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We define a set of model-independent observables which generally characterize the azimuthal dependence of
two-particle correlations in nucleus-nucleus collisions. We explain how they can be analyzed, and show to
what extent such analyses are model dependent. We discuss specific applications to the anisotropic flow of
decaying particles, azimuthally sensitive Hanbury-Brown Twiss interferometry, and correlations between par-
ticles at large transverse momentum. A quantitative prediction is made for jet quenching with respect to the
reaction plane.
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I. INTRODUCTION

In noncentral nucleus-nucleus collisions, azimuthal angles
of outgoing particles are generally correlated with the direc-
tion of the impact parameter. This phenomenon, called “an-
isotropic flow,” has been known for 20 years[1], and has
raised particular interest at the Brookhaven Relativistic
Heavy Ion Collider(RHIC) where it is thought to provide
unique evidence for quark-gluon plasma(QGP) formation
[2].

Most often, one studies the azimuthal dependence of
single-particleproduction[3]. Here, we would like to dis-
cuss the azimuthal dependence oftwo-particle correlations.
This is of interest in various situations.

(1) Anisotropic flow of short-lived particles. The flow of
unstable particles(for instanceL baryons) is studied through
their decay products. One must first identify a correlation
between daughter particles, typically through an invariant
mass plot; then study how this correlation depends on the
azimuthal angle of the decaying particle[4–9].

(2) Azimuthally sensitive two-particle interferometry.
Bose-Einstein correlations between identical particles are
commonly used to measure the size and shape of the emit-
ting source[10]. In noncentral collisions, the source projec-
tion on the transverse plane is no longer circular[11], and
this can directly be seen in Hanbury-Brown Twiss(HBT)
studies of two-particle correlations, as already observed at
the Brookhaven Alternating Gradient Synchrotron[12] and
at the RHIC[13].

(3) Jet quenching with respect to the reaction plane. The
energy loss of hard partons traversing a deconfined medium
[14,15] is a crucial signature of QGP formation at the RHIC
[16]. In particular, it results in a modification of the pattern
of azimuthal correlations between high-pT hadrons, com-
pared topp collisions: the back-to-back correlation is sup-
pressed[17,18]. In a noncentral collision, the average length
of matter traversed by a parton depends on its azimuth
[19,20], which results in azimuthally dependent two-particle
correlations[21,22].

In this paper, we give for the first time a unified presen-
tation of these phenomena, which have so far been discussed
separately. In all cases, analyzing azimuthally dependent cor-
relations involves two distinct operations:(1) measuring the
distribution of a pair of particles with respect to the reaction
plane;(2) isolating the “true” correlation from the uncorre-
lated part. Both issues can be discussed independently, on a
fairly general footing.

The first operation is discussed in Sec. II, where the ob-
servables associated with two-particle anisotropic flow are
defined. These observables are model independent and can in
principle be measured accurately. In particular, it will clearly
appear that any method used to measure the single-particle
anisotropic flow can also be used to analyze azimuthally sen-
sitive correlations, modulo minor modifications. In that view,
we recall in Appendix A the main features of existing meth-
ods for analyzing one-particle flow, and we introduce the
changes necessary to measure pair flow. While existing
methods all require one to estimate the reaction plane on an
event-by-event basis[23,24] (see, for instance, Refs.[25] for
L flow, [26] for azimuthally sensitive HBT interferometry,
and[27] for correlations between high-momentum particles),
this step is by no means necessary with the procedure we
suggest. This opens the possibility to apply the improved
methods of flow analysis recently devised in Refs.[28–32]
and to resolve an inconsistency of present analyses: on the
one hand, one studies a correlation(between decay products,
due to quantum statistics, from jet fragmentation) which is
essentially a “nonflow” correlation; on the other hand, one
uses the event-plane method which relies on the assumption
that all correlations between particles are due to flow[23].

The second operation is discussed in Sec. III. Unlike the
first one, it will be shown to be always model dependent.
Several specific applications are discussed in Sec. IV, to-
gether with predictions regarding the pair-flow coefficients.
Our results are summarized in Sec. V.

II. OBSERVABLES FOR TWO-PARTICLE ANISOTROPIC
FLOW

We first recall definitions for single-particle distributions.
For particles of a given type in a given rapiditysyd and
transverse momentumspTd window, the probability distribu-
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tion of the azimuthal anglef (measured with respect to a
fixed direction in the laboratory) reads

psf − FRd =
1

2p
o

n=−`

+`

vne
insf−FRd, s1d

where FR is the (unknown) azimuth of the reaction plane
(impact parameter) in the laboratory frame.

