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The observation of a granular structure in high-energy heavy-ion collisions can be used as a signature for the
quark-gluon plasma phase transition, if the phase transition is first order in nature. We propose methods to
detect a granular structure by the single-event intensity interferometry. We find that the correlation function
from a chaotic source of granular droplets exhibits large fluctuations, with maxima and minima at relative
momenta which depend on the relative coordinates of the droplet centers. The presence of this type of maxima
and minima of a single-event correlation function at many relative momenta is a signature for a granular
structure and a first-order QCD phase transition. We further observe that the Fourier transform of the correla-
tion function of a granular structure exhibits maxima at the relative spatial coordinates of the droplet centers,
which can provide another signature of the granular structure.
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I. INTRODUCTION AND SUMMARY

Recently, much progress has been made in the experimen-
tal search for the quark-gluon plasma[1,2]. The occurrence
of jet quenching and collective flow suggests the presence of
a very dense matter produced in high-energy heavy-ion col-
lisions [1,2]. A very important question is whether the pro-
duced dense matter is a quark-gluon plasma. If it is a quark-
gluon plasma, it will undergo a phase transition from the
quark-gluon plasma phase to the hadronic phase. It is of
great interest to search for the signature for the phase transi-
tion of the quark-gluon plasma.

The signature for the phase transition depends sensitively
on the order of the transition. Previously, Witten and many
other workers noted that a granular structure of droplets oc-
curs in a first-order QCD phase transition, and the observa-
tion of the granular structure can be used as a signature for a
first-order QCD phase transition[3–15]. In a recent spinodal
analysis, Randrup found that the spinodal instability has a
high degree of amplification and the instability of the most
rapidly amplified wavelengths grow predominantly, leading
to spinodal(granular) density patterns that may indeed be
used as a diagnostic tool for a first-order QCD phase transi-
tion [13]. Assuming that the granular particles are arranged
in regular rapidity intervals in momentum space, Randrup
studied methods to identify the associated momentum
clumping usingN-particle momentum correlations[15].

We would like to study the granular source in configura-
tion space. Among the many different ways to study a quark-
gluon plasma, intensity interferometry(HBT interferometry)
is the best experimental tool to examine the space-time den-
sity distribution of the produced matter[16–44]. It can be
utilized to study the granular structure that occurs in a first-
order phase transition of the plasma.

It should be pointed out that without a careful study of the
phase-transition dynamics and post-transition evolution, it is
not known at present how much the granular density pattern
of the phase transition will remain and become detectable by
HBT interferometry. It also remains a subject of current re-

search how early a post-transition configuration the HBT in-
terferometry really detects, as it was shown by quantum
treatments of the multiple scattering process and the collec-
tive flow that HBT interferometry measures the density dis-
tribution at a configuration earlier than the thermal freeze-out
configuration[39–42]. To continue our progress in the search
for the phase transition of a quark-gluon plasma, it is reason-
able to start with the working hypothesis that the density
fluctuations that occur during a first-order phase transition
are so large that some remnants of the granular droplet dis-
tribution remain after the post-transition evolution, and these
remnants form an initial chaotic source of granular droplets.
The assumed chaoticity of the particle source then leads to
the result that the correlation function of two identical
bosons in HBT interferometry contains information on the
space-time density of the source. A granular density distribu-
tion of the emitting chaotic source then distinguishes itself
from other density distributions and should reveal its charac-
teristics in HBT interferometry.

Suggestions to examine the granular structure in connec-
tion with the phase transition of the quark-gluon plasma have
been presented previously[3–15]. Recent high-energy
heavy-ion measurements give a ratio ofRout/Rside,1
[45,46], which is contrary to most theoretical expectations
[47–56]. A granular emitting source of droplets was proposed
to explain this HBT interferometry puzzle[14]. The sugges-
tion was based on the observation that in the hydrodynamical
model[32], the particle emission time scales with the radius
of the droplet. Particles will be emitted earlier if the radius of
the droplet is smaller, as in a source of many droplets. An
earlier emission time will lead to a smaller extracted HBT
radiusRout. On the other hand,Rside depends on the distribu-
tion of droplet centers and is relatively independent of the
droplet size. It increases with an increase in the width of the
droplet center distribution and the collective-expansion ve-
locity of the droplets. As a result, the value ofRout can lie
close toRside for a granular quark-gluon plasma source. A
direct investigation on the granular density structure of the
emitting source is, however, needed to confirm the occur-
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rence of a granular structure in high-energy heavy-ion colli-
sions.

Previously, Prattet al. [6] studied the granular density
structure in HBT interferometry by considering pairs of iden-
tical bosons in a distributed source in which the centers of
the droplets are distributed according to a spherical Gaussian
distribution with a standard deviationR0/Î2. They calculated
the correlation functionCsuqud for a pair of identical bosons
of relative momentumq from such a distributed source with
R0=4 fm. They found that there are differences in the mag-
nitudes of the correlation functionCsuqud at uqu greater than
about 80 MeV/c in a granular structure. They also found that
the correlation functions are relatively smooth functions of
uqu even for small numbers of droplets(2 and 4).

The source considered by Prattet al. in Ref. [6] corre-
sponds to a source in which the centers of the droplets have
been distributed first and identical bosons are then subse-
quently examined from such a distributed source. In actual
dynamics with droplet formation in a first-order phase tran-
sition [3], one envisages the formation of localized droplets
in each single event following the phase transition, and par-
ticles are emitted and evolve from these localized granular
droplets. Although there can be a distribution of the centers
of the localized droplets over many different heavy-ion col-
lision events(of similar other global characteristics), the cen-
ters of the droplets in each single collision event can be
localized.

Noting that the centers of the droplets in each single event
can be localized in space and time, we would like to consider
a different way to study the granular structure in HBT inter-
ferometry. We propose experiments to look at HBT interfer-
ometry for each event individually, to study its associated
density distribution. There are many advantages in the
single-event HBT interferometry, if it can be carried out with
sufficient accuracy. First, the granular structure is the result
of a large fluctuation of the density distribution in space and
time as it undergoes a first-order phase transition. The large
fluctuation of the density in space and time is encoded into
its corresponding Fourier transform, whose absolute square
gives the correlation function of identical bosons. By consid-
ering the correlation function of all pairs of identical bosons
from this single event, one can obtain pertinent information
on the density distribution of the event. One can even invert
the correlation function with an inverse Fourier transform to
obtain an integral equation for the source density distribution
of the event. Secondly, as a result of the large fluctuation in
the dynamics of a first-order phase transition, the granular
structure of one event will be quite different from the granu-
lar structure of another event, even though many other global
characteristics can be very similar. By examining the space-
time structure of each event individually one can study the
large fluctuation of different events in the phase transition,
which is another characteristic of a first-order phase transi-
tion. In other words, there are both large fluctuations in a
single event as well as large fluctuations among different
events in a first-order QCD phase transition. Finally, any
averaging over a set of collision events to obtain an average
correlation function, as in the use of identical boson pairs
from different collision events in a “multievent” analysis or
in considering bosons from a “distributed source,” will wash

out the large fluctuations in the single-event correlation func-
tion. As a consequence, the large fluctuations of the correla-
tion function that are inherent in a first-order phase transition
in single events do not become prominent. A single-event
HBT analysis brings out the prominent features of large fluc-
tuations of the correlation function.

