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Signature of granular structures by single-event intensity interferometry
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The observation of a granular structure in high-energy heavy-ion collisions can be used as a signature for the
quark-gluon plasma phase transition, if the phase transition is first order in nature. We propose methods to
detect a granular structure by the single-event intensity interferometry. We find that the correlation function
from a chaotic source of granular droplets exhibits large fluctuations, with maxima and minima at relative
momenta which depend on the relative coordinates of the droplet centers. The presence of this type of maxima
and minima of a single-event correlation function at many relative momenta is a signature for a granular
structure and a first-order QCD phase transition. We further observe that the Fourier transform of the correla-
tion function of a granular structure exhibits maxima at the relative spatial coordinates of the droplet centers,
which can provide another signature of the granular structure.
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[. INTRODUCTION AND SUMMARY search how early a post-transition configuration the HBT in-
jerferometry really detects, as it was shown by quantum
treatments of the multiple scattering process and the collec-

tal search for the quark-gluon plas . The occurrence . . . .
d g plastf 2] dive flow that HBT interferometry measures the density dis-

of jet quenching and collective flow suggests the presence atf' ~ ' p : lier than the th Y
a very dense matter produced in high-energy heavy-ion coltribution at a configuration earlier than the thermal freeze-out

lisions [1,2]. A very important question is whether the pro- configuration[39—42. To continue our progress in the search

duced dense matter is a quark-gluon plasma. If it is a quarki©" the phase transition of a quark-gluon plasma, it is reason-
gluon plasma, it will undergo a phase transition from theable to start with the working hypothesis that the density

quark-gluon plasma phase to the hadronic phase. It is Of*uctuatlons that occur during a first-order phase transition

. . are so large that some remnants of the granular droplet dis-
great interest to search for the signature for the phase transt'ribution remain after the post-transition evolution, and these
tion of the quark-gluon plasma.

The signature for the ph ¢ ition d q i remnants form an initial chaotic source of granular droplets.
€ signature Tor th€ phase transition depends sensi IVel?f‘he assumed chaoticity of the particle source then leads to

on the order of the transition. Previously, Witten and manyie resyit that the correlation function of two identical
other workers noted that a granular structure of droplets 0Cy5ons in HBT interferometry contains information on the
curs in a first-order QCD phase transition, and the observaspace-time density of the source. A granular density distribu-
tion of the granular structure can be used as a signature forign of the emitting chaotic source then distinguishes itself
first-order QCD phase transitid8-15. In a recent spinodal  from other density distributions and should reveal its charac-
analysis, Randrup found that the spinodal instability has aeristics in HBT interferometry.
high degree of amplification and the instability of the most = Suggestions to examine the granular structure in connec-
rapidly amplified wavelengths grow predominantly, leadingtion with the phase transition of the quark-gluon plasma have
to spinodal(granulaj density patterns that may indeed be been presented previously3—15. Recent high-energy
used as a diagnostic tool for a first-order QCD phase transheavy-ion measurements give a ratio &,/Rgge~1
tion [13]. Assuming that the granular particles are arranged45,44, which is contrary to most theoretical expectations
in regular rapidity intervals in momentum space, Randrug47-5§. A granular emitting source of droplets was proposed
studied methods to identify the associated momentunto explain this HBT interferometry puzz[d4]. The sugges-
clumping usingN-particle momentum correlatiorj&5]. tion was based on the observation that in the hydrodynamical
We would like to study the granular source in configura-model[32], the particle emission time scales with the radius
tion space. Among the many different ways to study a quarkef the droplet. Particles will be emitted earlier if the radius of
gluon plasma, intensity interferomet(yBT interferometry  the droplet is smaller, as in a source of many droplets. An
is the best experimental tool to examine the space-time derearlier emission time will lead to a smaller extracted HBT
sity distribution of the produced matt¢i6—44. It can be radiusR,,. On the other handRy. depends on the distribu-
utilized to study the granular structure that occurs in a firsttion of droplet centers and is relatively independent of the
order phase transition of the plasma. droplet size. It increases with an increase in the width of the
It should be pointed out that without a careful study of thedroplet center distribution and the collective-expansion ve-
phase-transition dynamics and post-transition evolution, it igocity of the droplets. As a result, the value Bf, can lie
not known at present how much the granular density patterplose toRg4 for a granular quark-gluon plasma source. A
of the phase transition will remain and become detectable bgirect investigation on the granular density structure of the
HBT interferometry. It also remains a subject of current re-emitting source is, however, needed to confirm the occur-

Recently, much progress has been made in the experime
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rence of a granular structure in high-energy heavy-ion colli-out the large fluctuations in the single-event correlation func-
sions. tion. As a consequence, the large fluctuations of the correla-
Previously, Prattet al. [6] studied the granular density tion function that are inherent in a first-order phase transition
structure in HBT interferometry by considering pairs of iden-in single events do not become prominent. A single-event
tical bosons in a distributed source in which the centers oHBT analysis brings out the prominent features of large fluc-
the droplets are distributed according to a spherical Gaussianations of the correlation function.
distribution with a standard deviatid®y/ 2. They calculated At intermediate energies and the low-energy end of high-
the correlation functiorC(|q|) for a pair of identical bosons energy heavy-ion collisions, it is difficult to use the single-
of relative momentung from such a distributed source with event HBT interferometry as the number of detected bosons
R,=4 fm. They found that there are differences in the magis small in a single event. It becomes necessary to pick iden-
nitudes of the correlation functioB(|qg|) at |q| greater than tical boson pairs from a large number of events with similar
about 80 MeV¢ in a granular structure. They also found that global characteristics in a “multievent” analysis in order to
the correlation functions are relatively smooth functions ofprovide sufficient statistics so as to extract useful, but aver-
|| even for small numbers of dropletg and 4. age, space-time characteristics concerning this group of col-
The source considered by Pratt al. in Ref. [6] corre-  lisions. As a large number of events are included in the sam-
sponds to a source in which the centers of the droplets havgling, the fluctuation of the correlation function that may be
been distributed first and identical bosons are then subsgresent in the single-event HBT interferometry is suppressed
quently examined from such a distributed source. In actudby the averaging procedure.
dynamics with droplet formation in a first-order phase tran- In a nearly head-on collision at very high energies, the
sition [3], one envisages the formation of localized dropletsnumber of identical pions is of the order of a few thousand.
in each single event following the phase transition, and parThe number of observed identical piomsis a small fraction
ticles are emitted and evolve from these localized granulaef this number. For example, the number of identical pions
droplets. Although there can be a distribution of the centersletected in the STAR Collaboration in the most central
of the localized droplets over many different heavy-ion col-Au-Au collisions at RHIC is of the order of a few hundred
lision eventgof similar other global characteristigithe cen-  [57]. Although the number of pairs of identical pions in the
ters of the droplets in each single collision event can beevent varies as,(n,—1)/2, only a small fraction of these
localized. pairs have relative momentum small enough to be useful in a
Noting that the centers of the droplets in each single everitiBT analysis. Clearly, whether or not a single-event HBT
can be localized in space and time, we would like to considemeasurement can be carried out remains to be tested. If the
a different way to study the granular structure in HBT inter-statistics of identical bosons turns out to be insufficient for
ferometry. We propose experiments to look at HBT interfer-such an analysis using the present detectors in heavy-ion
ometry for each event individually, to study its associatedcollisions at RHIC, there remains the possibility of perform-
density distribution. There are many advantages in théng a single-event HBT analysis at RHIC with detector up-
single-event HBT interferometry, if it can be carried out with grades or with heavy-ion collisions at LHC. It will also be of
sufficient accuracy. First, the granular structure is the resulgreat interest to carry out a few-event HBT analysis in future
of a large fluctuation of the density distribution in space andvork both theoretically and experimentally to see how the
time as it undergoes a first-order phase transition. The largdegrees of fluctuation changes as the number of events in-
fluctuation of the density in space and time is encoded int@reases. The rate of the change of the fluctuations will pro-
its corresponding Fourier transform, whose absolute squangde information on the underlying fluctuation in single-
gives the correlation function of identical bosons. By consid-event and event-to-event fluctuations in HBT interferometry.
ering the correlation function of all pairs of identical bosonsThe few-event analysis will require a good theoretical under-
from this single event, one can obtain pertinent informationstanding of the single-event HBT interferometry. Previous
on the density distribution of the event. One can even inverinvestigations of event-by-event fluctuations are focused on
the correlation function with an inverse Fourier transform toparticle multiplicity, particle ratio, and transverse momentum
obtain an integral equation for the source density distributiori58—65. The event-by-event HBT analysis brings a new set
of the event. Secondly, as a result of the large fluctuation irof information to the dynamics of the collision process.
the dynamics of a first-order phase transition, the granular We shall show that the correlation function of a granular
structure of one event will be quite different from the granu-density distribution has large fluctuations, with maxima and
lar structure of another event, even though many other globahinima at locations which depend on the relative coordinates
characteristics can be very similar. By examining the spaceef the droplet centers. These local maxima and minima arise
time structure of each event individually one can study thedrom the constructive and destructive interference of identi-
large fluctuation of different events in the phase transitioncal bosons originating from two different droplets. Their in-
which is another characteristic of a first-order phase transiterference pattern therefore depends on the coordinates of the
tion. In other words, there are both large fluctuations in adroplet centers. The occurrence of these maxima and minima
single event as well as large fluctuations among differenin single-event correlation functions is a good signature for
events in a first-order QCD phase transition. Finally, anythe granular structure and a first-order QCD phase transition.
averaging over a set of collision events to obtain an average It is desirable to take advantage of the relationship be-
correlation function, as in the use of identical boson pairdween the density distribution and the correlation function to
from different collision events in a “multievent” analysis or invert the correlation function by Fourier transform to obtain
in considering bosons from a “distributed source,” will washan integral equation for the density function. Previously, us-
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ing the Koonin-Pratt formalism [19,27, Brown, P(k) is the probability of detecting a boson of four-
Danielewicz, and their collaborators studied methods to inmomentumk;.

