case with
spin 1/2, the contribution to the cross section of theQ+ is
now significant, especially for the negative-parity state, and
gives rise to the strong kinematic reflections seen in(a), and
to a lesser extent, in(c) (the dotted curves, for example).

Figure 9 shows the differential cross section for the pro-

cessesgp→pK0K̄0 [(a) and (c)] and gp→nK+K̄0 [(b) and
(d)]. The graphs on the left assume that theQ+ has positive
parity, while those on the right have negative parity. From
the curves in(c) and (d), it should be clear that detecting a
signal for aQ+ with JP=3/2− would be relatively easy.

3. Isovector, spin-1/2Q+

If the Q+ were an isovector, there would be aQ++ state
that could be seen inK+p final states, as well as aQ0 that
could be present innK0 final states. Figures 10(a) and 10(c)
show the effect of such a state ingn→nK+K−, while Figs.
10(b) and 10(d) show the effect ingp→pK+K−. The curves
in (a) and (b) assume that theQ+ has positive parity, while
those in(c) and (d) assume that it has negative parity. In all
cases, the spin is assumed to be 1/2. Figures 10(e) and 10(g)
show the differential cross section forgp→pK0K̄0, while (f)

FIG. 8. The differential cross section as functions ofMNK̄ [(a)
and(b)] or MKK̄ [(c) and(d)]. The curves in(a) and(c) are for the
process gn→nK+K−, while those in (b) and (d) are for gp
→pK+K−.

FIG. 9. The differential cross section
]s /]MNK

2 as a function ofMNK. The upper graphs

are for the processgp→pK0K̄0, while the lower

ones are forgp→nK+K̄0.
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and(h) correspond togp→nK+K̄0. (e) and(f) are for aQ+ of
positive parity, while(g) and(h) assume that it has negative
parity. The curves in(b) and (d) suggest that a signal for a
Q++ should be comparable to that for aQ+, regardless of the
parity of the state.

B. Omitting L„1520…, f„1020…

It is clear from the graphs shown in the preceding discus-
sion that theLs1520d and thefs1020d dominate the cross

section forgN→NKK̄ for most channels. To enhance the
possibility of isolating aQ+ signal, experimentalists impose
kinematic cuts to eliminate the bulk of the contribution from
these two states. In our case, we will simply eliminate all
diagrams containing their contributions from the calculation.
The curves that result are presented in the next two subsec-
tions.

We note that we could also have imposed the same kine-
matic cuts on the model. The(background) distributions that
result when we do this are somewhat different from those
that we show, but the salient points of the discussion are
unchanged.

1. Isoscalar, spin-1/2Q+

In Fig. 11, we show the differential cross section that
results for a spin-1/2Q+, when the contributions of the
Ls1520d and fs1020d are omitted from the calculation. In
the case of a positive-parityQ+, a signal that may be easily
identifiable results. In this figure, the smooth background is
provided by the nonexotic hyperons included in the calcula-
tion. The graphs in(a) and(b) are forgn→K+K−n, while (c)
is for gp→K+K−p. The curves in(a) are for aQ+ with JP

=1/2+, while those in(b) arise from aQ+ with JP=1/2−.

FIG. 10. The differential cross sections
]s /]MNK

2 as a function ofMNK, for a spin-1/2
isovectorQ+, for the processesgn→nK+K− [(a)

and (c)], gp→pK+K− [(b) and (d)], gp→pK0K̄0

[(e) and (g)], andgp→nK+K̄0 [(f) and (h)]. The
curves in (a), (b), (e), and (f) all arise from a
positive-parity Q+, while those in(c), (d), (g),
and(h) all correspond to aQ+ of negative parity.
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Figures 12(a) and 12(b) show the differential cross section as

a function of the invariant mass of theNK̄ pair. The effects of
the nonexotic hyperon resonances included in the calculation
can be seen in these curves. Figures 12(c) and 12(d) show the
same differential cross sections as functions of the invariant

