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Azimuthally sensitive correlations in nucleus-nucleus collisions
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We define a set of model-independent observables which generally characterize the azimuthal dependence of
two-particle correlations in nucleus-nucleus collisions. We explain how they can be analyzed, and show to
what extent such analyses are model dependent. We discuss specific applications to the anisotropic flow of
decaying particles, azimuthally sensitive Hanbury-Brown Twiss interferometry, and correlations between par-
ticles at large transverse momentum. A quantitative prediction is made for jet quenching with respect to the
reaction plane.
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[. INTRODUCTION In this paper, we give for the first time a unified presen-
o ) tation of these phenomena, which have so far been discussed
In noncentral nucleus-nucleus collisions, azimuthal a”9|e§eparately. In all cases, analyzing azimuthally dependent cor-

of outgoing particles are generally correlated with the direcyejations involves two distinct operationd) measuring the
tion of the impact parameter. This phenomenon, called "angistribution of a pair of particles with respect to the reaction
isotropic flow,” has been known for 20 yeal®], and has pjane:(2) isolating the “true” correlation from the uncorre-

raised particular interest at the Brookhaven Relativisticgieq part. Both issues can be discussed independently, on a
Heavy lon Collider(RHIC) where it is thought to provide fairly general footing.

unique evidence for quark-gluon plasni@GP) formation The first operation is discussed in Sec. I, where the ob-

[2]. _ ) servables associated with two-particle anisotropic flow are
_Most often, one studies the azimuthal dependence Ofiefined. These observables are model independent and can in
single-particleproduction[3]. Here, we would like to dis- principle be measured accurately. In particular, it will clearly
cuss the azimuthal dependenceteb-particle correlations.  gpnear that any method used to measure the single-particle
This is of interest in various situations. anisotropic flow can also be used to analyze azimuthally sen-

(1) Anisotropic flow of short-lived particleShe flow of  gjtive correlations, modulo minor modifications. In that view,
unstable particlegfor instanceA baryong is studied through \ye recall in Appendix A the main features of existing meth-

their decay products. One must first identify a correlationygs for analyzing one-particle flow, and we introduce the
between daughter particles, typically through an '”Va”a”Ehanges necessary to measure pair flow. While existing

mass plot; then study how this correlation depends on thg,ethods all require one to estimate the reaction plane on an
azimuthal angle of the decaying parti¢k-9]. event-by-event basi23,24 (see, for instance, Refg25] for

(2) Azimuthally sensitive two-particle interferometry A fiow, [26] for azimuthally sensitive HBT interferometry,
Bose-Einstein correlations between identical particles ar@nd[27] for correlations between high-momentum partigles
commonly used to measure the size and shape of the emifis step is by no means necessary with the procedure we
t!ng source[10]. In noncentral polhsmns, the source projec- g ggest. This opens the possibility to apply the improved
tion on the transverse plane is no longer circyll], and  methods of flow analysis recently devised in R428-32
this can directly be seen in Hanbury-Brown Twi8SBT)  anq 1o resolve an inconsistency of present analyses: on the

studies of two-particle cprrelations, as already observed &,q hand, one studies a correlatitetween decay products,
the Brookhaven Alternating Gradient Synchrotd2] and  gue to quantum statistics, from jet fragmentaiovhich is

at the RHIC[13]. _ essentially a “nonflow” correlation; on the other hand, one
(3) Jet quenching with respect to the reaction plaee  ;,ses the event-plane method which relies on the assumption
energy loss of hard partons traversing a deconfined mediug st a1l correlations between particles are due to fla@].
[14,19 is a crucial signature of QGP formation at the RHIC  The second operation is discussed in Sec. Ill. Unlike the
[16]. I.n particular, it rgsults ina modif_ication of the pattern f c¢ one, it will be shown to be always model dependent.
of azimuthal correlations between high-hadrons, com-  geyeral specific applications are discussed in Sec. IV, to-

pared topp collisions: the back-to-back correlation is sup- gether with predictions regarding the pair-flow coefficients.
pressed17,1§. In a noncentral collision, the average length o, results are summarized in Sec. V.

of matter traversed by a parton depends on its azimuth
[19,2Q, which results in azimuthally dependent two-particle

correlations[21,22. Il. OBSERVABLES FOR TWO-PARTICLE ANISOTROPIC
FLOW
We first recall definitions for single-particle distributions.
*Electronic address: borghini@spht.saclay.cea.fr For particles of a given type in a given rapidity) and
"Electronic address: ollitrault@cea.fr transverse momentufp;) window, the probability distribu-
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tion of the azimuthal angleb (measured with respect to a \
fixed direction in the laboratojyreads

1 +o0 . )
p(¢= D)=~ > v R, (1) 0y
n=-w
pair,
\\\(l) —(DR
]
i

! Reaction

where @ is the (unknown azimuth of the reaction plane
(impact parametegiin the laboratory frame.