vert the correlation function by expanding the two-particle Because of the symmetrization of the wave function of
source function in spherical harmoni&3,37,43,44 For an identical particles, there is an interference of the two histo-
irregular density distribution as one encounters in granularies for two identical bosons to propagate from two source
droplets, an expansion in terms of spherical harmonics ipoints to two detection points. For a chaotic source, this
inadequate. We have developed a general three-dimensionaterference leads to a relation between the two-boson corre-
fast Fourier transform method to invert the correlation func-lation function and the Fourier transform of the source den-
tion which will facilitate its application to HBT interferom- sity p(x;k;,ky) by [16—44

etry, should accurate experimental single-event correlation

functions become available. Clky,ky) =1+ j dXé(kl_kZ)xp(X;kl,kz) 2, "
Using the property that the Fourier transform of the cor-

relation function is the folding of the density with itself, we where

shall prove analytically that the Fourier transform of the cor-

relation function of a granular density distribution has VE(Kg, X) T (Ky,X)

maxima at spatial locations governed by the spatial relative p(X; Ky, ko) = ' (2)

coordinates of the droplet centers. The presence of this type \/f dxq F(Ky, %) f dxof (Kq,X;)

of maxima in the Fourier transform of the single-event cor-

relation function provides another signature for the granularf(k x) is the Wigner function, ana=(t,r). We shall assume
structure of the density distribution. We shall demonstrate th a,t the source is indeed ch:aotic s ,that fg.holds
presence of these maxima numerically by inverting the cor- The density functiorp depends on the average momen-

trre;its'?gmiuggt'o%gmg dﬂ)—\ecgr]‘rr]ez-rqslgqneg?t%r:ailefiasst llt:sur_'t?]rtum of the pair of particleP=(k,+k;)/2 and the relative
(FFT) | pari Uits Wi momentumq=k; —k,. We shall neglect final-state interac-

thr;ehe)éaeCtr:é]sahgf'CZLCSSrl;gonofhgl\ﬁs t:lr:(;et%?rsr’:g!gor?gld FtE ions and assume that the density functwris independent
9 9 y of g. Then the average momentuPrbecomes just a label for

method. ) : . :
This paper is organized as follows. In Sec. I, we brieflythe correlation function and the density function
2

summarize the basic relation between the density distribution

and the correlation function. We give in Sec. Ill the correla- ' 3)
tion function for a simple periodic structure and show that it

possesses many correlation function maxima. In Sec. IV, wé&or brevity of notation, we shall leave the laeImplicit so
study the correlation function of a general granular densitjhat the correlation functioi©(g) and the density function
distribution. We find that the correlation function exhibits p(x) in fact refers to those with a pair momentut The
large fluctuations. We show that the locations of the maximdabel P can be reintroduced when it is needed. In this implicit
and minima of the correlation function are determined by thenotation, the correlation functiodi(q) is related to the source
relative coordinates of the droplet centers. In Sec. V, walensity functionp(x) by
show that the Fourier transform of the correlation function

has maxima at locations which also depend on the relative C@=1+
coordinates of the droplets centers. The feasibility of the
Fourier transf_orm method is demons.trated_by ”“me“c"?‘! ©XWe normalized the density function according to

amples. Section VI concludes our discussions. To facilitate

the use of the Fourier transform method using experimental

single-event correlation functiongor functions that fit the dep(X) =1 (5)
experimental correlation functipnthe method to invert a

correlation function using the three-dimensional Fourier It is easy to show that the correlation functi@tq) is a
transform is given in Appendix A. The method to obtain thereal function greater than unity and possesses an inversion
iterative solution of the density distribution from the Fourier symmetry

transform of the correlation function is given in Appendix B. C(g)=C(-q). (6)

C(q,P)=1+

f dxe®p(x,P)

2

: (4)

J dxe%p(x)

Because of the simple relationship betwé#ig) andp(x) in
Eqg. (4), there is a one-to-one mapping between the density
function p(x) and the correlation functio@(q). The correla-

In a HBT interferometry measurement, one measures th#on function C(q) will exhibit special properties associated
correlation functionP(k,,k,), the probability for the detec- with the density distributiorp(x). Conversely, information
tion of one boson of one four-momentuky=(k;o,k;) in  concerningp(x), including its fine structure, is encoded in
coincidence with the detection of an identical boson of an<C(q) so that direct information op(x) can, in principle, be
other four-momenturk,. An alternative representation of the obtained by decodin@(q) (see discussions in Sec).V
correlation is given in terms of the correlation function In single-event HBT interferometry experiments, one
C(ky,ky) defined as the ratid?(ky,k,)/P(k)P(ky), where  measuresP(k;,k,) in the same event and the correlation