The Fourier coefficients[33] in this expansion are given
by vn=ke−insf−FRdl, where angular brackets denote an aver-
age over particles and events. Given the normalization
choice in Eq.(1), v0=1. Sincepsf−FRd is real,v−n=svnd*,
where the asterisk denotes the complex conjugate. If, in ad-
dition, the system is symmetric with respect to the reaction
plane [−sf−FRd is equivalent tof−FR], as in a collision
between spherical(although not necessarily identical) nuclei
when parity is conserved, Eq.(1) reads

psf − FRd =
1

2p
F1 + 2o

n=1

+`

vn cosnsf − FRdG s2d

with vn=kcosnsf−FRdl, i.e., vn is real.
The Fourier coefficientsvn have by now become familiar

in the study of anisotropic flow in(ultra)relativistic heavy-
ion collisions. Nevertheless, it is instructive to recall why
they are the proper tools to parametrize azimuthal anisotro-
pies. The key feature is that even though the reaction plane
FR is unknown on an event-by-event basis, the first Fourier
coefficientsvn can be accurately reconstructed from a statis-
tical analysis of azimuthal correlations between outgoing
particles(see Appendix A 1 for a review of the methods for
analyzing single-particle flow). However, the higher the
value of n, the larger the uncertainty onvn [34]. Therefore
the probability psf−FRd at a specific azimuth cannot be
measured in practice. Furthermore, sincevn is defined as an
average, it is also easier to compute in theoretical studies—in
particular, in Monte Carlo models—than the probability dis-
tribution itself.

The above definitions can readily be generalized to the
distribution of particlepairs with respect to the reaction
plane. A pair of particles of given species is characterized by
six kinematic variablespT1

, y1, f1, pT2
, y2, f2. It is conve-

nient to combinef1 andf2 into the relative angleDf;f2
−f1 (or any similar observable that does not depend on the
overall orientation of the pair in the transverse plane, as, e.g.,
the invariant mass) and a “pair angle”

fpair ; xf1 + s1 − xdf2, s3d

where 0øxø1. One can restrictfpair andDf to the ranges
−pøfpair,p and −pøDf,p. If x= 1

2, fpair is the mean
angle. The choice ofx depends on the problem under study:
most often, one chooses forfpair the azimuthal angle of the
total transverse momentumpT1

+pT2
(see Secs. IV A and

IV B ); in studies of azimuthal correlations between high-
momentum particles,x=1 is a more common choice(see
Sec. IV C).

Consider now a sample of pairs of particles in some range
of pT1, pT2, y1, y2, andDf. To study the probability distribu-
tion of the pair anglefpair within this sample, we write its

probability distribution in a way analogous to Eq.(1):

psfpair − FRd =
1

2p
o

n=−`

+`

vn
paireinsfpair−FRd. s4d

Like the usualvn’s, the “pair-flow” coefficientsvn
pair are de-

fined byvn
pair=ke−insfpair−FRdl, with the normalizationv0

pair=1.
Since the probability distribution is real valued, the coeffi-
cients also satisfy the property

v−n
pair = svn

paird * . s5d

But unlike the single-particle flowvn, the pair-flow coeffi-
cient vn

pair is in general not a real number. The underlying
reason, exemplified in Fig. 1, is that the transformation
fpair−FR→−sfpair−FRd for a constantDf is not a symme-
try of the system.1 As a consequence, sine terms are also
present in the real form of the Fourier expansion, and Eq.(2)
is replaced by

psfpair − FRd ;
1

2p
S1 + 2o

n=1

+`

fvc,n
pair cosnsfpair − FRd

+ vs,n
pair sinnsfpair − FRdgD , s6d

where the real coefficients vc,n
pair=kcosnsfpair−FRdl and

vs,n
pair=ksinnsfpair−FRdl are related to the complexvn

pair by
the relationvn

pair=vc,n
pair− ivs,n

pair.
The existence of such sine terms was already noted in

Ref. [26] in the context of azimuthally sensitive HBT stud-
ies. Note that it does not imply parity violation, as it would
in the case of single-particle flow[35]. The physical meaning
of these additional terms will be illustrated in Sec. IV in

1The actual symmetry is under the simultaneous transformation
fpair−FR→−sfpair−FRd, Df→−Df. Its consequences for the co-
efficientsvn

pair are discussed in Appendix B.

FIG. 1. Illustration of the various azimuthal anglesf1, f2, fpair,
Df, with x=1/2.
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various physical situations. In particular, we shall show that
they may yield insight on the mechanism responsible for the
deficit in high-pT particles.

It may be interesting to note that the pair-flow coefficients
vn

pairsDfd, when viewed as functions of the relative angle
Df, have peculiar properties which are derived in Appendix
B. Checking that measured values of the coefficients possess
these properties then provides a way to evaluate the errors
affecting the measurement.

In experimental analyses, any method that can be used to
measure the single-particle flowvn can be applied to extract
the cosine termsvc,n

pair, without any modification: one simply
considers the pair as a single particle with azimuthal angle
fpair. The generalizations required in order to extract the sine
termsvs,n

pair are quite straightforward. They are summarized in
Appendix B 2 for various methods of flow analysis. In par-
ticular, some of these methods can safely correct for nonflow
effects, others for acceptance anisotropies. This extends the
possibility of studying azimuthally dependent correlations to
detectors with partial azimuthal coverage.

To conclude this section, let us emphasize that the new
characterization of azimuthally sensitive two-particle corre-
lations which we propose, with pair-flow Fourier coeffi-
cients, represents in our view an improvement over previous
parametrizations, in the same way asvn is an improvement
over older observables for anisotropic flow. The reason is
simply that vc,n

pair and vs,n
pair are model-independent and

detector-independent observables.