The Fourier coefficient$33] in this expansion are given
by v,=(e""¢~®R) where angular brackets denote an aver-
age over particles and events. Given the normalization
choice in Eq.(1), vg=1. Sincep(¢p—>pg) is real,v_,=(v,)*,
where the asterisk denotes the complex conjugate. If, in ad-
dition, the system is symmetric with respect to the reaction
plane [-(¢—-dg) is equivalent togp—Dg], as in a collision
between sphericahlthough not necessarily identigaduclei N pair
when parity is conserved, E¢l) reads RN (N

plane

+00
1
p(dp—Ddg) = Py 1+ 2>, v, cosn(¢ - ) (2) FIG. 1. lllustration of the various azimuthal anglég ¢, dpain
m n=1 A, with x=1/2.
with v,=(cosn(¢-Pg)), i.e.,v, is real. S
The Fourier coefficients,, have by now become familiar Probability distribution in a way analogous to Ed):

in the study of anisotropic flow ifultrayrelativistic heavy- 1 ¥
ion collisions. Nevertheless, it is instructive to recall why P(bpair— Pr) = = > vPaien(dpair @) (4)
they are the proper tools to parametrize azimuthal anisotro- T n=—co

pies. The key feature is that even though the reaction plane. , - y i pair
®r is unknown on an event-by-event basis, the first Fouriel '@ the us_ualvrls ( th.e_ )paw-f!ow coefficientsv, ™ are de-

.- ._fined byvP?'=(e "(¢pair®R)) with the normalizatiorvf'=1
coefficientsv, can be accurately reconstructed from a statis-_ n . Coo 0 o
tical analysis of azimuthal correlations between outgoings_'”ce the propablhty distribution is real valued, the coeffi-
particles(see Appendix A 1 for a review of the methods for CIENtS also satisfy the property
analyzing single-particle flow quever, the higher the Ugﬁir: (Uﬁair) * (5)
value ofn, the larger the uncertainty ay), [34]. Therefore ) ) _ ) )
the probability p(¢-®g) at a specific azimuth cannot be But unlglfre_ the single-particle flow, the pair-flow coeffi-
measured in practice. Furthermore, singds defined as an Cientvp™ is in general not a real number. The underlying
average, it is also easier to compute in theoretical studies—iffason, exemplified in Fig. 1, is that the transformation
particular, in Monte Carlo models—than the probability dis- @pair~ Pr— ~(¢pair~Pr) for a constaniA¢ is nota symme-
tribution itself. try of the systenjr. As a consequence, sine terms are also

The above definitions can readily be generalized to théoresentin the real form of the Fourier expansion, and(Eq.
distribution of particlepairs with respect to the reaction IS replaced by
plane. A pair of particles of given species is characterized by 1 +00 _
six kinematic yar|able$Tl, Y1, é1, P, Y2, ¢,. It is conve- P(bpair— Pr) = o 1+2> [Ugfﬂrcosn(%air— D)
nient to combinep,; and ¢, into the relative angld ¢= ¢, 77 n=1
— ¢4 (or any similar observable that does not depend on the
overall orientation of the pair in the transverse plane, as, e.g., + P sin N(Ppair— q)R)]> , (6)
the invariant magsand a “pair angle” ’

Ppair = X¢p1 + (1 = X) b, (3)  where the real coefficients vgf‘r,i’:(cosn(¢pair—<l>R)> ‘and
vEe'=(sinn(¢pq—Pg)) are related to the complexf®" by

the relationyP"=yPar—j,par

where Osx=<1. One can restrici,,;; and A¢ to the ranges
n vc,n Ivs,n :

~7< o< and -m<Ap <. If X=3, Ppay iS the mean _ _ _
angle. The choice of depends on the problem under study: The existence of such sine terms was _qlready noted in
most often, one chooses fé,; the azimuthal angle of the Ref. [26] in the context of azimuthally sensitive HBT stud-

total transverse momenturpy, +pr, (see Secs. IV A and !es. Note that i; does no.t imply parity vioIatiqn, as it wpuld
IV B); in studies of azimuthal correlations between high-In the case of_s_,lngle-parncle ﬂOWQ-_ The phyS|paI meaning
momentum particlesx=1 is a more common choicesee of these additional terms will be illustrated in Sec. IV in
Sec. IV O.

Consider now a sample of pairs of particles in some range 'The actual symmetry is under the simultaneous transformation
of pry, P2, Y1, Y2, andA¢. To study the probability distribu- ¢y~ Pr— ~(bpair— Pr), Ap——Ad. Its consequences for the co-
tion of the pair anglepy,;; within this sample, we write its efficientsvp™" are discussed in Appendix B.
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various physical situations. In particular, we shall show thatwo bins are separated. If they overlap, one need only replace
they may yield insight on the mechanism responsible for théN;N, by the number of pairs in what follows. The simplest

deficit in highpy particles. definition of the correlation between the two bins is
It may be interesting to note that the pair-flow coefficients _ :
vP?(A¢), when viewed as functions of the relative angle €= (NiN2) — (N.XN), @)

A¢, have peculiar properties which are derived in Appendixwhere angular brackets mean an average over many €vents.
B. Checking that measured values of the coefficients possess Such a definition is not satisfactory in practice because
these properties then provides a way to evaluate the errogae sample of events used in the analysis always contains
affecting the measurement. events with different centralities: in particular, the total mul-

In experimental analyses, any method that can be used #plicity may have sizeable fluctuations within the sample of
measure the single-particle floyy can be applied to extract events considered, and these fluctuations alone induce a cor-
the cosine termsf?, without any modification: one simply relation between any two phase-space bins. This correlation
considers the pair as a single particle with azimuthal anglgs of a rather trivial nature, but it may well overwhelm the
dpai- The generalizations required in order to extract the sinénteresting oneg37]. A simple way out of this problem
termsvtT" are quite straightforward. They are summarized inwould be to normalize the two terms in E) by the total
Appendix B 2 for various methods of flow analysis. In par- number of pairs of correlated and uncorrelated particles, re-
ticular, some of these methods can safely correct for nonflowpectively, that is, to define instead the correlation as
effects, others for acceptance anisotropies. This extends the
possibility of studying azimuthally dependent correlations to C=(N;N,) - M
detectors with partial azimuthal coverage. (N)?