II. DENSITY DISTRIBUTION AND
CORRELATION FUNCTION
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function C(ky,k,) is obtained by dividing the joint probabil- 3
ity P(ky,ky) by P(k;) andP(k,). Ideally, in the single event, a(q) = 2m°] ] [8(q;) + 8(qg; - Kj)/2 + 8(q; + Kj)/2],
if the number of detected particles is large enough, the =1
single-particle probability distributiof?(k) can be well de- (13
termined using detected particles in the same event. How-
ever, when one is faced with low statistics in the total num- - j1(gR
bers of detected particles, it may be necessary to otéin b(q) = 47TR3—R- (14)
from a larger set of eventavith similar global characteris- g
tics) to determine the correlation functidd(k,, k,). From these results, we obtain
lll. AN EXAMPLE OF A REGULAR GRANULAR SOURCE ~ ! j2(9-Q R)
A , @@ S ccgeng o el
It is instructive to study many simple examples to find out MAgAg=—1 lg- Qxlx2x3|R
the characteristics of the correlation function of granular (15)

sources in HBT interferometry. We shall begin by consider-

ing a regular granular structure. While we do not expect thevhere
QCD phase transition to lead to a completely regular granu-

lar structure, the remnants of the density amplifications of

the most rapidly amplified wavelengths that grow predomi-
nantly during the first-order phase transition may remain, and Qg = M1Ka€: + AoKo8, + N 3K, )
these amplified wavelengths may show up in the underlyingo1
gross structure of an otherwise irregular granular patter
[13]. It is thus useful to study the correlation function of a
regular periodic granular structure. The simplicity of the so- (01,91,93) = (N K, MoK, A3K3), (18

lution also provides interesting insight into the nature of the i )
correlation function of granular density distributions. and each maximum can be labeled by the corresponding set

Accordingly, we consider a spatially periodic granular Of integersiA;Az\s}. In units ofp(0), the maximum ofp(q)
source of the form at g=0 is 1 (by definition), and the maximum op(q) at q

=(\ K1, MK, \3K3) is approximatelyc(h1)c(Ap)c(N3). The
correlation function is

c\)=(1-]\/2), x=-1,0,1, (16)

nd{e;,e,,es} are the unit vectors along they, andz axes.
"he Fourier transform of the periodic density has maxima at

3

p(t,r) = fOI] (cosKjx + DOR-T), (7 .
j=0 -
= + 2

where the granular structure is characterized by an overall Cla) =1 +|f(ao) [Mvh;f-l CA)C(A2)C(As)
spatial dimensiorR, and the wave numbers; (or wave- ) )

lengthsd; =27/K;) with j=1,2,3. Thefunction f(t) contains j1la = Qupp, /R 19
a multiplicative normalization constant chosen to satisfy the la- QR | (19

17273

normalization conditior(5). The source is a periodic granu-
lar distribution contained in a sphere of radRisThe Fourier  In this case,[C(q)-1] factorizes, and we can introduce a

transform ofp(x) is three-dimensional correlation functid@(q) defined by
- ~ C(q) - 1 =(f(qo)[AC(q) - 11. 20
) =T(an) [ areapi), ®) (@ -1 =[f(a1C@ 1] 0
For brevity of notation, we have used the same synibfur
where both the three-dimensional and the four-dimensional correla-
tion functions in the above equation. The ambiguity of the
?(QO) — f dtddotf (), 9) meaning ofC can be easily resolved by context and by its
argument.
The three-dimensional correlation functio@(q) has
3 maxima values at the same locationspég): at the origin
ar) =] (cosKx; + 1), (100 =0 and at locations|; = +2|\;|/d;. WhenR>d, the over-
=1 lap of the individual distribution at various maxima is small
and we have approximately
b(r)=0(R-r). (11 ,
. . ) ) ! ju(a- Q)\1>\2>\3|R) 2
Using the folding theorem of Fourier transforms, we obtain C(q) ~ 1 + > cA)c)chg) ——————— | .
A AgAg=—1 lg- Q>\1>\2>\3|R
. do’ . ~
fdre"q'ra(r)b(r)=f (zq)ga(q’)b(q—q’), (12) (21)
o

_ The presence of this type of maxima in the three-dimensional
where{a(q),b(q)} are the Fourier transforms ¢(r),b(r)}, correlation functionC(q) indicates that prominent fluctua-
respectively. They are given explicitly by tions are expected for a spatially periodic granular structure.
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IV. GENERAL GRANULAR STRUCTURE N X2y 220 2
The occurrence of a first-order phase transition in the Clay=1+ Agleq e T (29
high-temperature environment of a high-energy heavy-ion
collision will generally lead to granular density distributions In general, the droplet lifetimg; may depend on the droplet
that are more general than those discussed in the last sectigize parametes; (as in the hydrodynamical modgd2]), and
One can consider a general granular density distributidd of o can be different for different droplets.
droplets of the type In order to get a clear insight into the most important
features of the correlation function of a granular structure,
we consider the simple case where the density distributions
p(x) = A% pi(x=X)), (22 ot al droplets are the same so thgt oy and ;=14 for all j.
= In this simple caseA=1/N and the correlation function can
where p; is the density distribution of the¢th droplet, X; be easily evaluated in terms of the positions of the droplet
=(T;,R;) is the localized space-time coordinate of the centeccenters

of the jth droplet, andA is a normalization constant such that

N

the total densityp(x) is normalized to unity as in Eq5). Clq)=1+ e o7 % JGTHIOR, z (30
We again assume that the source is chaotic in nature. The D= 2 Pt
two-boson correlation functio@(q) is then related simply to
the Fourier transform of the source density. The latter quanThis leads to the simple result
tity can be easily evaluated and found to be » 22 N
e %d9 7%
B . N C(q)=1+T[N+2 > cos{q(X,-—Xk)}}
P(o) = f dxe®p(x) = A €955,(a), (29) Lk
= (31)

wherep;(q) is the Fourier transform of the density distribu-

tion of the jth droplet, Thus, the correlation functio@(g) has maxima ag=0 and

Omad Xj =X ~2na, with n=1,2,3,.... It hasminima at
~ - Amin(X; =X ~ (2n=1) 7.
pi(a) = | dxe¥p;(x). (24) We shall consider further the simplified case in which the

droplet emission times; are the same, then we have

The correlation function is then
2
e "dq quo

2 Cl)=1+—F5—
(25) | N?

The function[C(q)—-1] factorizes and we can introduce a

Thus, the correlation function of a granular source is relateghree-dimensional correlation functic®(q) defined by
to the absolute square of the coherent sum of the Fourier

transforms of the droplets modulated by the pha$g, c(g) - 1:e—f§q§[c(q)_l]_ (33)
which depends on the droplet center coordingte

We study the case where the space-time density distribuA/e have again used the same sym@dior both the three-
tion of a droplet is given by a normalized Gaussian distribu-dimensional and the four-dimensional correlation function in

N

A, €%i5;(q)
j=1

EelqR

j=1

(32)

C(q=1+

tion with standard deviations; and 7; the above equation. From E@30), the three-dimensional
2?22 correlation functionC(q) is given by
e % e
pitr)=—F——7=—. (26) ~ 22 2

)32 e ’d
(N2may)® N2 Clq) =1+

(34)