III. ISOLATING THE CORRELATED PART

Subtracting the “trivial” uncorrelated part in order to iso-
late the “true” correlation is far from trivial. In this section,
we discuss this issue in as simple and general a way as pos-
sible. For the sake of simplicity, we start with the case when
there is no anisotropic flow. In Sec. III A, we explain why
the subtraction always involves some degree of arbitrariness,
most often in the form of an arbitrary constant. Although this
is to some degree well known, at least to those who actually
perform correlation analyses, we think it is worth recalling,
since the literature on the subject is rather confusing. In Sec.
III B, we recall the various ways of normalizing the correla-
tion, depending on the observable under study.

In practice, however, anisotropic flow is most often
present, and makes the background subtraction more difficult
in heavy-ion collisions than in elementary collisions. Note
that this applies to all correlation analyses, not only to the
azimuthally dependent ones: the correlation of single par-
ticles with the reaction plane induces a correlation between
them, which must be always subtracted, at least in principle,
in order to isolate other effects(see, for instance,[36]). In
Sec. III C, we explain how this can be done, and show that
this subtraction implies further approximations.

A. A model-dependent issue

In a given event, letN1 and N2 denote the numbers of
particles in two phase-space bins,spT1

,y1,f1d and
spT2

,y2,f2d. To simplify the discussion, we assume that the

two bins are separated. If they overlap, one need only replace
N1N2 by the number of pairs in what follows. The simplest
definition of the correlation between the two bins is

C = kN1N2l − kN1lkN2l, s7d

where angular brackets mean an average over many events.2

Such a definition is not satisfactory in practice because
the sample of events used in the analysis always contains
events with different centralities: in particular, the total mul-
tiplicity may have sizeable fluctuations within the sample of
events considered, and these fluctuations alone induce a cor-
relation between any two phase-space bins. This correlation
is of a rather trivial nature, but it may well overwhelm the
interesting ones[37]. A simple way out of this problem
would be to normalize the two terms in Eq.(7) by the total
number of pairs of correlated and uncorrelated particles, re-
spectively, that is, to define instead the correlation as

C = kN1N2l −
kNsN − 1dl

kNl2 kN1lkN2l, s8d

whereN is the number of particles in a large enough phase-
space bin(typically, the total number of charged pions seen
in the detector for interferometry analyses). This definition is
also unsatisfactory for two reasons: first, it obviously intro-
duces some degree of arbitrariness in the definition of the
correlation, depending on the choice of the phase space for
N; second, part of the fluctuations inN may be meaningful
for the correlation analysis, as in the case of Bose-Einstein
correlations[38], so that there is no point in subtracting
them.

In actual analyses, the correlation is rather defined as

C = kN1N2l − ckN1lkN2l, s9d

wherec is some free coefficient. This coefficient is kept con-
stant throughout the correlation analysis(which typically in-
volves varying the invariant mass, the relative momentum, or
the relative azimuth between the two particles). It is then
fitted in such a way that the correlationC vanishes when it is
expected to: at large relative momentum in HBT analyses
[38], and in some range ofDf in correlations between high-
pT particles [17,18]. In addition, as mentioned above, the
background subtraction is often complicated by the existence
of anisotropic flow, as we shall discuss in Sec. III C.

B. Normalizations

There are essentially three ways of normalizing yields of
particle pairs in azimuthally independent analyses, depend-
ing on the observable under study.

(1) One simply computes the average number of pairs per
event,kN1N2l. For instance, in order to measureL produc-
tion, one plots the number ofsp,p−d pairs per event as a
function of the invariant massM of the pair. The number of
pairs in the peak around theL mass gives the yield ofL
baryons, modulo acceptance corrections.

2In other terms,kN1l, kN2l, and kN1N2l are the one- and two-
particle inclusive cross sections, divided by the total inelastic
nucleus-nucleus cross section.
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(2) One divides the number of pairs,kN1N2l, by the num-
ber of uncorrelated pairs,ckN1lkN2l. This is the standard ob-
servable for Bose-Einstein correlations, where the ratio var-
ies ideally between 2 and 1 as the relative momentum of the
pair increases.

(3) The third, intermediate choice is to divide the number
of pairs, kN1N2l, by the number of “trigger particles,”kN1l
[17]. After subtraction of the uncorrelated part,ckN2l, one
thus obtains the mean number of particles,N2, correlated
with a trigger particle, which is independent of the system
size (i.e., the same for a nucleus-nucleus and for a proton-
proton collision) if there is no final-state interaction.

C. Subtracting the correlation due to flow

When the particles in the pair are individually correlated
with the reaction planeFR, this induces a trivial correlation
between them, which must also be subtracted.

This subtraction is easy in principle: one simply repeats
the operations of Secs. III A and III B for a fixed orientation
of the reaction planeFR. Then, the following substitutions
hold:

kN1N2l → kN1N2ls2pdpsfpair − FRd,

kN1l → kN1ls2pdp1sf1 − FRd,

kN2l → kN2ls2pdp2sf2 − FRd. s10d

In these equations,kN1N2l, kN1l, andkN2l denote quantities
averaged overFR; psfpair−FRd is the distribution of the pair
angle, defined in Eq.(6), andp1sf1−FRd, p2sf2−FRd denote
the single-particle azimuthal distributions of each particle,
defined as in Eq.(2).