To conclude this section, let us emphasize that the new o o is the number of particles in a large enough phase-

characterization of azimuthally sensitive two-particle corre-Space binttypically, the total number of charged pions seen

. in the detector for interferometry analy$ethis definition is

cients, represents in our view an improvement over previou . ' . . .
arametrigations in the same wa b is an im rover%ent 3lso unsatisfactory for two reasons: first, it obviously intro-
P ' Y &S P duces some degree of arbitrariness in the definition of the

over older observables for anisotropic flow. The reason is : . ;
simply that P and v?" are model-independent and correlation, depending on the choice of the phase space for

detector-indepi’enndent observables N; second, part of the flu_ctuatio_ns i may be meaningful _
' for the correlation analysis, as in the case of Bose-Einstein
correlations[38], so that there is no point in subtracting
IIl. ISOLATING THE CORRELATED PART them.
In actual analyses, the correlation is rather defined as

(N2 (N, (8

Subtracting the “trivial” uncorrelated part in order to iso-
late the “true” correlation is far from trivial. In this section, C=(N1N2) = c(N XNy, 9
we discuss this issue in as simple and general a way as pos;

sible. For the sake of simplicity, we start with the case Whenwherec is some free coefficient. This coefficient is kept con-

. . . . stant throughout the correlation analygighich typically in-
there is no 'anlsotrop|c'flow. In Sec. Il A, we explam vyhy volves varying the invariant mass, the relative momentum, or
the subtraction always involves some degree of arbitrarines

most often in the form of an arbitrary constant. Although thisﬁ\1e relative azimuth between the two partigles is then
; Y i 9 fitted in such a way that the correlatiérvanishes when it is
is to some degree well known, at least to those who actuall

perform correlation analyses, we think it is worth recalling, xpected to: at large relative momentum in HBT analyses

since the literature on the subject is rather confusing. In Se%‘fis]’ and in some range af in correlations between high-

. s “Pr particles[17,18. In addition, as mentioned above, the
::(I)E’ ovlvee ;er%?: thoenvt?}re'ogssvgﬁlyjb?ef Eggg?!i'ﬂjg the correla background subtraction is often complicated by the existence
» depending . . Y- of anisotropic flow, as we shall discuss in Sec. Il C.
In practice, however, anisotropic flow is most often
present, and makes the background subtraction more difficult B. Normalizations

N heayy-lon poII|S|0ns than n elementary collisions. Note There are essentially three ways of normalizing yields of
that this applies to all correlation analyses, not only to the

. i ) . particle pairs in azimuthally independent analyses, depend-
azimuthally dependent ones: the correlation of single paring on the observable under study.

fles 1t e e plne duces & conelaton betueel () one sy computesthe average number of pars per
' Y ! P P event,(N;N,). For instance, in order to measuteproduc-

in order to isolate other effecisee, for instance,36]). In : lots th b _ . i
Sec. lll C, we explain how this can be done, and show thapon’ one plots the number dp, ) pairs per event as a
unction of the invariant mass! of the pair. The number of

this subtraction implies further approximations. S . )
P op pairs in the peak around th& mass gives the yield o\

baryons, modulo acceptance corrections.
A. A model-dependent issue

In a given event, leN; and N, denote the numbers of 25 other terms(N,), (N,), and (N;N,) are the one- and two-
particles in two phase-space bingpr ,yi,¢1) and  particle inclusive cross sections, divided by the total inelastic
(pTz,y2,¢2). To simplify the discussion, we assume that thenucleus-nucleus cross section.
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(2) One divides the number of pairéy;N,), by the num- A. Anisotropic flow of short-lived particles

ber of uncorrelated pairs{N;)(N,). This is the standard ob- | ot 5 pegin with the measurement of the anisotropic flow

servable for Bose-Einstein correlations, where the ratio varpf particles that are seen through their decay products, such
ies ideally between 2 and 1 as the relative momentum of thgs A —, p7~ [4,7-9, 7°— vy, 7— vy [5], K3~ 77 [6,9].

pair increases. _ o o We shall illustrate the recipe by discussing the flow/of
(3) The third, intermediate choice is to divide the numberpsryons.
of pairs,(N;Np), by the number of “trigger particles{N,) For each event, one soits™,p) pairs into bins of invari-

[17]. After subtraction of the uncorrelated pactNy), one  ant massedl. The first step is then to analyze the totel
thus obtains the mean number of particlé, correlated yield. Following the standard procedure, one counts the
with a trigger particle, which is independent of the systemnumber of pairs in each invariant-mass bin, irrespective of
size (i.e., the same for a nucleus-nucleus and for a protonthe pair azimuth; leNyaird{ M) denote this number. One then
proton collision if there is no final-state interaction. separates this distribution into an uncorrelated fthe back-
groundN,(M)] and a correlated pafthe peakN, (M), cen-