N
The Fourier transform of the density of a single droplet is =1

—_ 20, 22 This leads to the simple result
731(‘1):]dtdfe'qot_'q'rpj(t,r)=e_"iq’2e‘quo/2. (27)

o2
C(q):1+eN [N+2 > cos{q-(R,-—Rk)}}

The total density of the granular source is the sum of the ikeTj>k

density of the droplets

(35
2 2
p(x) = AE ; exp — (r-R)* _(t-T) . The correlation functionC(q) has a maximum ag=0,
=1 (V ZmrJ) \27TTJ 2012 271-2 and C(q)|q=0=2. This maximum atj=0 is a common maxi-

(29) mum as it occurs in all correlation functions of two identical
bosons. From Eq35) (and if correlation function near the
The correlation function for the Gaussian granular droplets isnaxima and minima does not overjaghe correlation func-
then tion C(q) will have maxima approximately at
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N+2)d2 | | R
OmaxjK,n) ~ {an— sin‘l{%} }EJZK
jk jk

for j,k=1,...N andj#Kk (36)
and C(q) will have minima approximately at
N-2)o5 | |R;
Amin(ik,n) ~ | (2n =7 - sin‘l[%} =
Rik Rik
for j,k=1,...N andj#Kk, (37

where n=1,2,..., Rx=R;-R,, and Ry=|Ry/. These
maxima and minima correspond to locations where the co-
sine function in Eq(35) has the values close to +1 and -1, [a) Sowree (brg. O
respectively.

It is easy to understand how these local maxima and
minima of the correlation function of a granular structure
arise. The interference of the histories of two bosons having
a relative momenturmq and originating from dropletsandk
leads to a phase difference @f(R;-R). This phase inter-
ference gives rise to the cosine function in E85) and a 14
local maximum of the correlation function when the interfer- ‘r-"‘f'-’
ence is constructive, with a phase difference closents. 2t )
gives rise to a local minimum when the interference is de- 1,
structive, with a phase difference close(Bn—1).

For each value ofl, there areN(N-1) maxima andN(N
—-1) minima of the correlation functiof©(q) of a granular
structure, one for each permutation of the pairs of droplets.
For each maximum located af,,(jk,n), there is another
maximum located in the opposite direction @t (Kj,n)

==Qmadjk,Nn). Similarly, quin(Kj,N) ==0min(jk,n). The vec- FIG. 1. (a) A sample spatial configuration of four droplets. We
tors gmax(Kj,n) andqmin(jk,n) are along the direction of the uyse dashed lines to join the droplet centers and the origin to show
relative coordinateR;—R,, and their magnitudes are in- the locations of the droplets. We use vertical dashed lines to indicate
versely proportional to the magnitudes of the relative coorthe projection of the droplet centers onto tkg plane.(b) Two-
dinates. The magnitude of the maximum of the correlatiorboson correlation functionC(qy,qy,q,) for g,=0, (c) for q,
function[C(q) — 1], corresponding to the pair of droplet cen- =0.030 GeV£, and(d) g,=0.06 GeVE. The quantitiesy, and g,

tersj andk, is approximatelye "amakN(N+2)/N2, and the ~ &€ in units of GeVvé.

22 .
i ini i i 79 dAmin(ik.n)
Tg%ﬁ“de of the minimum is approximatety (N (jth droplet, sayin many different events to be distributed

according to a probability distributioR(R;),

0
2=0.1y
0.1

ol g, 003 GeVie il g 006 GeVie

The maxima and minima of the correlation functiGfg)
of a granular structure, as given approximately by Eg6) dP=P(R)dR; (38)
and(37), will maintain its distinct characteristics if they are e
well separated. However, these maxima and minima assocand assum@(R;) to be a normalized Gaussian distribution
ated with different pairs of droplets may be located in thewith a standard deviationg
vicinity of each other. They will merge to give rise to a more

complicated pattern. When the relative coordinates of many e—Rf/ZUﬁ
pairs of droplet centers are approximately the séasan the dP= —(V"ZTUR)stj' (39

example of the periodic granular structure discussed in Sec.
1), the corresponding maximum of the correlation function In our numerical example, we randomly select the local-
will be enhanced. The shape of the correlation function willized droplet centers according to the distribution of B)

be modified in the presence of overlapping maxima andvith og=4 fm and takery=1.5 fm for the standard deviation
minima, to make the individual maximum and minimum lessof the droplet. To avoid overlapping droplets, we require the
distinct. It is of interest to study some numerical examples talroplets be separated by a distance greater than the sum of
see whether these interesting features of maxima and minintaeir root-mean-square radii,\3cy. After the positions of

in the correlation function manifest themselves. the centers of the droplets are selected, we evaluate the cor-
If the coordinates of the droplet centerR;, j relation functionC(q) with Eq. (35). A sample result foN
=1, ... N} are known, then the correlation functi@q) can =4 droplets is shown in Fig. 1, and another sample result for

be evaluated numerically. We consider the center of a dropleXl=8 droplets is shown in Fig. 2. Figuregal and 2a) show
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Because of the large fluctuations in a first-order phase
transition, one expects that the locations of the centers of the
droplets will be quite different from event to event. The large
differences in the locations of the droplet centers in different
events lead to large differences in the locations of the
maxima and minima and large differences in the shapes of
correlation functiongexcept for the maximum aj=0).

It is interesting to examine the correlation function when
we average over many events. The correlation funafi
depends on the coordinates of the droplet centers, and the
centers have a distributioR(R;) in different events. The
average of the correlation function over the different events
(C(q)) is defined as

N N
(@)= | IIdRr;P(R)C(q) [1dRP(R)).
=1 j=1
(40)

From Eq.(34) and the Gaussian distribution of the droplet
centers(39), we obtain

e goar l X dR.dRy
(Cg)=1+ +—2 > —=
N N isike1ksj J (V2moR)
R?+RZ
xXexp) - —+——+ig- (R, -R 41
p{ 207 q-(R; k)} (41)
and we get

(c) q.=0.03 GeV/c (d) q.=0.06 GeV/c

_ 1 . N-1 ~(o2+o)q?

FIG. 2. (a) A sample configuration of eight droplets. We use (Cla)=1+ Ne o &R (42
dashed lines to join the droplet centers and the origin to show the =~ | . )
locations of the droplets. We use vertical dashed lines to indicate th@hich is identical to the results of Pragt al. for a pair of
projection of the droplet centers onto tkey plane.(b) Two-boson ~ bosons from a distrib_ute_d sourgé]. Thl_JSa the results of
correlation functionC(ay,dy,q,) as a function ofg, and gy at g, Prattet al. [6] for a distributed source is the same as the
=0, (c) 9,=0.03 GeVt, and(d) q,=0.06 GeVt. The quantities,  results of averaging the correlation function over many dif-
andq, are in units of GeVé. ferent events. The average correlation function is now a rela-

_ ] ) _ tively smooth function ofig|, with only minor fluctuations
the spatial configurations of the droplets; Fig&)land 2b)  eyen for only two and four droplets. The prominent fluctua-
give the correlation function€(q) as a function ofy, anda,  igns that are inherent in single-event correlation functions
for g,=0, Figs. 1c) and Zc) for q,=0.03 GeVE, and Figs. involving the term cos-(R;-R,) in Eq. (35) are not

Ili(ig)sagdaﬁg) ;O;r(lz?noﬁon?tscggf\/éé-\we momental, andgy in present. The large fluctuations are now greatly suppressed by
' tpe averaging procedure.