At intermediate energies and the low-energy end of high-
energy heavy-ion collisions, it is difficult to use the single-
event HBT interferometry as the number of detected bosons
is small in a single event. It becomes necessary to pick iden-
tical boson pairs from a large number of events with similar
global characteristics in a “multievent” analysis in order to
provide sufficient statistics so as to extract useful, but aver-
age, space-time characteristics concerning this group of col-
lisions. As a large number of events are included in the sam-
pling, the fluctuation of the correlation function that may be
present in the single-event HBT interferometry is suppressed
by the averaging procedure.

In a nearly head-on collision at very high energies, the
number of identical pions is of the order of a few thousand.
The number of observed identical pionsnp is a small fraction
of this number. For example, the number of identical pions
detected in the STAR Collaboration in the most central
Au-Au collisions at RHIC is of the order of a few hundred
[57]. Although the number of pairs of identical pions in the
event varies asnpsnp−1d /2, only a small fraction of these
pairs have relative momentum small enough to be useful in a
HBT analysis. Clearly, whether or not a single-event HBT
measurement can be carried out remains to be tested. If the
statistics of identical bosons turns out to be insufficient for
such an analysis using the present detectors in heavy-ion
collisions at RHIC, there remains the possibility of perform-
ing a single-event HBT analysis at RHIC with detector up-
grades or with heavy-ion collisions at LHC. It will also be of
great interest to carry out a few-event HBT analysis in future
work both theoretically and experimentally to see how the
degrees of fluctuation changes as the number of events in-
creases. The rate of the change of the fluctuations will pro-
vide information on the underlying fluctuation in single-
event and event-to-event fluctuations in HBT interferometry.
The few-event analysis will require a good theoretical under-
standing of the single-event HBT interferometry. Previous
investigations of event-by-event fluctuations are focused on
particle multiplicity, particle ratio, and transverse momentum
[58–65]. The event-by-event HBT analysis brings a new set
of information to the dynamics of the collision process.

We shall show that the correlation function of a granular
density distribution has large fluctuations, with maxima and
minima at locations which depend on the relative coordinates
of the droplet centers. These local maxima and minima arise
from the constructive and destructive interference of identi-
cal bosons originating from two different droplets. Their in-
terference pattern therefore depends on the coordinates of the
droplet centers. The occurrence of these maxima and minima
in single-event correlation functions is a good signature for
the granular structure and a first-order QCD phase transition.

It is desirable to take advantage of the relationship be-
tween the density distribution and the correlation function to
invert the correlation function by Fourier transform to obtain
an integral equation for the density function. Previously, us-
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ing the Koonin-Pratt formalism [19,27], Brown,
Danielewicz, and their collaborators studied methods to in-
vert the correlation function by expanding the two-particle
source function in spherical harmonics[33,37,43,44]. For an
irregular density distribution as one encounters in granular
droplets, an expansion in terms of spherical harmonics is
inadequate. We have developed a general three-dimensional
fast Fourier transform method to invert the correlation func-
tion which will facilitate its application to HBT interferom-
etry, should accurate experimental single-event correlation
functions become available.

Using the property that the Fourier transform of the cor-
relation function is the folding of the density with itself, we
shall prove analytically that the Fourier transform of the cor-
relation function of a granular density distribution has
maxima at spatial locations governed by the spatial relative
coordinates of the droplet centers. The presence of this type
of maxima in the Fourier transform of the single-event cor-
relation function provides another signature for the granular
structure of the density distribution. We shall demonstrate the
presence of these maxima numerically by inverting the cor-
relation function with the three-dimensional fast Fourier
transform(FFT) method. A comparison of these results with
the exact analytical solution shows the feasibility and the
high degrees of accuracy of our three-dimensional FFT
method.

This paper is organized as follows. In Sec. II, we briefly
summarize the basic relation between the density distribution
and the correlation function. We give in Sec. III the correla-
tion function for a simple periodic structure and show that it
possesses many correlation function maxima. In Sec. IV, we
study the correlation function of a general granular density
distribution. We find that the correlation function exhibits
large fluctuations. We show that the locations of the maxima
and minima of the correlation function are determined by the
relative coordinates of the droplet centers. In Sec. V, we
show that the Fourier transform of the correlation function
has maxima at locations which also depend on the relative
coordinates of the droplets centers. The feasibility of the
Fourier transform method is demonstrated by numerical ex-
amples. Section VI concludes our discussions. To facilitate
the use of the Fourier transform method using experimental
single-event correlation functions,(or functions that fit the
experimental correlation function), the method to invert a
correlation function using the three-dimensional Fourier
transform is given in Appendix A. The method to obtain the
iterative solution of the density distribution from the Fourier
transform of the correlation function is given in Appendix B.

II. DENSITY DISTRIBUTION AND
CORRELATION FUNCTION

In a HBT interferometry measurement, one measures the
correlation functionPsk1,k2d, the probability for the detec-
tion of one boson of one four-momentumk1=sk10,k1d in
coincidence with the detection of an identical boson of an-
other four-momentumk2. An alternative representation of the
correlation is given in terms of the correlation function
Csk1,k2d defined as the ratioPsk1,k2d /Psk1dPsk2d, where

Pskid is the probability of detecting a boson of four-
momentumki.

Because of the symmetrization of the wave function of
identical particles, there is an interference of the two histo-
ries for two identical bosons to propagate from two source
points to two detection points. For a chaotic source, this
interference leads to a relation between the two-boson corre-
lation function and the Fourier transform of the source den-
sity rsx;k1,k2d by [16–44]

Csk1,k2d = 1 +UE dxeisk1−k2dxrsx;k1,k2dU2

, s1d

where

rsx;k1,k2d =
Îfsk1,xdfsk2,xd

ÎE dx1fsk1,x1d E dx2fsk1,x1d

, s2d

fsk,xd is the Wigner function, andx=st ,r d. We shall assume
that the source is indeed chaotic so that Eq.(1) holds.

The density functionr depends on the average momen-
tum of the pair of particlesP=sk1+k2d /2 and the relative
momentumq=k1−k2. We shall neglect final-state interac-
tions and assume that the density functionr is independent
of q. Then the average momentumP becomes just a label for
the correlation function and the density function

Csq,Pd = 1 +UE dxeiqxrsx,PdU2

. s3d

For brevity of notation, we shall leave the labelP implicit so
that the correlation functionCsqd and the density function
rsxd in fact refers to those with a pair momentumP. The
labelP can be reintroduced when it is needed. In this implicit
notation, the correlation functionCsqd is related to the source
density functionrsxd by

Csqd = 1 +UE dxeiqxrsxdU2

. s4d

We normalized the density function according to

E dxrsxd = 1. s5d

It is easy to show that the correlation functionCsqd is a
real function greater than unity and possesses an inversion
symmetry

Csqd = Cs− qd. s6d

Because of the simple relationship betweenCsqd andrsxd in
Eq. (4), there is a one-to-one mapping between the density
function rsxd and the correlation functionCsqd. The correla-
tion function Csqd will exhibit special properties associated
with the density distributionrsxd. Conversely, information
concerningrsxd, including its fine structure, is encoded in
Csqd so that direct information onrsxd can, in principle, be
obtained by decodingCsqd (see discussions in Sec. V).