mass of theKK̄ pair. Since there are no resonances left in this
channel(in this model), relatively smooth distributions with
no prominent features result. In this figure,(a) and(c) are for
gn→nK+K−, while (b) and (d) are for gp→pK+K−. The
shoulder seen near threshold in(b) results from the sub-
thresholdLs1405d. If a larger coupling constant were chosen
for this state, this structure would be enhanced, while choos-
ing a sufficiently smaller value will make this feature disap-
pear. In Fig. 13, we show the cross sections for the processes

gp→pK0K̄0 [(a) and (c)] and gp→nK+K̄0 [(b) and (d)] in
the channel that would show the isoscalarQ+ resonance. The
effects of the state are clearly seen, and suggest that for a
pentaquark of positive parity, either channel should provide a
clear signal, while for one of negative parity, the channel
with two neutral kaons is better.

2. Isoscalar, spin-3/2Q+

Figure 14 shows the differential cross section for a spin-
3/2 Q+ for the processesgn→nK+K− [(a) and (b)] and gp
→pK+K− [(c)]. The curves in(a) assume that theQ+ has
positive parity, while those in(b) assume negative parity. In
the case of the negative-parity state, its contribution com-
pletely dominates the cross section. As mentioned before, the
signal generated by such a state should be comparable to that
generated by theLs1520d. The positive parityQ+ also pro-
vides a large signal above the “background,” although it is
not as dominant as in the case of negative parity.

Figure 15 shows the same cross sections in terms of dif-
ferent invariant masses. In(a) and (c), the large signal from
the Q+, particularly from the negative-parity version, shows

up as large kinematic reflections. Figure 16 shows the cross

sections forpK0K̄0 [(a) and (c)] and nK+K̄0 [(b) and (d)],
both assuming a proton target. In all cases, both for positive
[(a) and (b)] and negative[(c) and (d)] parity, the model
indicates that clear, easy-to-isolate signals should be obtain-
able.

3. Integrated cross sections

In Ref. [3], in gd→npK+K−, 212 events are in the peak
for the Ls1520d, and there are 43 events in the peak of the
Q+. In addition, the Saphir Collaboration[4] report an esti-
mated cross section of 200 nb for production of theQ+ in the

gp→nK+K̄0 channel. In this calculation, if we perform a
numerical integration around the peak of theLs1520d, we
find that the cross section in the peak in the channelgp
→pK+K− is of the order of 300 nb, with some small fraction
of this arising from nonresonant contributions. Table IV

FIG. 11. The differential cross section]s /]MNK
2 as a function of

MNK, for a spin-1/2Q+. The curves in(a) and (b) are for the
processgn→nK+K−, while (c) is for gp→pK+K−. In addition,(a)
is for aQ+ of positive parity, while(b) is for one of negative parity.

FIG. 12. The differential cross section]s /]M
NK̄

2
as a function of

MNK̄ [(a) and(b)] and]s /]M
KK̄

2
as a function ofMKK̄ [(c) and(d)].

The curves in(a) and (c) are for the processgn→nK+K−, while
those in(b) and (d) are forgp→pK+K−.
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shows the integrated cross section under the peak of theQ+

for different channels in the different scenarios that we have
explored. In each case, the integration is performed from
M −2G to M +2G, whereM is the mass of theQ+ andG is its
width.

In each case, there is some contribution arising from
“continuum” events that lie in the “right” kinematic regime.
These continuum contributions represent a larger portion of
the reported cross section for 1/2− pentaquarks than for 1/2+

pentaquarks, for instance. For a 1/2− pentaquark with a
width of 10 MeV, approximately half of the reported 18 nb
(in gn→nK+K−) arises from such continuum contributions.
For a pentaquark with the same quantum numbers but a
width of 1 MeV, approximately two-thirds of the reported
1.7 nb in the same channel are from the continuum.

Assuming that the number of events seen is directly pro-
portional to the cross section, modulo questions of detector

FIG. 13. The differential cross section
]s /]MNK

2 as a function ofMNK. The curves in(a)

and (c) are for the processgp→pK0K̄0, while

those in(b) and (d) are forgp→nK+K̄0. (a) and
(b) are for a positive parityQ+ while (c) and (d)
are for aQ+ with negative parity.