One observes from Figs. 1 and 2 that there are promineri In order to bring out the salient features of the correlation
fluctuations of the correlation function for a density distribu- . 9 . i
function, we have assumed in E®1) that the source emis-

tion of localized droplets. The inversion symmetry - ; L
Cl(Ch, Gy &) =C(~Gy, 0y, 7)) is present for,=0 [Figs. Xb) sion times{T;} for_ all droplets are the same. This is a rea-
and 2b)]. In addition to the maximum o€(|q|) at =0, sonable assumption when the phase transition occurs over a
there are maxima and minima at various locationg.gfhe ~ Short duration of time. The source function in Eg8) then
number of maxima for eight droplets is greater than the numfactorizes in spatial and temporal coordinates. The correla-
ber of maxima for four droplets. tion function[C(q)-1] in Eq. (33) also factorizes iy and

The correlation functions for other configurations of four 9. With C(q) given by Eq.(35).
and eight localized droplets exhibit similarly large fluctua- On the other hand, if the phase transition occurs over a
tions. On the average, the smaller the number of droplets, theng duration, then the emission tim€g} can be different
greater will be the fluctuation. The magnitude of the fluctuafor different droplets. The source functia@8) cannot be
tion decreases as the number of droplets increases, as canfgétorized as a product of spatial and temporal functions.
easily deduced from Eq35). The presence of this type of Consequently, the correlation functi¢@(q)-1] cannot be
maxima and minima of a single-event correlation function atfactorized and is given by the general result of B{). The
many relative momenta is a signature for a granular structureorrelation functionC(q) has maxima ag=0 and gmayX;
and a first-order QCD phase transition. —X~2nm, with n=1,2,3,.... It hasminima at gyy(X|
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-Xi) ~ (2n—1)7. The maxima and minima of the correlation of Brown, Danielewicz, and their collaborators
function occur at relative momentg related to the relative [33,37,43,44, for the special case for bosons without final-
emission time coordinate3;-T,. The signature for the state interactions. Much progress has been made in obtaining
granular structure remains distinct, if one can make accurate representation of this two-particle source funct#r) in
measurements of the correlation function for different cuts interms of spherical harmonid¢83,37,43,44 For an irregular
the relative momentg. density distribution and correlation function as one encoun-
There are additional complications when one considersers in granular droplets, an expansion k) in terms of
the internal hydrodynamical motion and the collective mo-spherical harmonics will not be adequate. The irregularity of
tion of the droplets relative to the center of mass. The hydrothe shape of the correlation function as shown in Figs. 1 and
dynamics of a QGP droplet shows that the freeze-out radia? calls for a more general method. The best method for in-
coordinate in a QGP droplet is nearly independent of time inverting a general correlation function without symmetry is to
a first-order phase transition, when the initial energy densityise Cartesian coordinates in a three-dimensional Fourier
of the droplet is only slightly greater tha, the QGP energy transform. We have developed successfully a general three-
density at the critical temperatuie [see Fig. 4b) of Ref.  dimensional fast Fourier transform method to invert highly
[32]]. As a droplet is presumably formed at temperaturesrregular three-dimensional correlation functions. As de-
near the critical temperature with an energy densities close tscribed in detail in Appendix A, our three-dimensional FFT
€, the assumption of the factorization of each droplet sourcenethod consists of performing a sequence of one-
as a product of spatial and temporal functions is reasonabldimensional cosine and sine transforms in the three coordi-
for the case of a quark-gluon plasma with an initial temperanate directions. In each of the cosine or sine transforms, we
ture slightly aboveT.. rearrange the integral so that the limits of the integration go
For the case of a quark-gluon plasma with a high initialfrom zero to infinity and the integrand possesses the proper
temperature much abovig, the quark-gluon plasma will ex- symmetric or antisymmetric reflectional symmetry, for co-
pand and cool. It will make a phase transition when it coolssine or sine transform, respectively. We test our numerical
down to the critical temperature with the subsequent formathree-dimensional FFT method by applying it to invert a cor-
tion of granular droplets, if the phase transition is first-orderrelation function of granular droplets for which results for
in nature. At the moment of phase transitiorilgtthe newly  the Fourier inversion can be easily obtained analytically.
formed droplets will acquire an expansion velocity moving In our analysis, we focus our attention on the source den-
away from the center of mass of the system. The factorizasity function p(x) itself as it directly gives the space-time
tion of the source function as a product of spatial and temeonfiguration of the source. From the relation betw€xq)
poral functions is not possible, and the magnitude of th@ndp(x) as given by Eq(4), we get the integral equation for
fluctuations of the correlation function may decrease. Wehe source density functiop(x)
shall investigate these effects on the correlation function in
our future work.

V. HOW TO INFER THE DENSITY S(x) = f dx p(x")p(x" +x). (44)

DISTRIBUTION FROM C(q)

The correlation functionC(q) is related to the Fourier We can prove thaB(x) possesses inversion symmetry
transform of the densifg(q). Information onp(x) is encoded
in C(qg). If the correlation functiorC(q) has been measured S(x) = (- x). (45)
experimentally as a function of its relative momentum coor-

dinateq, then a proper Fourier transform of the correlationThe functionS(x) is not the source density but is the folding
function will provide pertinent information on the density f the source density with itself. To focus our attention on the
distribution p(x). ~ source density(x) and to emphasize the property &) as
We can obtain direct information on the density distribu- ¢ folding of p(x) with p(x), we can call the functiors(x)
tion p(x) by decodingC(q) in the following way. From the  5ematively as “the folding function” ob(x) in the discus-
correlation functionC(q), one calculatefC(q)-1], and one  gjon of the source density(x), in addition to the name of
constructs the Fourier transform [df(q) - 1] “the source function” in the Koonin-Pratt formalisph9,27
dg _ and imaging method$33,37,43,44 The folding function
S(x) = f —€'(C(g) - 1]. (43 S(x) is real and positive definite. The same folding function
(2m) S(x) is obtained whether one uses®™ or its complex con-
In the discussion of the Fourier transfogior the inversiop  jugate€® in the Fourier transform expression in H¢23).
of the correlation function, the combination of the two terms We can illustrate the application of the folding function
in [C(g)—1] always comes together. For simplicity, we shall S(x) with the example of the chaotic source fGaussian
often use the term “the Fourier transfolior the inversiop  density droplets, Eq(28), studied in the last section. For
of the correlation function” to mean “the Fourier transform such a granular source densitix), the folding functionS(x)
(or the inversionm of [C(qg)—-1].” can be obtained analytically. By carrying out the folding in-
The functionS(x) is the two-particle “source function” in tegration using Eq(44), the folding functionS(x) can be
the Koonin-Pratt formalisni19,27 and the imaging method easily found to be
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N 1 [r - (R, - RY T2
S=A j,k2=1 (\5'27Ta'jk)3\e’2777jk & 20'j2k
-— o — 2
_&4%73&}, o
Tik

where o4 =07 +0f and 7, =7+ The functionS(x) has
maxima atr =(R;-Ry) and t=(7;—7), in addition to the
maxima atx=0. For simplicity, we again assume thaf
=0y and 7;=74 for all j. The functionS(x) for the granular
droplets is simplified to be

1 . [r - (R - R
S _ k
X N2(V4mrog) Vamrry j,kzzl & 4073
[t=(T; - TYJ?
S S O
> } (47)

Thus, if the folding function near the maxima does not over
lap, the folding functionS(x) has maxima at locations gov-

erned by the relative coordinates of the droplet centers.