C. Subtracting the correlation due to flow tered around the expected masg:

.When the parhcles in thel pair are |nd|V|'d!JaIIy corre!ated Npaird M) = Np(M) + Ny (M). (11)
with the reaction plan@g, this induces a trivial correlation
between them, which must also be subtracted. The integral of the correlated pa, (M) over M is the A
This subtraction is easy in principle: one simply repeatsyield.
the operations of Secs. Il A and Ill B for a fixed orientation  |n most cases, the peak is well above the background: to
of the reaction planebg. Then, the following substitutions perform the above decomposition, one need not go through
hold: the whole procedure of the previous section: instead, one
_ simply assumes that the backgroudgiM) is a smooth func-
(NsN2) = (NuN) (2m)P( bpair ~ P tion of M [25]. Please note that the anisotropic flow of
andp correlates their azimuthal angles, and therefore distorts

(Np — (N)(2m)pa(¢y = Pr), the background. However, the distorted background remains
smooth, so that this effect need not be taken into account.
(N2) — (N (2m)pa( o = D). (10) Next, one defines the azimuthal angle of the péjg;, as

In these equationgN;N,), (N;), and({N,) denote quantities the azimuthal angle of the totall transverse .mome,nmm
+pr, and one analyzes the pair flow coefficiens, (M)

averaged ove®g; p(dp,i—Pg) is the distribution of the pair e : N
angle, defined in Eq8), andp; (b, - ), pa(b,—Pg) denote a_nd.vgn (M) in each bin. One then performs a decomposition
the single-particle azimuthal distributions of each particle Similar to Eq.(11) for the azimuthally dependent part of the

defined as in Eq2). pair yield:
Once the azimuthal distributions of pairs and single par- _ ®) A
ticles with respect to therue reaction plane have been prop- Npaird M)ve n(M) = Np(M)ve n(M) + Ny(M)vg,,,
erly reconstructed, extracting the correlation, and its azi-
muthal dependence, is straightforward. Npaird M)vgn(M) = Nb(M)vg}I(M) + NA(M)v?,,n- (12)

Strictly speaking, however, the one- and two-particle
probabilitiesp(¢p—Pg) andp(pp.i— Pr) at a specific azimuth - This decomposition is performed assuming that the back-
relative to the reaction plane cannot be reconstructed. Aground componentsxlb(M)u(b)(M) and Nb(M)v(b)(M) are

c,n sn
already mentioned in Sec. Il, only the first few Fourier coef-smooth functions ofM. In this particular case, symmetry

ficientsv,, or vh®" can be reconstructed, due to larger absolutewith respect to the reaction plane for particles implies
uncertainties on higher-order coefficients. On the other hancbgn:o, except for experimental biases and fluctuations. This
the Fourier coefficients of a smooth function ¢f®g are  identity can be used in order to check the accuracy of the
expected to decrease quickly as the order incre@besex-  experimental procedure, as in the case of single-particle flow
pectation is supported by recent experimental single-particlg24]. If the background consists of uncorrelated particles, one
flow data[39]), so that one can reasonably truncate the sealso has”’(M)=0.

ries, keeping only the measured coefficients. This truncation | mossfnanalyses so far, the decomposition between the
is always required in order to estimate the correlation frompackground and the peak is performed independently for
anisotropic flow{17,27. At the RHIC, for instance, the error geyeral bingtypically, 20) in ¢pai— Vg [8,9,29, whereWy is

on the azimuthal distribution at midrapidity is likely to be an estimate of the reaction plane. With the above procedure,
dominated by the error on the fourth harmonig and one  the decomposition is only performed twice, in E¢kl) and

can take(1/m)dv, as the error omp(p-Pg). (12).
When the peak-to-background ratio is low, finally, mixed
IV. APPLICATIONS events can be used to define the backgroFdHowever,

the above-mentioned distortion of the background due to an-
We shall now discuss specific applications, with emphasissotropic flow must then be taken into account, as we shall
on the details of the experimental procedure. see in more detail in Sec. IV B.
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B. Quantum correlations experiment at the RHIC are(cos AWg)?=0.6 and

Azimuthally dependent Bose-Einsteior, more generally, (C0S 2AWg)?/(cos AWg)=1.3.
short-rangg correlations are analyzed in two steps. The first In addition to the systematic uncertainty we just dis-
step is to perform a Fourier expansion of the pair yield withcussed, the price to pay for aligned mixed events is that one
respect to the reaction plane, for each relative momermum must essentially perform the whole correlation analysis for
[26]. As explained in Sec. Il, any method of flow analysis fixed values of both the pair anglg,,;; and the estimated
can be used to extract the Fourier coefficiengs(q) and  reaction planelr. We suggest instead the following method.
vsn(Q). Even with the event-plane method, no binning in (1) Place particle pairs in bins according to their rapidities
$pair~ VR is required, in contrast to present analyE3,13. v, y,, total transverse momentuki=pr +pr,, and relative
Once the coefficients are known, one easily builds the distrimomentum.
bution of pairs relative to the reaction pla( to the trun- (2) In each such bin, build the correlation functi@tq)