In single-event HBT interferometry experiments, one
measuresPsk1,k2d in the same event and the correlation
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function Csk1,k2d is obtained by dividing the joint probabil-
ity Psk1,k2d by Psk1d andPsk2d. Ideally, in the single event,
if the number of detected particles is large enough, the
single-particle probability distributionPskd can be well de-
termined using detected particles in the same event. How-
ever, when one is faced with low statistics in the total num-
bers of detected particles, it may be necessary to obtainPskd
from a larger set of events(with similar global characteris-
tics) to determine the correlation functionCsk1,k2d.

III. AN EXAMPLE OF A REGULAR GRANULAR SOURCE

It is instructive to study many simple examples to find out
the characteristics of the correlation function of granular
sources in HBT interferometry. We shall begin by consider-
ing a regular granular structure. While we do not expect the
QCD phase transition to lead to a completely regular granu-
lar structure, the remnants of the density amplifications of
the most rapidly amplified wavelengths that grow predomi-
nantly during the first-order phase transition may remain, and
these amplified wavelengths may show up in the underlying
gross structure of an otherwise irregular granular pattern
[13]. It is thus useful to study the correlation function of a
regular periodic granular structure. The simplicity of the so-
lution also provides interesting insight into the nature of the
correlation function of granular density distributions.

Accordingly, we consider a spatially periodic granular
source of the form

rst,r d = fstdp
j=0

3

scosKjxj + 1dusR− rd, s7d

where the granular structure is characterized by an overall
spatial dimensionR, and the wave numbersKj (or wave-
lengthsdj =2p /Kj) with j =1,2,3. Thefunction fstd contains
a multiplicative normalization constant chosen to satisfy the
normalization condition(5). The source is a periodic granu-
lar distribution contained in a sphere of radiusR. The Fourier
transform ofrsxd is

r̃sq0,qd = f̃sq0d E dre−iq·rasr dbsr d, s8d

where

f̃sq0d =E dteiq0t fstd, s9d

asr d = p
j=1

3

scosKjxj + 1d, s10d

bsr d = usR− rd. s11d

Using the folding theorem of Fourier transforms, we obtain

E dre−iq·rasr dbsr d =E dq8

s2pd3ãsq8db̃sq − q8d, s12d

wherehãsqd ,b̃sqdj are the Fourier transforms ofhasr d ,bsr dj,
respectively. They are given explicitly by

ãsqd = s2pd3p
j=1

3

fdsqjd + dsqj − Kjd/2 + dsqj + Kjd/2g,

s13d

b̃sqd = 4pR3 j1sqRd
qR

. s14d

From these results, we obtain

r̃sqd = f̃sq0d o
l1,l2,l3=−1

1

csl1dcsl2dcsl3d
j1suq − Ql1l2l3

uRd

uq − Ql1l2l3
uR

,

s15d

where

csld = s1 − ulu/2d, l = − 1,0,1, s16d

Ql1l2l3
= l1K1e1 + l2K2e2 + l3K3e3, s17d

andhe1,e2,e3j are the unit vectors along thex, y, andz axes.
The Fourier transform of the periodic density has maxima at

sq1,q1,q3d = sl1K1,l2K1,l3K3d, s18d

and each maximum can be labeled by the corresponding set
of integershl1l2l3j. In units of r̃s0d, the maximum ofr̃sqd
at q=0 is 1 (by definition), and the maximum ofr̃sqd at q
=sl1K1,l2K2,l3K3d is approximatelycsl1dcsl2dcsl3d. The
correlation function is

Csqd = 1 + u f̃sq0du2F o
l1,l2,l3=−1

1

csl1dcsl2dcsl3d

3
j1suq − Ql1l2l3

uRd

uq − Ql1l2l3
uR G2

. s19d

In this case,fCsqd−1g factorizes, and we can introduce a
three-dimensional correlation functionCsqd defined by

Csqd − 1 = u f̃sq0du2fCsqd − 1g. s20d

For brevity of notation, we have used the same symbolC for
both the three-dimensional and the four-dimensional correla-
tion functions in the above equation. The ambiguity of the
meaning ofC can be easily resolved by context and by its
argument.

The three-dimensional correlation functionCsqd has
maxima values at the same locations asr̃sqd: at the origin
q=0 and at locationsqj = ±2pul ju /dj. WhenR@d, the over-
lap of the individual distribution at various maxima is small
and we have approximately

Csqd , 1 + o
l1,l2,l3=−1

1 Fcsl1dcsl2dcsl3d
j1suq − Ql1l2l3

uRd

uq − Ql1l2l3
uR G2

.

s21d

The presence of this type of maxima in the three-dimensional
correlation functionCsqd indicates that prominent fluctua-
tions are expected for a spatially periodic granular structure.
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IV. GENERAL GRANULAR STRUCTURE

The occurrence of a first-order phase transition in the
high-temperature environment of a high-energy heavy-ion
collision will generally lead to granular density distributions
that are more general than those discussed in the last section.
One can consider a general granular density distribution ofN
droplets of the type

rsxd = Ao
j=1

N

r jsx − Xjd, s22d

where r j is the density distribution of thej th droplet, Xj
=sTj ,R jd is the localized space-time coordinate of the center
of the j th droplet, andA is a normalization constant such that
the total densityrsxd is normalized to unity as in Eq.(5).

We again assume that the source is chaotic in nature. The
two-boson correlation functionCsqd is then related simply to
the Fourier transform of the source density. The latter quan-
tity can be easily evaluated and found to be

r̃sqd =E dxeiqxrsxd = Ao
j=1

N

eiqXjr̃ jsqd, s23d

wherer̃ jsqd is the Fourier transform of the density distribu-
tion of the j th droplet,

r̃ jsqd =E dxeiqxr jsxd. s24d

The correlation function is then

Csqd = 1 +UAo
j=1

N

eiqXjr̃ jsqdU2

. s25d

Thus, the correlation function of a granular source is related
to the absolute square of the coherent sum of the Fourier
transforms of the droplets modulated by the phaseeiqXj,
which depends on the droplet center coordinateXj.

We study the case where the space-time density distribu-
tion of a droplet is given by a normalized Gaussian distribu-
tion with standard deviationss j andt j

r jst,r d =
e−r 2/2s j

2

sÎ2ps jd3

e−t2/2t j
2

Î2pt j

. s26d

The Fourier transform of the density of a single droplet is

r̃ jsqd =E dtdreiq0t−iq·rr jst,r d = e−s j
2q2/2e−t j

2q0
2/2. s27d

The total density of the granular source is the sum of the
density of the droplets

rsxd = Ao
j=1

N
1

sÎ2ps jd3Î2pt j

expH−
sr − R jd2

2s j
2 −

st − Tjd2

2t j
2 J .

s28d

The correlation function for the Gaussian granular droplets is
then

Csqd = 1 +UAo
j=1

N

eiqXje−s j
2q2/2e−t j

2q0
2/2U2

. s29d

In general, the droplet lifetimet j may depend on the droplet
size parameters j (as in the hydrodynamical model[32]), and
s j can be different for different droplets.