We can consider the case when the droplets are all pr
duced at the same time, such as, for example, when the dro
lets are produced at the moment of phase transition. Then tr}e

time T; can be taken to be the same for allThe four-
dimensional folding functionS(x) factorizes into a three-

dimensional par§(r) and a normalized Gaussian distribution

in time,

42112
t/415

S(x) =98(r) (48)

— ’
VAmTy

where we use the same symi®lifor the three- and four-

O_
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C(q) - 1 =[f(ap)AC(q) - 1] (51)

and

C(a) - 1=[p(q)?, (52)

where~f(q0) andp(q) are the Fourier transforms déft) and
p(r), respectively. Consequently, the functigtx) also fac-
torizes and is given by

doy . .~
sw=sn [ SPewfa@r 69
ar
where the three-dimensional functi®r) is equal to
da g«
Sr) = z€9"[C(q) - 1]. (54)
2w

It is of interest to demonstrate the feasibility and the accu-
racy of the FFT method by using it to invert a correlation

function and comparing the inversion result with the analyti-
cal result. We use the numerical correlation functiofy)
obtained in our previous examples in Sec. (késults as
shown in Figs. 1 and)2as input, and carry out the three-
imensional FFT of the correlation functi¢@(q)—1] to ob-
ain S(r), as given in Eq(54). The input correlation func-
tions correspond to those of the localized configurations of
Figs. Xa) and Za).

We show in Figs. 3 and 4 the results of the functn)
at z=0, 1.94, 3.87, and 5.81 fm obtained by inverting the
correlation functions using the FFT method. Figure 3 gives
S(r) for the example of 4 droplets of Fig. 1. Figure 4 gives
S(r) for the example of eight droplets of Fig. 2. One observes
that in addition to the maxima at=0, the folding function

dimensional folding function. The ambiguity of the meaning S(r) has many maxima at=R;-R, wherej,k=1,... N and
of Scan be easily resolved by context and by its argumentj # k. A granular structure shows up as having many maxima

The three-dimensional folding functids(r) is

[r - (R -RJP
405 '

(49)

N
S(r):%z expy -

N2(\4mog)® i1

in the Fourier transform of C(q)—1], in addition to the
maxima atr =0. For the case with four droplets in Fig. 3, the
maxima of S(r) are quite distinctly exhibited. For the case
with eight droplets, the number of maxima increases and
many maxima merge. However, some individual maxima re-
main distinctly separated as in Figgbftand 4c).

If the folding function near the maxima does not overlap, the To study the shape of the functi@x) in more detail, we

maxima of the three-dimensional functi&r) are located at
r=Rj-Ry, J,k=1,2,...N. (50

In Eq. (49) for S(r), there areN terms withj=k, and these
terms contribute additively to the maximarat0. The height
at the maxima at =0 is thereforeN times higher than the
maximum with j # k located at the relative coordinatéy
—-Ry. The occurrence of this type of maxima $r), in ad-

consider a cut at the plot of Fig. 3 at=0, and plotS(x
=0,y,2) as a function ofy for different values ot in Fig. 5.
The results in Figs. ®) and %b) have been obtained by
using the fast Fourier transform method for the example of
four droplets of Fig. 1. Figure(8) gives S(0,y,2) in linear
scale and &) in logarithmic scale. One sees clearly oscilla-
tions of the folding functiorS(x) due to the maxima at vari-
ousR;—-Ry locations. A signature for granular droplets is the

dition to the maxima at=0, provides another signature for a presence of this type of maxima of the Fourier transform of
granular structure of the source and a first-order phase traf€(q)—1] at various spatial locations.

sition of the quark-gluon plasma.
The density distribution we have considered, with bgth

We can assess the accuracy of inverting a numerical cor-
relation function with our fast Fourier transform method by

andT; separately the same for 3llis a special case of those comparing its results with the exact analytical result as given
density distributions whose spatial and time distributions carby Eq.(49). The exact analytical results &tr) versusy for

be factorizedo(x) =f(t)p(r), where we use the same symbol x=0 and differentz values are shown in linear scale in Fig.
p for the three-dimensional and the four-dimensional densitys(c) and in logarithmic scale in Fig.(8). The results from

function. For these factorizable density distributions

the FFT method match the exact analytical results with a
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FIG. 3. (8 The folding functionS(x,y,2z) for four droplets in FIG. 4. (a) The functionS(x,y,z) for eight droplets in units of

units of fr2 for the droplet configuration of Fig. 1a) is for S(r) fm=3 for the droplet distributions of Fig. 2a) is for (r) atz=0, (b)
atz=0, (b) for S(r) atz=1.94 fm,(c) for S(r) atz=3.87 fm, andd)  for S(r) atz=1.94 fm,(c) for (r) atz=3.87 fm, andd) for (r) at
for S(r) atz=5.81 fm. z=5.81 fm.

very high degree of accuracy, including the detailed shapes
of the oscillations and the values &fr) down to the low form to obtainS(r) from [C(q)—1] can also be obtained
density region ofy~ +30 fm whereS(r) is down by six from the authors upon request. Browhal. have pointed out
orders of magnitude from its maximum valuerat0. We  that in practical applications, when the experimental errors
have successfully developed an accurate three-dimensionalfe large, it is important to include the error uncertainties
FFT method to invert a correlation functip@(r)—1] to ob-  into the equation for the inversion of the correlation function
tain its three-dimensional Fourier transfofr). [33,37,43,44 Brown [37] also pointed out that when one
The folding functionS(r) will be distorted as noises are applies the FFT transform to experimental correlation func-
introduced into the correlation function. The degree of dis-tions, one should take care to treat the experimental error in
tortion will depend on the magnitude of the noise and itthe measurement by filtering out the noise, and the best
would be of interest to see how well the folding function canmethod is one in which the errors of the measurement are
be determined with noises associated with experimental med2cluded in the inversion method.
surements. The high degree of accuracy in the FFT method It is worth emphasizing that E¢44), which connects the
makes it encouraging to apply it to determine the foldingFourier transform of the correlation functi¢p@(q) - 1] to the
function (r) for the investigation of the source density dis- density functionp(x), is a general result. It can be used to
tribution p(r). obtain other density distributions, in addition to the granular
In order to facilitate the application of the three- density distribution discussed here. Thus, if the correlation
dimensional Fourier transform using the experimental singlefunction C(q) is experimentally determined, one can first
event correlation functiofiC(q)-1] (or perhaps functions evaluate the Fourier transform p€(q) - 1], which gives the
that fit the experimental correlation functipnwe give the functionS(x). The integral equatiot44) can then be used to
detailed steps of how the three-dimensional Fourier transdetermine the density distributigrix) by algebraic methods.
form can be evaluated in Appendix A. The computer pro-In the three-dimensional case, one can discretize the integral
gram to carry out the three-dimensional fast Fourier transequation Eq(44) as
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LrTrTrrr AT T IToT T Is the produced dense matter the quark-gluon plasma? An
o~ 6x107 - (@) ] unambiguous identification of the produced matter as a
& C ] quark-gluon plasma requires the observation of the phase
= a0 L N transition from the new form of matter to known hadronic
;3 C ] matter.
1 < b The signature for a phase transition depends on the order
=207 ] of the phase transition. Witten and many workers noted pre-
L j viously that a granular structure of droplets occurs in a first-
0 order QCD phase transition, and the observation of the
(C) T granular structure can be used as a signature for a first-order
o~ 6x10™ QCD phase transitiof8—15. HBT interferometry is the best
& C experimental tool to examine the space-time density distri-
o a0 bution of the produced matter. It can the_reforg be utilized to
& r study the granular structure that occurs in a first-order phase
I 1o transition of the _plasma. _ _
2 r In the dynamics following a first-order QCD phase tran-
o bk N sition, the evolved matter will react chemically and ther-
20 10 0 10 20 -20-10 0 10 20 30 mally. It is not known how much the granular density pattern

y (fm) y (fm) of the phase transition will remain to make it detectable by
HBT interferometry. It has been argued in conventional
theory that HBT interferometry measures the density distri-