Cat:\?n issue men;ionde_fdf_ inISec. ”D-fC h sis: as in the standard, azimuthally insensitive HBT analysis.
ext comes the difficult part of the analysis: one must (3) Reconstruct the azimuthal distributions of pairs,

divide the number of pairs per event by the number of un- . . . _
correlated pairs, as explained in Sec. Ill B. For a fixed ori—p(d)palr ), and of single particlesp,(¢; ~Pg) and py(¢,

entation of the reaction plan®g, this number depends on ~®p). with respect to thectualreaction plane; that is, mea-

®p (see Sec. Il ¢ sure the first Fourier coeffici'ent)ﬁﬁair andu,, for each particle
in the pair (at RHIC energies, measuring the second and
Nunco Pr) = 27(N1)P1(h1 = Pr)27(N) po( b, — D). fourth harmonics, and v, should be enough to guarantee

(13) that the distributions are reasonably well reconstructed

) ) ] (4) With the help of the substitution E@10), build the
The dr-independent partN;)(N), can be obtained using a 4,imythal dependence of the correlation function.
standard mixed-event analysis. Tég-dependent part, how-
ever, involves théfirst) flow coefficientsv,, of both particles One then eventually extracts azimuthally dependent HBT
in the pair. radii using standard techniqués particular, including cor-

To avoid this complication, the procedure suggested imection for Coulomb effecjswhich are beyond the scope of

Ref.[26] is to used mixed events withligned event planes  this paper.
This procedure, however, is only approximate, because one
mixes events with differenieactionplanes, although the es-
timated planes are the same. To be specific, let us compare in C. Two-particle azimuthal correlations
a simple case the distribution of uncorrelated pairs following
the exact procedure, E¢L3), and using mixed events with Two-particle azimuthal correlations at large transverse
aligned event planes. To simplify the calculation, we assumeénomentum are under intense investigation in ultrarelativistic
that only elliptic flowwv, is present, and that it has the same nucleus-nucleus collisions, since it has been realized that
value for both particles in the pair; we further assume thathey yield direct evidence for hard scatterif@g]. In that
the pair angle is the mean anghes ; in Eq. (3). Then the  case, one correlates a high-particle, the “trigger” particle,

exact result is hereafter labeled 1, with a lowgk particle, hereafter la-
Nyncol Pr) beled 2. We assume for simplicity that particles 1 and 2
“neo =1+ 205 cos ¢+ 4v, cos ¢ oS APy belong to separatp intervals. This is not the case in the
(N2)(N2) STAR analysis[17], where particle 2 can be any particle

- dg) + 205 cos 4 pair— Pr). (14 with momentum lower thapr, above some cut. This differ-

ence, however, is not crucial for the following discussion.
The following quantities must be measured: the average
number of pairs per event, as a function of the relative angle
A¢, (NpairdA)) (in practice, pairs are naturally sorted into
equal-size bins oA ¢), and the average numbers of particles
per event{N;) and({N).
+ 4v2 €05 246 €OS Ay~ D) In studying the azimuthal dependence of the correlation, a
»{cos P natural choice is to take the azimuthal angle of the trigger
U2 (cos AW ) €OS 4 pair =~ D). particle ¢, as the pair anglebp,, i.e., one chooses=1 in
(15) Eg. (3). One needs to reconstruct the azimuthal distribution
of pairs (for a given A¢ bin), p*%(¢,-®g), and the azi-
where AVr=V,-dy is the difference between the esti- muthal distributions of both trigger and associated particles,
mated event plane and the true reaction plane. As expectep;(¢,—®g) and p,(¢,—dg). One may then reconstruct the
both results coincide wheAWz=0. Quite remarkably, the whole correlation function for a fixed value @f,—®Pg. In
mixed-event method is correct to leading ordervineven  particular, the correlation functions for the specific values
whenAWg+#0. However, it misses the coefficients of order ¢,=®x (in plane and ¢,=Pr+ /2 (out of plang are given
vg. Typical values of the correction factors for the STAR by

This is to be compared with the result obtained following the
method of Ref[26]:

Nmixeo(q)R)

Mo 1+ 2v5(cos AWg)? cos A
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A culation shows that the previous identity is equivalent to
P (AP) = (WP (AP) —vi)tan 224, (18)

oD, wherev(zl) is the elliptic flow for the trigger particle, and the
pair-flow coefficienta 5" andvl3" have been defined in Sec.
\ Il. This prediction is consistent with the general symmetry

\ property(B3).

) .
<l)1 R Reaglon V. SUMMARY AND PERSPECTIVES
plane

We have introduced novel, model-independent observ-

ables that describe the dependence in azimuth of two-particle
\—(07D) correlations in heavy-ion collisions. These observables,

-7 namely, the coefficients}3" andvP2" in the Fourier expan-
Ad sion of the azimuthal distributio(®) of the pair-angleg,,;
that characterizegtogether with the relative azimuttpar-
ticle pairs, generalize in a natural way the Fourier coeffi-
cientsuv,, for single-particle anisotropic flow. As the latter, the
pair-flow coefficients can easily be measured in experiments,

FIG. 2. lllustration of the prediction made in E{.7). The long using any “usual” method of flow analysisnodulo minor

it ; iry .«
arrows represent the momenta of trigger particles, while the shortemOd'Ilc?uonstfor thetmleasureTetpt of the S'?e :em@ 3 L
arrows represent the momenta of associated particles. If the modftVENt-piane, two-par IIT: € corre ‘;’_‘ lons, cumuiants, an h Iee'
fication of the correlation is due to the quenching of the associated @19 Z€ros can equally be applied. We recommend the last

particle, it must be unchanged under the transformatigr®r WO, however, when possible, in order to disentangle flow
(- Dp). from nonflow effects.