In order to get a clear insight into the most important
features of the correlation function of a granular structure,
we consider the simple case where the density distributions
of all droplets are the same so thats j =sd andt j =td for all j .
In this simple case,A=1/N and the correlation function can
be easily evaluated in terms of the positions of the droplet
centers

Csqd = 1 +
e−sd

2q2−td
2q0

2

N2 Uo
j=1

N

eiq0Tj−iq·R jU2

. s30d

This leads to the simple result

Csqd = 1 +
e−sd

2q2−td
2q0

2

N2 FN + 2 o
j ,k=1,j.k

N

coshqsXj − XkdjG .

s31d

Thus, the correlation functionCsqd has maxima atq=0 and
qmaxsXj −Xkd,2np, with n=1,2,3, . . . . It hasminima at
qminsXj −Xkd,s2n−1dp.

We shall consider further the simplified case in which the
droplet emission timesTj are the same, then we have

Csqd = 1 +
e−sd

2q2−td
2q0

2

N2 Uo
j=1

N

e−iq·R jU2

. s32d

The function fCsqd−1g factorizes and we can introduce a
three-dimensional correlation functionCsqd defined by

Csqd − 1 =e−td
2q0

2
fCsqd − 1g. s33d

We have again used the same symbolC for both the three-
dimensional and the four-dimensional correlation function in
the above equation. From Eq.(30), the three-dimensional
correlation functionCsqd is given by

Csqd = 1 +
e−sd

2q2

N2 Uo
j=1

N

e−iq·R jU2

. s34d

This leads to the simple result

Csqd = 1 +
e−sd

2q2

N2 FN + 2 o
j ,k=1,j.k

N

coshq · sR j − RkdjG .

s35d

The correlation functionCsqd has a maximum atq=0,
and uCsqduq=0=2. This maximum atq=0 is a common maxi-
mum as it occurs in all correlation functions of two identical
bosons. From Eq.(35) (and if correlation function near the
maxima and minima does not overlap), the correlation func-
tion Csqd will have maxima approximately at
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qmaxs jk,nd , H2np − sin−1F sN + 2dsd
2

Rjk
2 GJR jk

Rjk
2

for j ,k = 1, . . . ,N and j Þ k s36d

andCsqd will have minima approximately at

qmins jk,nd , Hs2n − 1dp − sin−1F sN − 2dsd
2

Rjk
2 GJR jk

Rjk
2

for j ,k = 1, . . . ,N and j Þ k, s37d

where n=1,2, . . ., R jk=R j −Rk, and Rjk= uR jku. These
maxima and minima correspond to locations where the co-
sine function in Eq.(35) has the values close to +1 and −1,
respectively.

It is easy to understand how these local maxima and
minima of the correlation function of a granular structure
arise. The interference of the histories of two bosons having
a relative momentumq and originating from dropletsj andk
leads to a phase difference ofq ·sR j −Rkd. This phase inter-
ference gives rise to the cosine function in Eq.(35) and a
local maximum of the correlation function when the interfer-
ence is constructive, with a phase difference close to 2np. It
gives rise to a local minimum when the interference is de-
structive, with a phase difference close tos2n−1dp.

For each value ofn, there areNsN−1d maxima andNsN
−1d minima of the correlation functionCsqd of a granular
structure, one for each permutation of the pairs of droplets.
For each maximum located atqmaxs jk ,nd, there is another
maximum located in the opposite direction atqmaxskj ,nd
=−qmaxs jk ,nd. Similarly, qminskj ,nd=−qmins jk ,nd. The vec-
tors qmaxskj ,nd andqmins jk ,nd are along the direction of the
relative coordinateR j −Rk, and their magnitudes are in-
versely proportional to the magnitudes of the relative coor-
dinates. The magnitude of the maximum of the correlation
function fCsqd−1g, corresponding to the pair of droplet cen-

ters j andk, is approximatelye−sd
2qmax

2 s jk,ndsN+2d /N2, and the

magnitude of the minimum is approximatelye−sd
2qmin

2 s jk,ndsN
−2d /N2.

The maxima and minima of the correlation functionCsqd
of a granular structure, as given approximately by Eqs.(36)
and (37), will maintain its distinct characteristics if they are
well separated. However, these maxima and minima associ-
ated with different pairs of droplets may be located in the
vicinity of each other. They will merge to give rise to a more
complicated pattern. When the relative coordinates of many
pairs of droplet centers are approximately the same(as in the
example of the periodic granular structure discussed in Sec.
III ), the corresponding maximum of the correlation function
will be enhanced. The shape of the correlation function will
be modified in the presence of overlapping maxima and
minima, to make the individual maximum and minimum less
distinct. It is of interest to study some numerical examples to
see whether these interesting features of maxima and minima
in the correlation function manifest themselves.

If the coordinates of the droplet centershR j , j
=1, . . . ,Nj are known, then the correlation functionCsqd can
be evaluated numerically. We consider the center of a droplet

(j th droplet, say) in many different events to be distributed
according to a probability distributionPsR jd,

dP= PsR jddR j s38d

and assumePsR jd to be a normalized Gaussian distribution
with a standard deviationsR

dP=
e−R j

2/2sR
2

sÎ2psRd3
dR j . s39d

In our numerical example, we randomly select the local-
ized droplet centers according to the distribution of Eq.(39)
with sR=4 fm and takesd=1.5 fm for the standard deviation
of the droplet. To avoid overlapping droplets, we require the
droplets be separated by a distance greater than the sum of
their root-mean-square radii, 2Î3sd. After the positions of
the centers of the droplets are selected, we evaluate the cor-
relation functionCsqd with Eq. (35). A sample result forN
=4 droplets is shown in Fig. 1, and another sample result for
N=8 droplets is shown in Fig. 2. Figures 1(a) and 2(a) show

FIG. 1. (a) A sample spatial configuration of four droplets. We
use dashed lines to join the droplet centers and the origin to show
the locations of the droplets. We use vertical dashed lines to indicate
the projection of the droplet centers onto thex-y plane.(b) Two-
boson correlation functionCsqx,qy,qzd for qz=0, (c) for qz

=0.030 GeV/c, and (d) qz=0.06 GeV/c. The quantitiesqx and qy

are in units of GeV/c.
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the spatial configurations of the droplets; Figs. 1(b) and 2(b)
give the correlation functionsCsqd as a function ofqx andqy
for qz=0, Figs. 1(c) and 2(c) for qz=0.03 GeV/c, and Figs.
1(d) and 2(d) for qz=0.06 GeV/c. The momentaqx andqy in
Figs. 1 and 2 are in units of GeV/c.

One observes from Figs. 1 and 2 that there are prominent
fluctuations of the correlation function for a density distribu-
tion of localized droplets. The inversion symmetry
Csqx,qy,qzd=Cs−qx,−qy,−qzd is present forqz=0 [Figs. 1(b)
and 2(b)]. In addition to the maximum ofCsuqud at q=0,
there are maxima and minima at various locations ofq. The
number of maxima for eight droplets is greater than the num-
ber of maxima for four droplets.