Once the azimuthal distributions of pairs and single par-
ticles with respect to thetrue reaction plane have been prop-
erly reconstructed, extracting the correlation, and its azi-
muthal dependence, is straightforward.

Strictly speaking, however, the one- and two-particle
probabilitiespsf−FRd andpsfpair−FRd at a specific azimuth
relative to the reaction plane cannot be reconstructed. As
already mentioned in Sec. II, only the first few Fourier coef-
ficientsvn or vn

pair can be reconstructed, due to larger absolute
uncertainties on higher-order coefficients. On the other hand,
the Fourier coefficients of a smooth function off−FR are
expected to decrease quickly as the order increases(this ex-
pectation is supported by recent experimental single-particle
flow data[39]), so that one can reasonably truncate the se-
ries, keeping only the measured coefficients. This truncation
is always required in order to estimate the correlation from
anisotropic flow[17,27]. At the RHIC, for instance, the error
on the azimuthal distribution at midrapidity is likely to be
dominated by the error on the fourth harmonicv4, and one
can takes1/pddv4 as the error onpsf−FRd.

IV. APPLICATIONS

We shall now discuss specific applications, with emphasis
on the details of the experimental procedure.

A. Anisotropic flow of short-lived particles

Let us begin with the measurement of the anisotropic flow
of particles that are seen through their decay products, such
asL→pp− [4,7–9], p0→gg, h→gg [5], KS

0→p+p− [6,9].
We shall illustrate the recipe by discussing the flow ofL
baryons.

For each event, one sortssp−,pd pairs into bins of invari-
ant massesM. The first step is then to analyze the totalL
yield. Following the standard procedure, one counts the
number of pairs in each invariant-mass bin, irrespective of
the pair azimuth; letNpairssMd denote this number. One then
separates this distribution into an uncorrelated part[the back-
groundNbsMd] and a correlated part[the peakNLsMd, cen-
tered around the expectedL mass]:

NpairssMd = NbsMd + NLsMd. s11d

The integral of the correlated partNLsMd over M is the L
yield.

In most cases, the peak is well above the background: to
perform the above decomposition, one need not go through
the whole procedure of the previous section: instead, one
simply assumes that the backgroundNbsMd is a smooth func-
tion of M [25]. Please note that the anisotropic flow ofp−

andp correlates their azimuthal angles, and therefore distorts
the background. However, the distorted background remains
smooth, so that this effect need not be taken into account.

Next, one defines the azimuthal angle of the pair,fpair, as
the azimuthal angle of the total transverse momentumpT1
+pT2

, and one analyzes the pair flow coefficientsvc,n
pairsMd

andvs,n
pairsMd in each bin. One then performs a decomposition

similar to Eq.(11) for the azimuthally dependent part of the
pair yield:

NpairssMdvc,nsMd = NbsMdvc,n
sbdsMd + NLsMdvc,n

L ,

NpairssMdvs,nsMd = NbsMdvs,n
sbdsMd + NLsMdvs,n

L . s12d

This decomposition is performed assuming that the back-
ground componentsNbsMdvc,n

sbdsMd and NbsMdvs,n
sbdsMd are

smooth functions ofM. In this particular case, symmetry
with respect to the reaction plane forL particles implies
vs,n

L =0, except for experimental biases and fluctuations. This
identity can be used in order to check the accuracy of the
experimental procedure, as in the case of single-particle flow
[24]. If the background consists of uncorrelated particles, one
also hasvs,n

sbdsMd=0.
In most analyses so far, the decomposition between the

background and the peak is performed independently for
several bins(typically, 20) in fpair−CR [8,9,25], whereCR is
an estimate of the reaction plane. With the above procedure,
the decomposition is only performed twice, in Eqs.(11) and
(12).

When the peak-to-background ratio is low, finally, mixed
events can be used to define the background[5]. However,
the above-mentioned distortion of the background due to an-
isotropic flow must then be taken into account, as we shall
see in more detail in Sec. IV B.
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B. Quantum correlations

Azimuthally dependent Bose-Einstein(or, more generally,
short-range) correlations are analyzed in two steps. The first
step is to perform a Fourier expansion of the pair yield with
respect to the reaction plane, for each relative momentumq
[26]. As explained in Sec. II, any method of flow analysis
can be used to extract the Fourier coefficientsvc,nsqd and
vs,nsqd. Even with the event-plane method, no binning in
fpair−CR is required, in contrast to present analyses[12,13].
Once the coefficients are known, one easily builds the distri-
bution of pairs relative to the reaction plane(up to the trun-
cation issue mentioned in Sec. III C).

Next comes the difficult part of the analysis: one must
divide the number of pairs per event by the number of un-
correlated pairs, as explained in Sec. III B. For a fixed ori-
entation of the reaction planeFR, this number depends on
FR (see Sec. III C):

NuncorsFRd = 2pkN1lp1sf1 − FRd2pkN2lp2sf2 − FRd.

s13d

The FR-independent part,kN1lkN2l, can be obtained using a
standard mixed-event analysis. TheFR-dependent part, how-
ever, involves the(first) flow coefficientsvn of both particles
in the pair.