A main point of this paper is that these observables should

(Npaird Ad)) pAd’(w/Z) T replace, in future analyses, quantities that are defined for a

C™i(ag) = p<N Y pyal2) 2770<N2>p2(§ * A¢)' given azimuth relative to the event plane. Much in the same
. ! way, the Fourier coefficients, have now replaced earlier

_ (Npaird Ap)) p22(0) observables such as the “flow angle,” the “squeeze-out ra-
C"(Ag)=—> - 2mc(Np)po(A¢), (16)  tio,” in most if not all analyses of single-particle flow. The

(Ny) P.(0) reason is that the event plane is not exactly the reaction
where ¢ is a constant close to unity, as explained in Secplane, and the dispersion varies from one experiment to the
[l A. It is independent ofA¢ and ¢, — Pr. other. Therefore, observables defined with respect to an event
Let us briefly compare the above procedure with the onglane yield only qualitative information:h®", on the other

suggested by Bielcikovat al.[27]: these authors show how hand, allows studies of azimuthally sensitive correlations to
to analyze correlations in and out of an event plane, which ignter the quantitative era.

not exactly the reaction plane. Since the event-plane resolu- |n a second part, we have briefly shown how to relate our
tion is a detector-dependent quantity, this prevents quantitagshservables to physical quantities of interest in three differ-
tive comparisons between different experiments. In additionent cases: anisotropic flow of decaying particles, interferom-
the algebra to subtract the uncorrelated part is much simpl&stry, and azimuthal correlations of high-momentum particles.

with our method. It is important to stress that, unlike the measurement of the

The standard interpretation of the modification of the cor-pajr-flow coefficientsu?a" and vP2", this second step does

relation function in nucleus-nucleus collisions, compared t®epend on the underlying physical picture. This model de-
proton-proton collisiong17], is that the associated parton pendence leads to some arbitrariness, which in practice takes
loses energy on its way through nuclear matter. If this interthe form of the introduction of a normalization constant and
pretation is correct, then for a givexy the number of pairs  (for HBT and highp;-particle studiesa necessary truncation
per trigger particle depends only on the path followed by theyf the Fourier expansion of the single-particle distribution.
associated particle. Symmetry with respect to the reaction A striking difference with the usual studies of anisotropic
plane implies that it is unchangeddf,~®r is changed into  fiow s the general occurrence of sine terms in the Fourier
its opposite. As illustrated in Fig. 2, this symmetry is by noseries expansion. The relevance of such sine terms was al-
means trivial since the path followed by the trigger particle isready discussed in the context of single-particle f(@w,35
now different. This gives us, for arbitrarg,~Pg andAé,  and azimuthally sensitive HBT interferome{i36]. Here, we
the prediction have shown for the first time that in the case of correlations
P (o - Dr—Ag) 4= ¢, + Dr— Agh) 17 betwegn highpr particlgs, jet quenching would result in a
(¢~ Dp— Adb) = 01— byt Dr-Ad) (17) specn_‘|c value for th_e_sme term, given by E@8).
P @2~ PR R Azimuthally sensitive correlations are among the subtlest
If the only nonvanishing Fourier harmonic in the single- analyses in our field, and have already given valuable insight
particle and pair azimuthal distributions ds, a simple cal- on the physics of high-energy nuclear collisions. We hope
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that the observables and methods introduced in this paper Noaird A )
will help to improve future analyses. Thanks to the high Cy(Ag) = ﬁpa"d(—Agb) (A2)
mixe

statistics now available at the RHIC, or that one can antici-
pate at the CERN Large Hadron Collider, new measurement8s usual, dividing by “mixed events” automatically corrects
will become possible, for instance, the azimuthal dependenci®r acceptance anisotropies, so that one can even work with a
of nonidentical-particle interferometry or the anisotropic detector having only limited azimuthal coverag], while
flow of various “new” particle types, while probing new re- the event-plane method requires an almost perfect azimuthal
gions of phase space. symmetry. The key point in constructin@,(A¢) is that its
Fourier coefficients, which can be deduced by fitting the
function, are preciselycognA¢))=(v,)? and (sin(nA¢))
ACKNOWLEDGMENTS =0. Letting first both particles in the pair run over the whole
We thank Javier Castillo, Kirill Filimonov, Francois Gelis, g? %aetesgprgf[;:dcﬁ\cl)(\jvr,?int,)yct)hr(rae(i?)toe:gi)r:,gotnoe s:r?é?:tggtgrs— timate

Roy Lacey, Mike L_isa, Paul S_orensen, and Raju Venugo ependentaverage of the coefficient. Restricting then one,

palan for enlightening discussions, :_;md Grzegorz Stefanek 4 only one, of the particles in the paivhose azimuth will

for useful comments on the manuscript. be denoted byy) to some definite particle type, transverse
momentumpy, and rapidityy, while letting the other(azi-

muth ¢) be any particle in the event, one constructs a cor-
APPENDIX A METHODS FOR ANALYZING relator whose Fourier coefficients are