The correlation functions for other configurations of four
and eight localized droplets exhibit similarly large fluctua-
tions. On the average, the smaller the number of droplets, the
greater will be the fluctuation. The magnitude of the fluctua-
tion decreases as the number of droplets increases, as can be
easily deduced from Eq.(35). The presence of this type of
maxima and minima of a single-event correlation function at
many relative momenta is a signature for a granular structure
and a first-order QCD phase transition.

Because of the large fluctuations in a first-order phase
transition, one expects that the locations of the centers of the
droplets will be quite different from event to event. The large
differences in the locations of the droplet centers in different
events lead to large differences in the locations of the
maxima and minima and large differences in the shapes of
correlation functions(except for the maximum atq=0).

It is interesting to examine the correlation function when
we average over many events. The correlation functionCsqd
depends on the coordinates of the droplet centers, and the
centers have a distributionPsR jd in different events. The
average of the correlation function over the different events
kCsqdl is defined as

kCsqdl =E p
j=1

N

dR jPsRjdCsqdYE p
j=1

N

dR jPsRjd.

s40d

From Eq.(34) and the Gaussian distribution of the droplet
centers(39), we obtain

kCsqdl = 1 +
e−sd

2q2

N
+

e−sd
2q2

N2 o
j=1

N

o
k=1,kÞ j

N E dR jdRk

sÎ2psRd6

3expH−
R j

2 + Rk
2

2sR
2 + iq · sR j − RkdJ s41d

and we get

kCsqdl = 1 +
1

N
e−sd

2q2
+

N − 1

N
e−ssd

2+sR
2dq2

, s42d

which is identical to the results of Prattet al. for a pair of
bosons from a distributed source[6]. Thus, the results of
Pratt et al. [6] for a distributed source is the same as the
results of averaging the correlation function over many dif-
ferent events. The average correlation function is now a rela-
tively smooth function ofuqu, with only minor fluctuations
even for only two and four droplets. The prominent fluctua-
tions that are inherent in single-event correlation functions
involving the term cosq ·sR j −Rkd in Eq. (35) are not
present. The large fluctuations are now greatly suppressed by
the averaging procedure.

In order to bring out the salient features of the correlation
function, we have assumed in Eq.(31) that the source emis-
sion timeshTjj for all droplets are the same. This is a rea-
sonable assumption when the phase transition occurs over a
short duration of time. The source function in Eq.(28) then
factorizes in spatial and temporal coordinates. The correla-
tion function fCsqd−1g in Eq. (33) also factorizes inq0 and
q, with Csqd given by Eq.(35).

On the other hand, if the phase transition occurs over a
long duration, then the emission timeshTjj can be different
for different droplets. The source function(28) cannot be
factorized as a product of spatial and temporal functions.
Consequently, the correlation functionfCsqd−1g cannot be
factorized and is given by the general result of Eq.(31). The
correlation functionCsqd has maxima atq=0 and qmaxsXj

−Xkd,2np, with n=1,2,3, . . .. It hasminima at qminsXj

FIG. 2. (a) A sample configuration of eight droplets. We use
dashed lines to join the droplet centers and the origin to show the
locations of the droplets. We use vertical dashed lines to indicate the
projection of the droplet centers onto thex-y plane.(b) Two-boson
correlation functionCsqx,qy,qzd as a function ofqx and qy at qz

=0, (c) qz=0.03 GeV/c, and(d) qz=0.06 GeV/c. The quantitiesqx

andqy are in units of GeV/c.
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−Xkd,s2n−1dp. The maxima and minima of the correlation
function occur at relative momentaq0 related to the relative
emission time coordinatesTj −Tk. The signature for the
granular structure remains distinct, if one can make accurate
measurements of the correlation function for different cuts in
the relative momentaq0.

There are additional complications when one considers
the internal hydrodynamical motion and the collective mo-
tion of the droplets relative to the center of mass. The hydro-
dynamics of a QGP droplet shows that the freeze-out radial
coordinate in a QGP droplet is nearly independent of time in
a first-order phase transition, when the initial energy density
of the droplet is only slightly greater thanec, the QGP energy
density at the critical temperatureTc [see Fig. 4(b) of Ref.
[32]]. As a droplet is presumably formed at temperatures
near the critical temperature with an energy densities close to
ec, the assumption of the factorization of each droplet source
as a product of spatial and temporal functions is reasonable
for the case of a quark-gluon plasma with an initial tempera-
ture slightly aboveTc.

For the case of a quark-gluon plasma with a high initial
temperature much aboveTc, the quark-gluon plasma will ex-
pand and cool. It will make a phase transition when it cools
down to the critical temperature with the subsequent forma-
tion of granular droplets, if the phase transition is first-order
in nature. At the moment of phase transition atTc, the newly
formed droplets will acquire an expansion velocity moving
away from the center of mass of the system. The factoriza-
tion of the source function as a product of spatial and tem-
poral functions is not possible, and the magnitude of the
fluctuations of the correlation function may decrease. We
shall investigate these effects on the correlation function in
our future work.

V. HOW TO INFER THE DENSITY
DISTRIBUTION FROM C„q…

The correlation functionCsqd is related to the Fourier
transform of the densityr̃sqd. Information onrsxd is encoded
in Csqd. If the correlation functionCsqd has been measured
experimentally as a function of its relative momentum coor-
dinateq, then a proper Fourier transform of the correlation
function will provide pertinent information on the density
distributionrsxd.

We can obtain direct information on the density distribu-
tion rsxd by decodingCsqd in the following way. From the
correlation functionCsqd, one calculatesfCsqd−1g, and one
constructs the Fourier transform offCsqd−1g

Ssxd =E dq

s2pd4e−iq·xfCsqd − 1g. s43d

In the discussion of the Fourier transform(or the inversion)
of the correlation function, the combination of the two terms
in fCsqd−1g always comes together. For simplicity, we shall
often use the term “the Fourier transform(or the inversion)
of the correlation function” to mean “the Fourier transform
(or the inversion) of fCsqd−1g.”

The functionSsxd is the two-particle “source function” in
the Koonin-Pratt formalism[19,27] and the imaging method

of Brown, Danielewicz, and their collaborators
[33,37,43,44], for the special case for bosons without final-
state interactions. Much progress has been made in obtaining
a representation of this two-particle source functionSsxd in
terms of spherical harmonics[33,37,43,44]. For an irregular
density distribution and correlation function as one encoun-
ters in granular droplets, an expansion ofSsxd in terms of
spherical harmonics will not be adequate. The irregularity of
the shape of the correlation function as shown in Figs. 1 and
2 calls for a more general method. The best method for in-
verting a general correlation function without symmetry is to
use Cartesian coordinates in a three-dimensional Fourier
transform. We have developed successfully a general three-
dimensional fast Fourier transform method to invert highly
irregular three-dimensional correlation functions. As de-
scribed in detail in Appendix A, our three-dimensional FFT
method consists of performing a sequence of one-
dimensional cosine and sine transforms in the three coordi-
nate directions. In each of the cosine or sine transforms, we
rearrange the integral so that the limits of the integration go
from zero to infinity and the integrand possesses the proper
symmetric or antisymmetric reflectional symmetry, for co-
sine or sine transform, respectively. We test our numerical
three-dimensional FFT method by applying it to invert a cor-
relation function of granular droplets for which results for
the Fourier inversion can be easily obtained analytically.