To avoid this complication, the procedure suggested in
Ref. [26] is to used mixed events withaligned event planes.
This procedure, however, is only approximate, because one
mixes events with differentreactionplanes, although the es-
timated planes are the same. To be specific, let us compare in
a simple case the distribution of uncorrelated pairs following
the exact procedure, Eq.(13), and using mixed events with
aligned event planes. To simplify the calculation, we assume
that only elliptic flowv2 is present, and that it has the same
value for both particles in the pair; we further assume that
the pair angle is the mean angle,x= 1

2 in Eq. (3). Then the
exact result is

NuncorsFRd
kN1lkN2l

= 1 + 2v2
2 cos 2Df + 4v2 cos 2Df cos 2sfpair

− FRd + 2v2
2 cos 4sfpair − FRd. s14d

This is to be compared with the result obtained following the
method of Ref.[26]:

NmixedsFRd
kN1lkN2l

= 1 + 2v2
2kcos 2DCRl2 cos 2Df

+ 4v2 cos 2Df cos 2sfpair − FRd

+ 2v2
2kcos 2DCRl2

kcos 4DCRl
cos 4sfpair − FRd,

s15d

where DCR;CR−FR is the difference between the esti-
mated event plane and the true reaction plane. As expected,
both results coincide whenDCR=0. Quite remarkably, the
mixed-event method is correct to leading order inv2 even
whenDCRÞ0. However, it misses the coefficients of order
v2

2. Typical values of the correction factors for the STAR

experiment at the RHIC arekcos 2DCRl2.0.6 and
kcos 2DCRl2/ kcos 4DCRl.1.3.

In addition to the systematic uncertainty we just dis-
cussed, the price to pay for aligned mixed events is that one
must essentially perform the whole correlation analysis for
fixed values of both the pair anglefpair and the estimated
reaction planeCR. We suggest instead the following method.

(1) Place particle pairs in bins according to their rapidities
y1, y2, total transverse momentumK ;pT1

+pT2
, and relative

momentumq.
(2) In each such bin, build the correlation functionCsqd

as in the standard, azimuthally insensitive HBT analysis.
(3) Reconstruct the azimuthal distributions of pairs,

psfpair−FRd, and of single particles,p1sf1−FRd and p2sf2

−FRd, with respect to theactual reaction plane; that is, mea-
sure the first Fourier coefficientsvn

pair andvn for each particle
in the pair (at RHIC energies, measuring the second and
fourth harmonicsv2 and v4 should be enough to guarantee
that the distributions are reasonably well reconstructed).

(4) With the help of the substitution Eq.(10), build the
azimuthal dependence of the correlation function.

One then eventually extracts azimuthally dependent HBT
radii using standard techniques(in particular, including cor-
rection for Coulomb effects) which are beyond the scope of
this paper.

C. Two-particle azimuthal correlations

Two-particle azimuthal correlations at large transverse
momentum are under intense investigation in ultrarelativistic
nucleus-nucleus collisions, since it has been realized that
they yield direct evidence for hard scattering[36]. In that
case, one correlates a high-pT particle, the “trigger” particle,
hereafter labeled 1, with a lower-pT particle, hereafter la-
beled 2. We assume for simplicity that particles 1 and 2
belong to separatepT intervals. This is not the case in the
STAR analysis[17], where particle 2 can be any particle
with momentum lower thanpT1

above some cut. This differ-
ence, however, is not crucial for the following discussion.

The following quantities must be measured: the average
number of pairs per event, as a function of the relative angle
Df, kNpairssDfdl (in practice, pairs are naturally sorted into
equal-size bins ofDf), and the average numbers of particles
per event,kN1l and kN2l.

In studying the azimuthal dependence of the correlation, a
natural choice is to take the azimuthal angle of the trigger
particle f1 as the pair anglefpair, i.e., one choosesx=1 in
Eq. (3). One needs to reconstruct the azimuthal distribution
of pairs (for a given Df bin), pDfsf1−FRd, and the azi-
muthal distributions of both trigger and associated particles,
p1sf1−FRd and p2sf2−FRd. One may then reconstruct the
whole correlation function for a fixed value off1−FR. In
particular, the correlation functions for the specific values
f1=FR (in plane) andf1=FR+p /2 (out of plane) are given
by
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CoutsDfd =
kNpairssDfdl

kN1l
pDfsp/2d
p1sp/2d

− 2pckN2lp2Sp

2
+ DfD ,

CinsDfd =
kNpairssDfdl

kN1l
pDfs0d
p1s0d

− 2pckN2lp2sDfd, s16d

where c is a constant close to unity, as explained in Sec.
III A. It is independent ofDf andf1−FR.

Let us briefly compare the above procedure with the one
suggested by Bielcikovaet al. [27]: these authors show how
to analyze correlations in and out of an event plane, which is
not exactly the reaction plane. Since the event-plane resolu-
tion is a detector-dependent quantity, this prevents quantita-
tive comparisons between different experiments. In addition,
the algebra to subtract the uncorrelated part is much simpler
with our method.