SINGLE- AND TWO-PARTICLE FLOW
_ _ (cosn(= ) = vwn(Pr.Y), (A3a)
As stated in Sec. I, the measurement of the pair-flow

coefficientsvf5" and vla" involves the same methods of (sinn(— ¢)) =0. (A3b)

analysis as for single-particle-flow coefficients(modulo a ) )

small modification when measuring®". This prompts us to  The second identity reflects the evennes€gf)— $) (when

recall briefly the various methods that have been proposed iRarity is conserver while the first yields the “differential

the literature, indicating the modification necessary to meaflow” vn(pr,y). Please note that since only one particle per

sure the sine coefficient. pair belongs to a small phase-space bin while it is correlated
to all other particles in the event, it follows that statistical
errors are the same as with the event-plane method. Finally,

1. Analysis of one-particle flow the bias from “nonflow” effect$42] is of the same order of

. _ magnitude within both event-plane and two-particle correla-
The most employed method of flow analysigultrayrela tion methods, but it is easier to subtract, when it is possible,

tivistic energies is the event-plane mettfad, 24,34, which ip the latter, as exemplified in the case of unwanted correla-

relies on the event-by-event determination of an estimate % ons due 1o global momentum conservation in Re8).

the reaction plane, the so-called “event plane.” Once the lat- L
. . As already stated, the main limitation of both the event-
ter has been estimatédnd various procedures to correct for . . . .
plane and the two-particle methods is their relying on the

acceptance issues have been perfonmede correlates its . . ; .
) . . . . assumption that all azimuthal correlations between particles
azimuth with that of each outgoing particle, assuming #llat . . . .
. . . result from their correlation with the reaction plafs]. In
correlations between the event plane and a given particle )
) . : other words, they neglect nonflow correlations, whose mag-
(that is, actually, all two-particle correlationgre due to

flow. Eventually one must correct for the event-plane disper-mtUde is known to be large at ultrarelativistic energids].

sion (computed with the help of “subevenjsin a statistical One_may try to subtract part of the nqnflow effects by per-
forming cuts in phase space, correlating together only par-

basis: ticles that are widely separatédhich certainly accounts for
(cosn(¢—V,)) AL short-range correlatiopsbut this results in larger statistical
velpry) = (cosn(Wg - Og))’ (A1) errors, while not removing entirely all unwanted effects. The

only systematic way to remedy the problem of nonflow cor-

where ¢, W, and @y, respectively, denote the azimuths of relations in the flow analysis is to apply improved methods
the particle under study, the event plane, and the real reactiasf analysis, based on multiparticle correlatiof388—33,
plane, while the denominator measures the event-plane disvhich have been implemented at the CERN Super Proton
persion. Synchrotron45] and at the RHIG46]. The essence of these

In addition to this first method, it has long been known methods is that the relative magnitude of nonflow effects
that anisotropic flow can be analyzed with two-particle azi-decreases, while that of collective anisotropic flow grows,
muthal correlationg40], without having to estimate the re- when one considers the cumulants of correlations between an
action plane in each event. The procedure consists in buildncreasing number of particles. Measuring cumulants of four-
ing a two-particle correlator, similar to that employed in and six-particle correlations, one thus minimizes the system-
interferometry studiegl0], by forming the ratio of the num- atic error due to nonflow effects, the ultimate case being the
ber of “real” pairs(of particles in a same evenwith relative  use of Lee-Yang zerog31,32, equivalent to “infinite-order
angle A¢ over the number of “background” paifgnixing  cumulants,” which isolateollectivebehaviors in the system,
particles from different eventsith A¢: i.e., flow effects. The price to pay is an increase in statistical
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uncertainties, but the latter is moderate at RHIC and LHGexception of the pair particles to avoid autocorrelations. In
energies, especially if one uses all detected particles in thepposition to the correlator used in single-particle flow stud-
analysis: ies, C,(¢P3"- @) is no longer an even function, so that its
In practical analyses, these improved methods necessitafurier expansion has nonvanishing both cosine and sine
the computation of a generating function of multiparticle cor-coefficients which are related to the pair-flow coefficients,
relations,G(z), wherez is a complex variablg¢see Eq(5) in  namely,
Ref. [28] or Egs.(3), (5) in Ref. [32]]. One then derives
estimates of integrated flow: in the cumulant approach, by
extracting the successive derivatives ofdtg) at z=0 and _
identifying them with the corresponding derivatives of (sinn(¢P3" = ) = v 23", (A5Db)
In1o(2v,|Z)) [28]; when using Lee-Yang zeros, simply by

(cosn(¢P" = ¢)) = v, P2, (A5a)

. . . . wherev,, is the integrated flow while the averages run over
looking for the location of the first zero @(z) in the com- all (¢, ¢) in each event, then over events. Once again, Eq.
plex plane[see Ref[31], Eq. (9)]. Once estimates of inte- A5a) is reminiscent of Eq(A3a), while the difference be-
gr?ted ﬂ?"(‘j’ ft;ave belef? obtained, fthey arelused to conﬂpug een Egs(A3b) and (A5b) is due to the fact that, whereas
values of differential flowv,(pr,y) for particles in a sma single-particle emission is symmetric with respect to the re-
(pr.y) bin, whose azimuthal angle we shall denote 8y  ,ction plane, pair emission, on the other hand, is not sym-
This is done by correlating to the generating functiofsee  etric (see Sec. Il and Fig.)1

Eq. (26) in Ref. [28] or Eq.(9) in Ref. [32]]. (3) To measure the Fourier coefficienf?" in the Lee-
_ _ Yang zeros method, one should replace mas-6) by
2. Analysis of two-particle flow SINN(Ppair— 0) |n the numerator of Eq(12) [Eq. (9)] in Ref.