In our analysis, we focus our attention on the source den-
sity function rsxd itself as it directly gives the space-time
configuration of the source. From the relation betweenCsqd
andrsxd as given by Eq.(4), we get the integral equation for
the source density functionrsxd

Ssxd =E dx8rsx8drsx8 + xd. s44d

We can prove thatSsxd possesses inversion symmetry

Ssxd = Ss− xd. s45d

The functionSsxd is not the source density but is the folding
of the source density with itself. To focus our attention on the
source densityrsxd and to emphasize the property ofSsxd as
the folding of rsxd with rsxd, we can call the functionSsxd
alternatively as “the folding function” ofrsxd in the discus-
sion of the source densityrsxd, in addition to the name of
“the source function” in the Koonin-Pratt formalism[19,27]
and imaging methods[33,37,43,44]. The folding function
Ssxd is real and positive definite. The same folding function
Ssxd is obtained whether one usese−iqx or its complex con-
jugateeiqx in the Fourier transform expression in Eq.(43).

We can illustrate the application of the folding function
Ssxd with the example of the chaotic source ofN Gaussian
density droplets, Eq.(28), studied in the last section. For
such a granular source densityrsxd, the folding functionSsxd
can be obtained analytically. By carrying out the folding in-
tegration using Eq.(44), the folding functionSsxd can be
easily found to be
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Ssxd = A2 o
j ,k=1

N
1

sÎ2ps jkd3Î2pt jk

expH−
fr − sR j − Rkdg2

2s jk
2

−
ft − sTj − Tkdg2

4t jk
2 J , s46d

where s jk
2 =s j

2+sk
2 and t jk

2 =t j
2+tk

2. The function Ssxd has
maxima at r =sR j −Rkd and t=st j −tkd, in addition to the
maxima atx=0. For simplicity, we again assume thats j
=sd and t j =td for all j . The functionSsxd for the granular
droplets is simplified to be

Ssxd =
1

N2sÎ4psdd3Î4ptd
o
j ,k=1

N

expH−
fr − sR j − Rkdg2

4sd
2

−
ft − sTj − Tkdg2

4td
2 J . s47d

Thus, if the folding function near the maxima does not over-
lap, the folding functionSsxd has maxima at locations gov-
erned by the relative coordinates of the droplet centers.

We can consider the case when the droplets are all pro-
duced at the same time, such as, for example, when the drop-
lets are produced at the moment of phase transition. Then the
time Tj can be taken to be the same for allj . The four-
dimensional folding functionSsxd factorizes into a three-
dimensional partSsr d and a normalized Gaussian distribution
in time,

Ssxd = Ssr d
e−t2/4td

2

Î4ptd

, s48d

where we use the same symbolS for the three- and four-
dimensional folding function. The ambiguity of the meaning
of S can be easily resolved by context and by its argument.
The three-dimensional folding functionSsr d is

Ssr d =
1

N2sÎ4psdd3 o
j ,k=1

N

expH−
fr − sR j − Rkdg2

4sd
2 J .

s49d

If the folding function near the maxima does not overlap, the
maxima of the three-dimensional functionSsr d are located at

r = R j − Rk, j ,k = 1,2, . . . ,N. s50d

In Eq. (49) for Ssr d, there areN terms with j =k, and these
terms contribute additively to the maxima atr =0. The height
at the maxima atr =0 is thereforeN times higher than the
maximum with j Þk located at the relative coordinatesR j
−Rk. The occurrence of this type of maxima inSsr d, in ad-
dition to the maxima atr =0, provides another signature for a
granular structure of the source and a first-order phase tran-
sition of the quark-gluon plasma.

The density distribution we have considered, with botht j
andTj separately the same for allj , is a special case of those
density distributions whose spatial and time distributions can
be factorizedrsxd= fstdrsr d, where we use the same symbol
r for the three-dimensional and the four-dimensional density
function. For these factorizable density distributions

Csqd − 1 = u f̃sq0du2fCsqd − 1g s51d

and

Csqd − 1 = ur̃sqdu2, s52d

where f̃sq0d and r̃sqd are the Fourier transforms offstd and
rsr d, respectively. Consequently, the functionSsxd also fac-
torizes and is given by

Ssxd = Ssr d E dq0

2p
e−iq0tu f̃sq0du2, s53d

where the three-dimensional functionSsr d is equal to

Ssr d =E dq

s2pd3eiq·rfCsqd − 1g. s54d

It is of interest to demonstrate the feasibility and the accu-
racy of the FFT method by using it to invert a correlation
function and comparing the inversion result with the analyti-
cal result. We use the numerical correlation functionCsqd
obtained in our previous examples in Sec. IV(results as
shown in Figs. 1 and 2) as input, and carry out the three-
dimensional FFT of the correlation functionfCsqd−1g to ob-
tain Ssr d, as given in Eq.(54). The input correlation func-
tions correspond to those of the localized configurations of
Figs. 1(a) and 2(a).

We show in Figs. 3 and 4 the results of the functionSsr d
at z=0, 1.94, 3.87, and 5.81 fm obtained by inverting the
correlation functions using the FFT method. Figure 3 gives
Ssr d for the example of 4 droplets of Fig. 1. Figure 4 gives
Ssr d for the example of eight droplets of Fig. 2. One observes
that in addition to the maxima atr =0, the folding function
Ssr d has many maxima atr =R j −Rk wherej ,k=1, . . . ,N and
j Þk. A granular structure shows up as having many maxima
in the Fourier transform offCsqd−1g, in addition to the
maxima atr =0. For the case with four droplets in Fig. 3, the
maxima ofSsr d are quite distinctly exhibited. For the case
with eight droplets, the number of maxima increases and
many maxima merge. However, some individual maxima re-
main distinctly separated as in Figs. 4(b) and 4(c).

To study the shape of the functionSsxd in more detail, we
consider a cut at the plot of Fig. 3 atx=0, and plotSsx
=0,y,zd as a function ofy for different values ofz in Fig. 5.
The results in Figs. 5(a) and 5(b) have been obtained by
using the fast Fourier transform method for the example of
four droplets of Fig. 1. Figure 5(a) givesSs0,y,zd in linear
scale and 5(b) in logarithmic scale. One sees clearly oscilla-
tions of the folding functionSsxd due to the maxima at vari-
ousR j −Rk locations. A signature for granular droplets is the
presence of this type of maxima of the Fourier transform of
fCsqd−1g at various spatial locations.

We can assess the accuracy of inverting a numerical cor-
relation function with our fast Fourier transform method by
comparing its results with the exact analytical result as given
by Eq. (49). The exact analytical results ofSsr d versusy for
x=0 and differentz values are shown in linear scale in Fig.
5(c) and in logarithmic scale in Fig. 5(d). The results from
the FFT method match the exact analytical results with a
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very high degree of accuracy, including the detailed shapes
of the oscillations and the values ofSsr d down to the low
density region ofy, ±30 fm whereSsr d is down by six
orders of magnitude from its maximum value atr =0. We
have successfully developed an accurate three-dimensional
FFT method to invert a correlation functionfCsr d−1g to ob-
tain its three-dimensional Fourier transformSsr d.