The standard interpretation of the modification of the cor-
relation function in nucleus-nucleus collisions, compared to
proton-proton collisions[17], is that the associated parton
loses energy on its way through nuclear matter. If this inter-
pretation is correct, then for a givenDf the number of pairs
per trigger particle depends only on the path followed by the
associated particle. Symmetry with respect to the reaction
plane implies that it is unchanged iff2−FR is changed into
its opposite. As illustrated in Fig. 2, this symmetry is by no
means trivial since the path followed by the trigger particle is
now different. This gives us, for arbitraryf2−FR and Df,
the prediction

pDfsf2 − FR − Dfd
p1sf2 − FR − Dfd

=
pDfs− f2 + FR − Dfd
p1s− f2 + FR − Dfd

. s17d

If the only nonvanishing Fourier harmonic in the single-
particle and pair azimuthal distributions isv2, a simple cal-

culation shows that the previous identity is equivalent to

vs,2
pairsDfd = svc,2

pairsDfd − v2
s1ddtan 2Df, s18d

wherev2
s1d is the elliptic flow for the trigger particle, and the

pair-flow coefficientsvc,2
pair andvs,2

pair have been defined in Sec.
II. This prediction is consistent with the general symmetry
property(B3).

V. SUMMARY AND PERSPECTIVES

We have introduced novel, model-independent observ-
ables that describe the dependence in azimuth of two-particle
correlations in heavy-ion collisions. These observables,
namely, the coefficientsvc,n

pair and vs,n
pair in the Fourier expan-

sion of the azimuthal distribution(6) of the pair-anglefpair
that characterizes(together with the relative azimuth) par-
ticle pairs, generalize in a natural way the Fourier coeffi-
cientsvn for single-particle anisotropic flow. As the latter, the
pair-flow coefficients can easily be measured in experiments,
using any “usual” method of flow analysis(modulo minor
modifications for the measurement of the sine terms,vs,n

pair):
event-plane, two-particle correlations, cumulants, and Lee-
Yang zeros can equally be applied. We recommend the last
two, however, when possible, in order to disentangle flow
from nonflow effects.

A main point of this paper is that these observables should
replace, in future analyses, quantities that are defined for a
given azimuth relative to the event plane. Much in the same
way, the Fourier coefficientsvn have now replaced earlier
observables such as the “flow angle,” the “squeeze-out ra-
tio,” in most if not all analyses of single-particle flow. The
reason is that the event plane is not exactly the reaction
plane, and the dispersion varies from one experiment to the
other. Therefore, observables defined with respect to an event
plane yield only qualitative information.vn

pair, on the other
hand, allows studies of azimuthally sensitive correlations to
enter the quantitative era.

In a second part, we have briefly shown how to relate our
observables to physical quantities of interest in three differ-
ent cases: anisotropic flow of decaying particles, interferom-
etry, and azimuthal correlations of high-momentum particles.
It is important to stress that, unlike the measurement of the
pair-flow coefficientsvc,n

pair and vs,n
pair, this second step does

depend on the underlying physical picture. This model de-
pendence leads to some arbitrariness, which in practice takes
the form of the introduction of a normalization constant and
(for HBT and high-pT-particle studies) a necessary truncation
of the Fourier expansion of the single-particle distribution.

A striking difference with the usual studies of anisotropic
flow is the general occurrence of sine terms in the Fourier
series expansion. The relevance of such sine terms was al-
ready discussed in the context of single-particle flow[24,35]
and azimuthally sensitive HBT interferometry[26]. Here, we
have shown for the first time that in the case of correlations
between high-pT particles, jet quenching would result in a
specific value for the sine term, given by Eq.(18).

Azimuthally sensitive correlations are among the subtlest
analyses in our field, and have already given valuable insight
on the physics of high-energy nuclear collisions. We hope

FIG. 2. Illustration of the prediction made in Eq.(17). The long
arrows represent the momenta of trigger particles, while the shorter
arrows represent the momenta of associated particles. If the modi-
fication of the correlation is due to the quenching of the associated
particle, it must be unchanged under the transformationf2−FR

→−sf2−FRd.
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that the observables and methods introduced in this paper
will help to improve future analyses. Thanks to the high
statistics now available at the RHIC, or that one can antici-
pate at the CERN Large Hadron Collider, new measurements
will become possible, for instance, the azimuthal dependence
of nonidentical-particle interferometry or the anisotropic
flow of various “new” particle types, while probing new re-
gions of phase space.
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APPENDIX A: METHODS FOR ANALYZING
SINGLE- AND TWO-PARTICLE FLOW

As stated in Sec. II, the measurement of the pair-flow
coefficients vc,n

pair and vs,n
pair involves the same methods of

analysis as for single-particle-flow coefficientsvn (modulo a
small modification when measuringvs,n

pair). This prompts us to
recall briefly the various methods that have been proposed in
the literature, indicating the modification necessary to mea-
sure the sine coefficient.

1. Analysis of one-particle flow

The most employed method of flow analysis at(ultra)rela-
tivistic energies is the event-plane method[23,24,34], which
relies on the event-by-event determination of an estimate of
the reaction plane, the so-called “event plane.” Once the lat-
ter has been estimated(and various procedures to correct for
acceptance issues have been performed), one correlates its
azimuth with that of each outgoing particle, assuming thatall
correlations between the event plane and a given particle
(that is, actually, all two-particle correlations) are due to
flow. Eventually one must correct for the event-plane disper-
sion (computed with the help of “subevents”) on a statistical
basis:

vnspT,yd =
kcosnsc − Cndl

kcosnsCR − FRdl
, sA1d

wherec, CR, andFR, respectively, denote the azimuths of
the particle under study, the event plane, and the real reaction
plane, while the denominator measures the event-plane dis-
persion.