Any of the methods recalled in the previous section car{31] [Ref. [32]).4
also be employed to measure the anisotropic flow of pairs as (4) Finally, in the cumulant method, the relevant cumu-
well, modulo small modifications. Whatever the method, thelants when measurmgpa" are theimaginary parts in the
first step is strictly the same, namely, the construction of thgpower-series expansion of EqR9) and (27) in Ref. [28],
event plangand the computation of its statistical dispergion while the real parts are needed for the analysis of single-
in the event-plane method, or the measurement of estimatgmrticle differential flowv,(py,y) or of the cosine coeffi-
of integrated flow in the two-particle and multiparticle meth- C|ent5v'°alr As a result, the interpolation formula that allows
ods. one to extract the cumulants is similar to E87) of Ref.

We shall now describe the changes that must be made @8] [Eq. (11) of Ref. [29]], modulo the replacement
the measurement of differential single-particle flow in order(X,q,Ypq) — (Ypq, ~Xpg)» WhereX, , andY, , are still given
to analyze the coefﬂmentmﬁﬁg", vsa" In short, the first nec- by Eqg.(B6) in Ref. [28].
essary modification is the obvious replacemenggthe azi- Even if every method of single-particle flow analysis can
muth of “differential” particle$ by the pair anglepy,;; then  in principle also be used to measure pair flow, modulo the
no further change is needed to obtain the cosine coefficienhodifications we described above, there exists a clear differ-

5"’,‘1'2 whose measurement strictly parallels thawglipr,y),  ence between the two-particle methgdsth event-plane and

while for v”a" one should replace the “cog” term that is  two-particle correlation methogl®n the one hand, and the
correlated to either the event plane or the other particles or multiparticle approaches on the other hand. As a matter of
generating function with a “sing®®™ term. Let us be more fact, we already mentioned that both two-particle methods

explicit. rely on the assumption that all correlations between two ar-
(1) In the event-plane method, the pair-flow Fourier coef-bitrary particles are due to anisotropic flow; in other words,
ficients are given by the averages that other sources of two-particle correlations are absent, or
air at most weak23]. Now, if the purpose of using one of these
pair _ {cosn(¢ V) (Ada) ~ Mmethods is precisely to measure some azimuthally dependent
c,n 1 . .
(cosn(Vr— D)) two-particle effect, the procedure is somehow self-
contradictory. Such an inconsistency does not affect the mea-
(sinn(¢Pd" = w,)) surement of pair flow through multiparticle methods, since
ven = N (A4b) the latter do not assume that two-particle correlations are
" (cosn(Wg— DR))

nonexistent, they merely minimize their effect.
where ¥y is the event-plane azimuthal angle and the aver-

ages run over pairs and events. Note the analogy betweefboenpix B: SYMMETRY PROPERTIES OF PAIR-FLOW

Egs.(Al) and (A4a). COEFFICIENTS
(2) When using two-particle correlations, one builds a
two-point correlatoiC,(¢pP2"'- ¢), where¢ is any particle in In this appendix, we list a few mathematical properties of

the same event as those involved in the pair, with the triviathe pair-flow coefficientsP?" for the sake of completeness.

*0ne should not worry about possible double particle countings, “We assume for simplicity thah takes the value 1 in the cited
which amount to(unphysical nonflow effects, and are thus auto- equations. Valuem>1 correspond to higher harmonics, for which
matically taken care of in the methods. the same modifications apply.

064905-8



AZIMUTHALLY SENSITIVE CORRELATIONS IN...

PHYSICAL REVIEW C 70, 064905(2004)

The invariance of the two-particle distribution under thesymmetry givessP2'(-A¢)=vP3(A¢). Together with prop-
transformation (1, ¢,) — (¢ +27, ¢,) translates into the erty (5), this yields

(pseudgperiodicity property

Uﬁair(A(ﬁ + 2,”_) - vﬁair(A(ﬁ)e_Zimx, (Bl)

wherex has been defined in E(). If x is changed t’ in
Eq. (3, uP*A¢) is changed to vP¥(A¢)
:Uﬁair(Aqs)ein(x—x )Ac/)_

If the system has symmetry with respect to the reaction

P (= Agp) =vP(A¢) = [P (AB)]* . (B2)

The corresponding properties for the real Fourier coefficients

vPa andv?a" are
v (- Ad) =l (A¢) = vB(Ag),

VB3 (- Agp) =BT (A)) = ~vERTA ). (B3)

plane (no parity violation, the two-particle distribution is These various properties may prove useful to check that

unchanged under the joint transformatioPa", A¢)

measured estimates of the Fourier coefficients behave “prop-

— (—¢Pa" —A¢). At the level of the Fourier coefficients, this erly.”
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