"bution of the hadron matter at thermal freeze out, as the

rescattering of bosons is assumed to lead to a chaotic con-

figuration. This traditional assumption is subject to question
as it was, however, pointed out recently that the propagation
of bosons in the rescattering process should be investigated
. S P in a quantum descriptiof39-43. Upon using the Glauber
S(i.j.K) = AxAyAz E pl+i%j+]" k+K)p(i",j",K), theory to describe the scattering process, it was found that
JTk=1 HBT interferometry measures the initial chaotic density dis-
(55 tribution modified by absorption and collective flga9,4Q.

The HBT interferometry may be sensitive to the density dis-

tribution that occurs earlier than the thermal freeze-out con-

figuration. If the initial density fluctuation is large, a substan-

With the determination oS(r) from a given experimental tial density fluctuation of the granular pattern may remain to

lation function by the FET method 1 orinciol make it detectable by HBT interferometry.
corréfation function by the method, one can in Principie e qpetical lattice gauge calculations indicate that the
solve the above equation to obtain the source density dlSt:ﬁ

FIG. 5. The functiorS(x=0,y,2) versus y for various values of
z for the four droplets examples of Figs. 1 and 3. The results fro
the FFT method are given in linear scale(&@ and in logarithmic
scale in(b). The results from the exact analytical solution of Eq.
(49) are given in linear scale itc) and in logarithmic scale igd).

N

wherex=iAx, y=jAy, andz=kAz We consider only the re-
gion of S(x) and p(x) inside the box ofi,j, k=1 to N and
assume that they are zero outside the box.

buti (). 0 f | ve the ab i dhase transition of a quark-gluon plasma having dynamical
utionplr). Une can, for example, solve the above equaliony, s \ith three flavors is a crossover continuous transition,
by iteration. In the first iterative step, one uses an initial

4 density distribution® fth densi when the quark chemical potential is zero. The crossover
guessed density distributigi® (r) as one of the two density phase transition turns into a first-order phase transition when

functions in Eq.(55). The.equation is then a linear equation the quark chemical potentiak, is increased to about

of p(r) and can be easily solved. The steps to obtain theg \ev [67]. As the net baryon density increases from the
solution is described in Appendix B. The solutipfr) can  cenral rapidity region to the fragmentation region of laige
then be substituted into E¢G5) to replace one of the twp iy a central high-energy heavy-ion collision at RHIC, the
functions and to continue the iteration. Clearly, the iterativegrder of the transition may change from a crossover phase
solution p(r) will be the solution of Eq(44) or (55) if the  transition to a first-order phase transition, when one moves
iteration converges. The successes of the iterative solutiofiom the central rapidity region to the region of larye

will probably depend on a good initial guessed solution. It Whatever the theoretical predictions there may be, it is
will be of great interest to test how this iterative procedurey|timately an experimental question to determine the order of
may be used to find a density distributip(r) for a given  the quark-gluon plasma phase transition. It is important to
experimental correlation functio@(q). It is necessary to in-  develop methods to detect the granular density distribution
vestigate how one can guarantee positive-definite solutionghat occurs as a result of a first-order phase transition, utiliz-
of p(r) in such procedure. Future development to search foing the available experimental tools of HBT interferometry.

methods to solve the integral equation E44) [or (55)] for We propose new ways to detect a granular density struc-
p(x) from a givenS(x) will be of great interest. ture using the single-event HBT interferometry. If it can be
carried out with sufficient accuracy, the single-event HBT
VI. CONCLUSIONS AND DISCUSSIONS interferometry can reveal the density distribution in each

single event. It can also reveal large fluctuations in the den-
Recent experiments at RHIC provide ample evidence fosity distribution from event to event, as is expected in a
a dense matter produced in high-energy heavy ion collisiondirst-order phase transition.
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We carry out our analysis with many examples of granulaithe smaller the number of droplets, the greater is the signal
sources. We found that a granular structure is characterizeahd the greater will be the probability of its observation in
by large fluctuations of the single-event correlation function.the presence of statistical fluctuations. It will be of great
A single-event correlation function has maxima and minimainterest to carry out a theoretical simulation to see what are
at relative momenta that depend on the relative coordinatqqs]e minimum drop|et size and the |argest dr0p|et number a
of the droplet centers. The presence of this type of maximgjven experimental arrangement may be able to detect.
and minima of the single-event correlation function can _be Much work remains to be done both experimentally and
used as the signature for a granular structure and the firsfhegretically to investigate this interesting topic on the sig-
order QCD phase transition of the quark-gluon plasma. = p54,re of the phase transition of the quark-gluon plasma. It

If an experimental single-event correlation .funct|on 'S will be of interest to study theoretically effects of the collec-
;:ompletﬁ ?nd accuralte e?outgh, e_m?thterkvetrﬁ/ sl|:mpl_e n:ethqﬂle expansion of the sources and the droplets, effects of
o search for a granular structure is to take the Fourier trans; ) : :
form of the correlation function. The Fourier transform of thesfluctuatlons of the.S|ze of the droplets, effects of ahsarption
correlation function leads to the folding of the source densit f the bosons on its way to the de}ectgr, gﬁepts of the mo-

amentum dependences of the density distributions, and other

with itself. This Fourier transform possesses maxima at sp . . ; . ith the si fth
tial coordinates governed by the relative coordinates of thé't€resting questions in connection with the signature of the

droplet centers. The occurrence of this type of maxima in th@ranular structure.

Fourier transform, in addition to the maximaratO, is an-

other signature for granular droplets and a first-order quark-

gluon plasma phase transition. ACKNOWLEDGMENTS
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large enough to provide sufficient statistics. The few-even

HBT analysis will also be needed to understand the degrees
of fluctuation from event to event. One wishes to find out
whether the fluctuations in few-event HBT correlation mea-
surements contain a single-event component that is beyond
statistical fluctuations. The rate of the change of the degrees
of fluctuation as the number of events increases will provide
information on the underlying fluctuations in the single-event  From Eq.(54), we have
and event-to-event HBT interferometry. The successful de-

velopment of the single-event or few-event HBT interferom- S(r):f dg
etry in high-energy heavy-ion collisions will open up a vast (2m)?®
vista for future exploration.