In addition to this first method, it has long been known
that anisotropic flow can be analyzed with two-particle azi-
muthal correlations[40], without having to estimate the re-
action plane in each event. The procedure consists in build-
ing a two-particle correlator, similar to that employed in
interferometry studies[10], by forming the ratio of the num-
ber of “real” pairs(of particles in a same event) with relative
angle Df over the number of “background” pairs(mixing
particles from different events) with Df:

C2sDfd ;
NpairssDfd
NmixedsDfd

. sA2d

As usual, dividing by “mixed events” automatically corrects
for acceptance anisotropies, so that one can even work with a
detector having only limited azimuthal coverage[41], while
the event-plane method requires an almost perfect azimuthal
symmetry. The key point in constructingC2sDfd is that its
Fourier coefficients, which can be deduced by fitting the
function, are preciselykcossnDfdl=svnd2 and ksinsnDfdl
=0. Letting first both particles in the pair run over the whole
phase space covered by the detector, one obtains an estimate
of “integrated flow,” vn, corresponding to some(detector-
dependent) average of the coefficient. Restricting then one,
and only one, of the particles in the pair(whose azimuth will
be denoted byc) to some definite particle type, transverse
momentumpT, and rapidityy, while letting the other(azi-
muth f) be any particle in the event, one constructs a cor-
relator whose Fourier coefficients are

kcosnsc − fdl = vnvnspT,yd, sA3ad

ksinnsc − fdl = 0. sA3bd

The second identity reflects the evenness ofC2sc−fd (when
parity is conserved), while the first yields the “differential
flow” vnspT,yd. Please note that since only one particle per
pair belongs to a small phase-space bin while it is correlated
to all other particles in the event, it follows that statistical
errors are the same as with the event-plane method. Finally,
the bias from “nonflow” effects[42] is of the same order of
magnitude within both event-plane and two-particle correla-
tion methods, but it is easier to subtract, when it is possible,
in the latter, as exemplified in the case of unwanted correla-
tions due to global momentum conservation in Ref.[43].

As already stated, the main limitation of both the event-
plane and the two-particle methods is their relying on the
assumption that all azimuthal correlations between particles
result from their correlation with the reaction plane[23]. In
other words, they neglect nonflow correlations, whose mag-
nitude is known to be large at ultrarelativistic energies[44].
One may try to subtract part of the nonflow effects by per-
forming cuts in phase space, correlating together only par-
ticles that are widely separated(which certainly accounts for
short-range correlations), but this results in larger statistical
errors, while not removing entirely all unwanted effects. The
only systematic way to remedy the problem of nonflow cor-
relations in the flow analysis is to apply improved methods
of analysis, based on multiparticle correlations[28–32],
which have been implemented at the CERN Super Proton
Synchrotron[45] and at the RHIC[46]. The essence of these
methods is that the relative magnitude of nonflow effects
decreases, while that of collective anisotropic flow grows,
when one considers the cumulants of correlations between an
increasing number of particles. Measuring cumulants of four-
and six-particle correlations, one thus minimizes the system-
atic error due to nonflow effects, the ultimate case being the
use of Lee-Yang zeros[31,32], equivalent to “infinite-order
cumulants,” which isolatecollectivebehaviors in the system,
i.e., flow effects. The price to pay is an increase in statistical
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uncertainties, but the latter is moderate at RHIC and LHC
energies, especially if one uses all detected particles in the
analysis.3

In practical analyses, these improved methods necessitate
the computation of a generating function of multiparticle cor-
relations,Gszd, wherez is a complex variable[see Eq.(5) in
Ref. [28] or Eqs. (3), (5) in Ref. [32]]. One then derives
estimates of integrated flow: in the cumulant approach, by
extracting the successive derivatives of lnGszd at z=0 and
identifying them with the corresponding derivatives of
ln I0s2vnuzud [28]; when using Lee-Yang zeros, simply by
looking for the location of the first zero ofGszd in the com-
plex plane[see Ref.[31], Eq. (9)]. Once estimates of inte-
grated flow have been obtained, they are used to compute
values of differential flowvnspT,yd for particles in a small
spT,yd bin, whose azimuthal angle we shall denote byc.
This is done by correlatingc to the generating function[see
Eq. (26) in Ref. [28] or Eq. (9) in Ref. [32]].

2. Analysis of two-particle flow

Any of the methods recalled in the previous section can
also be employed to measure the anisotropic flow of pairs as
well, modulo small modifications. Whatever the method, the
first step is strictly the same, namely, the construction of the
event plane(and the computation of its statistical dispersion)
in the event-plane method, or the measurement of estimates
of integrated flow in the two-particle and multiparticle meth-
ods.