The folding functionSsr d will be distorted as noises are
introduced into the correlation function. The degree of dis-
tortion will depend on the magnitude of the noise and it
would be of interest to see how well the folding function can
be determined with noises associated with experimental mea-
surements. The high degree of accuracy in the FFT method
makes it encouraging to apply it to determine the folding
function Ssr d for the investigation of the source density dis-
tribution rsr d.

In order to facilitate the application of the three-
dimensional Fourier transform using the experimental single-
event correlation functionfCsqd−1g (or perhaps functions
that fit the experimental correlation function), we give the
detailed steps of how the three-dimensional Fourier trans-
form can be evaluated in Appendix A. The computer pro-
gram to carry out the three-dimensional fast Fourier trans-

form to obtain Ssr d from fCsqd−1g can also be obtained
from the authors upon request. Brownet al.have pointed out
that in practical applications, when the experimental errors
are large, it is important to include the error uncertainties
into the equation for the inversion of the correlation function
[33,37,43,44]. Brown [37] also pointed out that when one
applies the FFT transform to experimental correlation func-
tions, one should take care to treat the experimental error in
the measurement by filtering out the noise, and the best
method is one in which the errors of the measurement are
included in the inversion method.

It is worth emphasizing that Eq.(44), which connects the
Fourier transform of the correlation functionfCsqd−1g to the
density functionrsxd, is a general result. It can be used to
obtain other density distributions, in addition to the granular
density distribution discussed here. Thus, if the correlation
function Csqd is experimentally determined, one can first
evaluate the Fourier transform offCsqd−1g, which gives the
functionSsxd. The integral equation(44) can then be used to
determine the density distributionrsxd by algebraic methods.
In the three-dimensional case, one can discretize the integral
equation Eq.(44) as

FIG. 3. (a) The folding functionSsx,y,zd for four droplets in
units of fm−3 for the droplet configuration of Fig. 1.(a) is for Ssr d
at z=0, (b) for Ssr d at z=1.94 fm,(c) for Ssr d at z=3.87 fm, and(d)
for Ssr d at z=5.81 fm.

FIG. 4. (a) The functionSsx,y,zd for eight droplets in units of
fm−3 for the droplet distributions of Fig. 2.(a) is for Ssr d at z=0, (b)
for Ssr d at z=1.94 fm,(c) for Ssr d at z=3.87 fm, and(d) for Ssr d at
z=5.81 fm.
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Ssi, j ,kd = DxDyDz o
i8,j8,k8=1

N

rsi + i8, j + j8,k + k8drsi8, j8,k8d,

s55d

wherex= iDx, y= jDy, andz=kDz. We consider only the re-
gion of Ssxd and rsxd inside the box ofi , j ,k=1 to N and
assume that they are zero outside the box.

With the determination ofSsr d from a given experimental
correlation function by the FFT method, one can in principle
solve the above equation to obtain the source density distri-
bution rsr d. One can, for example, solve the above equation
by iteration. In the first iterative step, one uses an initial
guessed density distributionrs0dsr d as one of the two density
functions in Eq.(55). The equation is then a linear equation
of rsr d and can be easily solved. The steps to obtain the
solution is described in Appendix B. The solutionrsr d can
then be substituted into Eq.(55) to replace one of the twor
functions and to continue the iteration. Clearly, the iterative
solution rsr d will be the solution of Eq.(44) or (55) if the
iteration converges. The successes of the iterative solution
will probably depend on a good initial guessed solution. It
will be of great interest to test how this iterative procedure
may be used to find a density distributionrsr d for a given
experimental correlation functionCsqd. It is necessary to in-
vestigate how one can guarantee positive-definite solutions
of rsr d in such procedure. Future development to search for
methods to solve the integral equation Eq.(44) [or (55)] for
rsxd from a givenSsxd will be of great interest.

VI. CONCLUSIONS AND DISCUSSIONS

Recent experiments at RHIC provide ample evidence for
a dense matter produced in high-energy heavy ion collisions.

Is the produced dense matter the quark-gluon plasma? An
unambiguous identification of the produced matter as a
quark-gluon plasma requires the observation of the phase
transition from the new form of matter to known hadronic
matter.

The signature for a phase transition depends on the order
of the phase transition. Witten and many workers noted pre-
viously that a granular structure of droplets occurs in a first-
order QCD phase transition, and the observation of the
granular structure can be used as a signature for a first-order
QCD phase transition[3–15]. HBT interferometry is the best
experimental tool to examine the space-time density distri-
bution of the produced matter. It can therefore be utilized to
study the granular structure that occurs in a first-order phase
transition of the plasma.

In the dynamics following a first-order QCD phase tran-
sition, the evolved matter will react chemically and ther-
mally. It is not known how much the granular density pattern
of the phase transition will remain to make it detectable by
HBT interferometry. It has been argued in conventional
theory that HBT interferometry measures the density distri-
bution of the hadron matter at thermal freeze out, as the
rescattering of bosons is assumed to lead to a chaotic con-
figuration. This traditional assumption is subject to question
as it was, however, pointed out recently that the propagation
of bosons in the rescattering process should be investigated
in a quantum description[39–42]. Upon using the Glauber
theory to describe the scattering process, it was found that
HBT interferometry measures the initial chaotic density dis-
tribution modified by absorption and collective flow[39,40].
The HBT interferometry may be sensitive to the density dis-
tribution that occurs earlier than the thermal freeze-out con-
figuration. If the initial density fluctuation is large, a substan-
tial density fluctuation of the granular pattern may remain to
make it detectable by HBT interferometry.

Theoretical lattice gauge calculations indicate that the
phase transition of a quark-gluon plasma having dynamical
quarks with three flavors is a crossover continuous transition,
when the quark chemical potential is zero. The crossover
phase transition turns into a first-order phase transition when
the quark chemical potentialmq is increased to about
40 MeV [67]. As the net baryon density increases from the
central rapidity region to the fragmentation region of largeuyu
in a central high-energy heavy-ion collision at RHIC, the
order of the transition may change from a crossover phase
transition to a first-order phase transition, when one moves
from the central rapidity region to the region of largeuyu.

Whatever the theoretical predictions there may be, it is
ultimately an experimental question to determine the order of
the quark-gluon plasma phase transition. It is important to
develop methods to detect the granular density distribution
that occurs as a result of a first-order phase transition, utiliz-
ing the available experimental tools of HBT interferometry.

We propose new ways to detect a granular density struc-
ture using the single-event HBT interferometry. If it can be
carried out with sufficient accuracy, the single-event HBT
interferometry can reveal the density distribution in each
single event. It can also reveal large fluctuations in the den-
sity distribution from event to event, as is expected in a
first-order phase transition.