FIG. 14. The differential cross section]s /]MNK
2 as a function of

MNK, for a spin-3/2Q+. The curves in(a) and (b) are for the
processgn→nK+K−, while (c) is for gp→pK+K−. In (a), the Q+

has positive parity, while in(b), its parity is negative.

FIG. 15. The differential cross section as functions ofMNK̄ [(a)
and(b)] or MKK̄ [(c) and(d)]. The curves in(a) and(c) are for the
process gn→nK+K−, while those in (b) and (d) are for gp
→pK+K−.
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acceptances, resolution, and efficiencies, the JLab numbers
suggest that the cross section for theQ+ should be of the
order of 60 nb around its peak in the channelgn→nK+K−.

The numbers in the table indicate that the versions of the
model discussed so far are inconsistent with theQ+ signal
measured at Jefferson Lab, for instance. The estimated cross
section inferred for production of theQ+ in the processgn
→nK+K− is about 60 nb, and for a pentaquark withJP

=1/2+ and a width of 10 MeV, the cross section calculated
in this model is 55 nb. However, such a large width for the
state appears to be in contradiction to cross sections observed
in other processes[18–23]: consistency with such observa-
tions would dictate that the preferred scenario is for a pen-
taquark with a width of 1 MeV. In this case, the scenario that
most closely matches JLab observations is that with a 3/2−

pentaquark. However, the results of this calculation suggests
that such a state should not need kinematic cuts for observa-
tion. None of the scenarios with the narrowerQ+ match the
reported Saphir cross section of 200 nb.

We have examined cross sections for these processes at
smaller values ofÎs. While the overall cross sections change,
the relative strengths of various contributions remain similar
to what they are atÎs=2.5 GeV. In particular, the ratio of
integrated cross section for theQ+ and theLs1520d remains
similar to what it is atÎs=2.5 GeV. Thus, the discrepancy
between the results of our model and the signal seen at JLab
would remain as difficult at lower energies.

C. The role of the K*

The preceding subsections suggest that, apart from the
case of aQ+ with JP=1/2−, a signal for this pentaquark
should be readily observable, especially when theLs1520d
and f are omitted from the calculation. However, there is
still an inconsistency between what we have shown and what
has been observed experimentally at JLab.

In the results presented, the contributions of theK* me-
sons have been limited to diagrams in which they couple
only to ground-state hyperons and nucleons. At this point,
there are no contributions in which theK* couple to excited
hyperons, nor to theQ+. It is relatively easy to include such
contributions, and in so doing, we can increase the cross
section for production of theQ+.

The phenomenological Lagrangian for the coupling of the
Q+ to theK* may be written

L = N̄SGv
K*NQ+

gmKm
* +

Gt
K*NQ+

MN + MQ+
gmgns]nKm

* dDQ + H.c.,

s26d

if the Q+ is assumed to haveJP=1/2+. This is the only sce-

nario we discuss. The two coupling constantsGv
K*NQ+

and

Gt
K*NQ+

are unknown. In Table V, we show results for differ-
ent values of the vector coupling constant, with the tensor

FIG. 16. The differential cross section
]s /]MNK

2 as a function ofMNK. The upper graphs

are for the processgp→pK0K̄0, while the lower

ones are forgp→nK+K̄0. Those on the left are
for a Q+ with positive parity, while those on the
right assume negative parity for the pentaquark.

TABLE IV. Total cross sections for production of theQ+, in different scenarios, for the channels in which
it can be produced. The numbers in the table are obtained from the versions of the model in which thef and
Ls1520d are omitted. The second to fifth columns in the table correspond to aQ+ with a width of 1 MeV,
while the sixth to ninth columns correspond to a width of 10 MeV.