We shall now describe the changes that must be made to
the measurement of differential single-particle flow in order
to analyze the coefficientsvc,n

pair, vs,n
pair. In short, the first nec-

essary modification is the obvious replacement ofc (the azi-
muth of “differential” particles) by the pair anglefpair; then
no further change is needed to obtain the cosine coefficient
vc,n

pair, whose measurement strictly parallels that ofvnspT,yd,
while for vs,n

pair one should replace the “cosnc” term that is
correlated to either the event plane or the other particles or a
generating function with a “sinnfpair” term. Let us be more
explicit.

(1) In the event-plane method, the pair-flow Fourier coef-
ficients are given by the averages

vc,n
pair =

kcosnsfpair − CRdl
kcosnsCR − FRdl

, sA4ad

vs,n
pair =

ksinnsfpair − Cndl
kcosnsCR − FRdl

, sA4bd

whereCR is the event-plane azimuthal angle and the aver-
ages run over pairs and events. Note the analogy between
Eqs.(A1) and (A4a).

(2) When using two-particle correlations, one builds a
two-point correlatorC2sfpair−fd, wheref is any particle in
the same event as those involved in the pair, with the trivial

exception of the pair particles to avoid autocorrelations. In
opposition to the correlator used in single-particle flow stud-
ies, C2sfpair−fd is no longer an even function, so that its
Fourier expansion has nonvanishing both cosine and sine
coefficients which are related to the pair-flow coefficients,
namely,

kcosnsfpair − fdl = vnvc,n
pair, sA5ad

ksinnsfpair − fdl = vnvs,n
pair, sA5bd

wherevn is the integrated flow while the averages run over
all sfpair,fd in each event, then over events. Once again, Eq.
(A5a) is reminiscent of Eq.(A3a), while the difference be-
tween Eqs.(A3b) and (A5b) is due to the fact that, whereas
single-particle emission is symmetric with respect to the re-
action plane, pair emission, on the other hand, is not sym-
metric (see Sec. II and Fig. 1).

(3) To measure the Fourier coefficientvs,n
pair in the Lee-

Yang zeros method, one should replace cosnsc−ud by
sinnsfpair−ud in the numerator of Eq.(12) [Eq. (9)] in Ref.
[31] [Ref. [32]].4

(4) Finally, in the cumulant method, the relevant cumu-
lants when measuringvs,n

pair are the imaginary parts in the
power-series expansion of Eqs.(29) and (27) in Ref. [28],
while the real parts are needed for the analysis of single-
particle differential flowvnspT,yd or of the cosine coeffi-
cientsvc,n

pair. As a result, the interpolation formula that allows
one to extract the cumulants is similar to Eq.(B7) of Ref.
[28] [Eq. (11) of Ref. [29]], modulo the replacement
sXp,q,Yp,qd→ sYp,q,−Xp,qd, whereXp,q andYp,q are still given
by Eq. (B6) in Ref. [28].

Even if every method of single-particle flow analysis can
in principle also be used to measure pair flow, modulo the
modifications we described above, there exists a clear differ-
ence between the two-particle methods(both event-plane and
two-particle correlation methods) on the one hand, and the
multiparticle approaches on the other hand. As a matter of
fact, we already mentioned that both two-particle methods
rely on the assumption that all correlations between two ar-
bitrary particles are due to anisotropic flow; in other words,
that other sources of two-particle correlations are absent, or
at most weak[23]. Now, if the purpose of using one of these
methods is precisely to measure some azimuthally dependent
two-particle effect, the procedure is somehow self-
contradictory. Such an inconsistency does not affect the mea-
surement of pair flow through multiparticle methods, since
the latter do not assume that two-particle correlations are
nonexistent, they merely minimize their effect.

APPENDIX B: SYMMETRY PROPERTIES OF PAIR-FLOW
COEFFICIENTS

In this appendix, we list a few mathematical properties of
the pair-flow coefficientsvn

pair for the sake of completeness.

3One should not worry about possible double particle countings,
which amount to(unphysical) nonflow effects, and are thus auto-
matically taken care of in the methods.

4We assume for simplicity thatm takes the value 1 in the cited
equations. Valuesm.1 correspond to higher harmonics, for which
the same modifications apply.
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The invariance of the two-particle distribution under the
transformation sf1,f2d→ sf1+2p ,f2d translates into the
(pseudo)periodicity property

vn
pairsDf + 2pd = vn

pairsDfde−2ipnx, sB1d

wherex has been defined in Eq.(3). If x is changed tox8 in
Eq. (3), vn

pairsDfd is changed to vn8
pairsDfd

=vn
pairsDfdeinsx−x8dDf.
If the system has symmetry with respect to the reaction

plane (no parity violation), the two-particle distribution is
unchanged under the joint transformationsfpair,Dfd
→ s−fpair,−Dfd. At the level of the Fourier coefficients, this

symmetry givesvn
pairs−Dfd=v−n

pairsDfd. Together with prop-
erty (5), this yields

vn
pairs− Dfd = v−n

pairsDfd = fvn
pairsDfdg * . sB2d

The corresponding properties for the real Fourier coefficients
vc,n

pair andvs,n
pair are

vc,n
pairs− Dfd = vc,−n

pair sDfd = vc,n
pairsDfd,

vs,n
pairs− Dfd = vs,−n

pairsDfd = − vs,n
pairsDfd. sB3d

These various properties may prove useful to check that
measured estimates of the Fourier coefficients behave “prop-
erly.”
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