APPENDIX A: EVALUATION OF THE
THREE-DIMENSIONAL FOURIER
TRANSFORM OF THE CORRELATION
FUNCTION [C(q)-1]

e C(q) - 1]

In the present investigation, we have considered idealized :J dg {cogqr)+isin(q-r)}[C(q) - 1].
situations in order to bring out the most important features of (2m)®
the signature for a granular structure. It will be of great in- (A1)

terest to examine in future work how the signature discussed

here may be affected when some of our simplifying assumpThe imaginary part in the above integration vanishes as

tions are modified. The determining factor for the occurrencé(—=d)=C(q). It is only necessary to evaluate the real part of

of maxima and minima in the correlation functi@q) is the ~ the Fourier transform. The folding functidr) is therefore

interference of two histories for two bosons to propagate

from two source points in different droplets to the detecting S(r) =J dq 3 codaxX+ay+0.2R(Q),  (A2)

points. This interference involves a phase difference which (2m)

depend; on the radi.us vector joining.the two droplets. If. thi%hereR(q):C(q)—l. Expanding the cosine function, we ob-

underlying factor of interference leading to large fluctuatlonstai

of the correlation function remains important even after

modifying our simplifying assumptions, then many of the dq

gross features obtained here will not be greatly modified. S(r) :f (2m)°
The fluctuations arising from a granular structure de-

scribed in the present idealized theoretical investigation will — cosqyx singyy sind,z - sing,x cosayy sing,z

be blurred by experimental statistical fluctuations due to the

limited number of experimental counts. Whether or not the

relevant signal can be recovered in the presence of experin the standard numerical subroutines such as those in the

mental statistical fluctuations remains to be tested. Clearlyfast Fourier transform package DFFTPACK [66], the cosine

[cosqyx cosa,y cosa,z

- singyx singyy cosq,z]R(q). (A3)
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transform of an even function d&(q) is usually approxi-

mated by

G(x) = f dgcogqnG(q)

0

N
=AqY, cod(j - (k- 1)@/N}G(q),  (A4)

=1

AZ(vaIZ) = fo dqz SianZ[FZ(XIquZ) - Fz(X,y,_ qz)]a

(A12)

Fa(xy,q) = Jo day sinayy[Ex(X,dy,0,) = Ex(x,— ay,a,)],

(A13)

where x=(k-1)Ax, q=(j—1)Aq, and (Ax)(Aq)==/N. The
right-hand side quantities are then calculated by the one-

dimensional cosine fast Fourier transform subroutine of the _ *
package. Similarly, the sine transform of an odd function is E2(%y: 02 = . daj cosah| R(dl . d) + R(= G, Gy, 07)]-

usually approximated by

N (A14)
é(x) :f dgsin(qr)G(q) = qu sin{jk#/(N + 1)}G(q), In a similar way, the ternf\s(x,y,z) is given by
0 j=1 "
(A5) Ag(xy,2) = f de, singZF3(x,y,a) — Fa(x,y,— )],
0
with x=kAx andg=jAq and AXAq=m/(N+1). (A15)

The Fourier integral of the sine and cosine function in Eq.
(A3) can be cast into the standard form of E¢a4) and

(A5) in the FFT package abFFTPACK by noting that

f do COSa,Xg(l, Oy, O) = J day cosa,x[9(dy, dy. )
% 0

Fa(x,y,0,) = f . dg, cosa,y[E;(x,0,,0,) + E5(x,— 0y,0,)],

(A16)

and

+9(— 00,91, (A6)

and similarly

- g(_ qX! qquz)] " (A7)
Using the above results, the four terms inside the square

bracket in Eq(A3) lead to four contributions t&(r),

f dagy singxg(dy,dy,q,) = J da sing,xg(ay,ay,9,)
0 0

Es(x,qy,0,) = fo da, sin(ax)[R(ay, dy,d,) — R(— ay,dy,0,)].

(A17)
Finally, A4(x,y,2) is given by

A4(X!y! Z) = f dQZ COSqZZ[F4(X!y! QZ) + F4(X!y:_ qz)]v
0

(A18)

S(r) =[Ay(r) = Ay(r) = Ag(r) = Ay(n)1I(2m)°,  (A8)

where Fa(x,y,a) = f da, singyy[E4(x,0y,d,) — E4(X,— q,0,)],
0
As(x,y,2) = f do, cosaZ Fy(x,y,qp) + Fi(X,y,— a1, (A19)
0 and
(A9) -
B E4(X,0y,0) = fo dak sin g R(Cy, Gy, o) = R(= Gy, Gy, d) |-
FI(X!Y! qz) = f dqy Cosqyy[El(Xi qquZ) + El(xl - qy! qz)]! (AZO)
0

(A10) The right-hand sides of the above equati¢h9)—(A20) are

now in the form of the sine and cosine integrals of Eggl)

and and (A5), for which standard FFT subroutines can be ap-
o plied. With the above relations, the folding functigr) can
Ea(X,0y,0) = f do cosa,X[R(l, 0y, 0,) + R(= 0, 0y, 0. be easily evaluated using subroutines in standard fast Fourier
0 transform packages.

(A11) Incidentally, we have shown how we can obtain the three-

dimensional Fourier transform for a function that is symmet-

The termA, that contributes tdS(x) can be obtained simi- ric with respect to the inversion of its coordinates, for which

larly as

the imaginary part of the Fourier transform vanishes. For
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other general functions without such a symmetry, the imagi- Because the density function is zero outside the region of
nary Fourier component involving giqp-r) does not vanish. i<1 andi>N, the set of equations ¢B1) are

We can expand the function $@x+qyy+0,2) as in Eq(A3)

and use techniques similar to those in Eg8)—(A20) to get S(N) =0, (B2)

the imaginary part of the Fourier transform.

APPENDIX B: SOLUTION OF THE DISCRETIZED SN - 1)/Ax= p(N)p (1), (B3)
INTEGRAL EQUATION

We wish to obtain an iterative solution of the discretized
integral equation(55) for p(r), with a givenS(r). As the
density functionp(r) is zero outside the box ofi,j,k
=1 to N} the summation in Eq55) can be limited to density _
functions inside the box. Consequently, E§5) contains SIN - 3)/Ax= p(N=2)p(1) + p(N=1p(2)
fewer and fewer numbers of unknown variablespads the +p(N)p9(3), ..., (B5)
indicesi, j, or k of (i,]j,k) increases. We can choose our
starting point to be the linear equation containing only one
variable. The equation can be easily solved. The variables in S(1)/Ax = p(1)p@(1) + p(2)p?(2) + -+ + p(N)pQ(N).
the subsequent set of linear equation can be solved in se- (B6)
quence. Similar procedures can be carried out in two and
three dimensions. We shall give the detail procedures below
for the one-dimensional case to indicate how the iterativdequation(B3) contains only a single unknows(N) and can
solution can be obtained. be solved in terms of the other known quantities. Knowing

We seek an iterative solution @fi) satisfying the value ofp(N), Eq.(B4) can be solved fop(N-1), and so

N on. In this way, the whole array qf(i) can be determined.
. _ o, ., The above method can be easily generalized to calculate the
S(')/AX_‘/E pli +iNp(1"), (B1) iterative solution of the three-dimensional density function
r=t p(r) from S(r). It will be necessary to normalize the density
wherep©(i") is either a guessed solution or the solution ofsolutionp(r) after each iterative step to ensure that the final

SIN-2)/Ax=p(N-1)p (1) +p(N)p'%(2), (B4

the previous iteration. solution has the proper normalization.
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