Process ssnbd ,GQ+=1 MeV ssnbd ,GQ+=10 MeV

1/2+ 1/2− 3/2+ 3/2− 1/2+ 1/2− 3/2+ 3/2−

gp→pK0K̄0 2.6 1.0 0.9 7.7 25.3 9.6 8.9 73.6

gp→nK+K̄0 4.3 2.4 2.3 10.0 44.8 27.9 26.0 110.5

gn→nK+K− 5.6 1.7 2.2 24.0 54.5 18.0 22.8 229.9

gn→pK0K− 5.9 1.8 2.0 24.0 56.1 19.0 21.2 225.1
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coupling set to zero. We see that relatively modest values of
the vector coupling are sufficient to give a cross section of
about 60 nb for production of theQ+ in the gn→nK+K−

channel. However, even that modest value for the coupling
constant(of about 6) is somewhat larger than values postu-
lated by some authors. For instance, Close and Zhao[41]
have suggested thatsGv

K*NQ+
d2<3. In other models, similar

values have been used. WithGv
K*NQ+

=6, our model predicts a
very large cross section of 280 nb for the production of the

Q+ in the gp→pK0K̄0 channel, and a cross section of 73 nb

in gp→nK+K̄0. This means that, in this scenario, the contri-
bution of theK* dominates the production of theQ+. These
numbers indicate that the reported JLab results are not con-
sistent with the estimated Saphir cross section of 200 nb. In

addition, inpK0N̄0, the predicted cross section for production
of the Q+ is comparable to that for production of the
Ls1520d, implying that the signal should be easily observ-
able.

V. SUMMARY AND OUTLOOK

We have examined the processgN→KK̄N within the
framework of a phenomenological Lagrangian. We have ex-
amined a number of scenarios for pentaquark production,
and have found that the largest production cross section oc-
curs for aQ+ with JP=3/2−. However, in such a scenario,
the cross section for its production is comparable to that for
production of theLs1520d, and kinematic cuts should prob-
ably not be needed to enhance the signal.

If the Q+ hasJP=1/2+, the cross section for its production
is significantly less than that for production of theLs1520d,
by almost two orders of magnitude if its width is of the order
of 1 MeV. This means that special mechanisms are required
to account for the number of events seen in the JLab experi-
ment, relative to theLs1520d. One possibility is that the
coupling of the pentaquark to theK* is large, so that the
dominant mechanism of production involves theK* . How-
ever, this then leads to a signal for which kinematic cuts
should not be necessary. One can also invoke the couplings

of a number ofN* resonances, but the conclusion about the
size of the signal would remain unchanged.

The only scenario(that we can think of) that would give
the appropriate ratio between the cross section for production
of the Ls1520d and the Q+ is for the production of the
Ls1520d to be suppressed even further than the suppression
we have already obtained through the use of form factors.
However, this seems unlikely, as the calculated cross section
for producing this state is of the same order of magnitude as
those published by Barberet al. [51].

Outlook

This calculation is not without its shortcomings. The most
important shortcoming is the fact that a very simple prescrip-
tion has been employed to regulate the high-energy behavior
of the model. A more realistic treatment, consistent with the
requirements of gauge invariance, will have to be imple-
mented before such a calculation is applied to other pro-
cesses in the future.

There are prospects for measuring a number of final states
with two pseudoscalar mesons at JLab and at other facilities.
In particular, there are ongoing analyses of the processes
gN→ppN, gN→KKJ, gN→KpL, and gN→KpS. The
calculation we have presented has been set up in such a way
that it may be applied to any of these(or other) processes in
a relatively straightforward manner. The core of the code was
originally generated forgN→ppN, and the modifications

necessary forgN→KK̄N were not overly difficult. Thus, we
may expect to apply the methods used herein to other pro-
cesses in the not-too-distant future.
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TABLE V. Total cross sections for production of theQ+, in different scenarios, for different processes.
The numbers in the table are obtained from the versions of the model in which thef and Ls1520d are
omitted. All numbers assume that theQ+ hasJP=1/2+ and a width of 1 MeV. The tensor coupling is set to
zero, and four different values of the vector coupling are used. All channels in which theQ+ can be produced
as a resonant state are shown.

Process ssnbd ,Gv
K*NQ+

=2 ssnbd ,Gv
K*NQ+

=4 ssnbd ,Gv
K*NQ+

=6 ssnbd ,Gv
K*NQ+

=8

gp→pK0K̄0 32.7 125.9 282.2 502.8

gp→nK+K̄0 11.5 34.6 73.4 128.1

gn→nK+K− 10.0 30.2 66.1 117.8

gn→pK0K− 30.7 118.6 269.7 484.0
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