FIG. 5. The functionSsx=0,y,zd versus y for various values of
z for the four droplets examples of Figs. 1 and 3. The results from
the FFT method are given in linear scale in(a) and in logarithmic
scale in(b). The results from the exact analytical solution of Eq.
(49) are given in linear scale in(c) and in logarithmic scale in(d).
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We carry out our analysis with many examples of granular
sources. We found that a granular structure is characterized
by large fluctuations of the single-event correlation function.
A single-event correlation function has maxima and minima
at relative momenta that depend on the relative coordinates
of the droplet centers. The presence of this type of maxima
and minima of the single-event correlation function can be
used as the signature for a granular structure and the first-
order QCD phase transition of the quark-gluon plasma.

If an experimental single-event correlation function is
complete and accurate enough, another very simple method
to search for a granular structure is to take the Fourier trans-
form of the correlation function. The Fourier transform of the
correlation function leads to the folding of the source density
with itself. This Fourier transform possesses maxima at spa-
tial coordinates governed by the relative coordinates of the
droplet centers. The occurrence of this type of maxima in the
Fourier transform, in addition to the maxima atr =0, is an-
other signature for granular droplets and a first-order quark-
gluon plasma phase transition.

In the present analysis, we have focused our attention on
the single-event HBT interferometry to emphasize the maxi-
mum fluctuations in the correlation function of a granular
structure. It will be of great interest to study a few-event
HBT analysis both theoretically and experimentally. The
few-event HBT analysis will be necessary for practical rea-
sons, if the number of boson pairs in a single event is not
large enough to provide sufficient statistics. The few-event
HBT analysis will also be needed to understand the degrees
of fluctuation from event to event. One wishes to find out
whether the fluctuations in few-event HBT correlation mea-
surements contain a single-event component that is beyond
statistical fluctuations. The rate of the change of the degrees
of fluctuation as the number of events increases will provide
information on the underlying fluctuations in the single-event
and event-to-event HBT interferometry. The successful de-
velopment of the single-event or few-event HBT interferom-
etry in high-energy heavy-ion collisions will open up a vast
vista for future exploration.

In the present investigation, we have considered idealized
situations in order to bring out the most important features of
the signature for a granular structure. It will be of great in-
terest to examine in future work how the signature discussed
here may be affected when some of our simplifying assump-
tions are modified. The determining factor for the occurrence
of maxima and minima in the correlation functionCsqd is the
interference of two histories for two bosons to propagate
from two source points in different droplets to the detecting
points. This interference involves a phase difference which
depends on the radius vector joining the two droplets. If this
underlying factor of interference leading to large fluctuations
of the correlation function remains important even after
modifying our simplifying assumptions, then many of the
gross features obtained here will not be greatly modified.

The fluctuations arising from a granular structure de-
scribed in the present idealized theoretical investigation will
be blurred by experimental statistical fluctuations due to the
limited number of experimental counts. Whether or not the
relevant signal can be recovered in the presence of experi-
mental statistical fluctuations remains to be tested. Clearly,

the smaller the number of droplets, the greater is the signal
and the greater will be the probability of its observation in
the presence of statistical fluctuations. It will be of great
interest to carry out a theoretical simulation to see what are
the minimum droplet size and the largest droplet number a
given experimental arrangement may be able to detect.

Much work remains to be done both experimentally and
theoretically to investigate this interesting topic on the sig-
nature of the phase transition of the quark-gluon plasma. It
will be of interest to study theoretically effects of the collec-
tive expansion of the sources and the droplets, effects of
fluctuations of the size of the droplets, effects of absorption
of the bosons on its way to the detector, effects of the mo-
mentum dependences of the density distributions, and other
interesting questions in connection with the signature of the
granular structure.
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APPENDIX A: EVALUATION OF THE
THREE-DIMENSIONAL FOURIER

TRANSFORM OF THE CORRELATION
FUNCTION †C„q…−1‡

From Eq.(54), we have

Ssr d =E dq

s2pd3e−iq·rfCsqd − 1g

=E dq

s2pd3hcossq · r d + i sinsq · r djfCsqd − 1g.

sA1d

The imaginary part in the above integration vanishes as
Cs−qd=Csqd. It is only necessary to evaluate the real part of
the Fourier transform. The folding functionSsr d is therefore

Ssr d =E dq

s2pd3 cossqxx + qyy + qzzdRsqd, sA2d

whereRsqd=Csqd−1. Expanding the cosine function, we ob-
tain

Ssr d =E dq

s2pd3fcosqxx cosqyy cosqzz

− cosqxx sinqyy sinqzz− sinqxx cosqyy sinqzz

− sinqxx sinqyy cosqzzgRsqd. sA3d

In the standard numerical subroutines such as those in the
fast Fourier transform package ofDFFTPACK [66], the cosine
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transform of an even function ofGsqd is usually approxi-
mated by

G̃sxd =E
0

`

dqcossqrdGsqd

= Dqo
j=1

N

coshs j − 1dsk − 1dp/NjGsqd, sA4d

where x=sk−1dDx, q=s j −1dDq, and sDxdsDqd=p /N. The
right-hand side quantities are then calculated by the one-
dimensional cosine fast Fourier transform subroutine of the
package. Similarly, the sine transform of an odd function is
usually approximated by

G̃sxd =E
0

`

dqsinsqrdGsqd = Dqo
j=1

N

sinh jkp/sN + 1djGsqd,

sA5d

with x=kDx andq= jDq andDxDq=p / sN+1d.
The Fourier integral of the sine and cosine function in Eq.

(A3) can be cast into the standard form of Eqs.(A4) and
(A5) in the FFT package ofDFFTPACK by noting that

E
−`

`

dqx cosqxxgsqx,qy,qzd =E
0

`

dqx cosqxxfgsqx,qy,qzd

+ gs− qx,qy,qzdg, sA6d

and similarly

E
−`

`

dqx sinqxxgsqx,qy,qzd =E
0

`

dqx sinqxxfgsqx,qy,qzd

− gs− qx,qy,qzdg. sA7d

Using the above results, the four terms inside the square
bracket in Eq.(A3) lead to four contributions toSsr d,

Ssr d = fA1sr d − A2sr d − A3sr d − A4sr dg/s2pd3, sA8d

where

A1sx,y,zd =E
0

`

dqz cosqzzfF1sx,y,qzd + F1sx,y,− qzdg,

sA9d

F1sx,y,qzd =E
0

`

dqy cosqyyfE1sx,qy,qzd + E1sx,− qy,qzdg,

sA10d

and

E1sx,qy,qzd =E
0

`

dqx cosqxxfRsqx,qy,qzd + Rs− qx,qy,qzdg.

sA11d

The termA2 that contributes toSsxd can be obtained simi-
larly as

A2sx,y,zd =E
0

`

dqz sinqzzfF2sx,y,qzd − F2sx,y,− qzdg,

sA12d

F2sx,y,qzd =E
0

`

dqy sinqyyfE2sx,qy,qzd − E2sx,− qy,qzdg,

sA13d

and

E2sx,qy,qzd =E
0

`

dqx cosqxxfRsqx,qy,qzd + Rs− qx,qy,qzdg.

sA14d

In a similar way, the termA3sx,y,zd is given by

A3sx,y,zd =E
0

`

dqz sinqzzfF3sx,y,qzd − F3sx,y,− qzdg,

sA15d

F3sx,y,qzd =E
0

`

dqy cosqyyfE3sx,qy,qzd + E3sx,− qy,qzdg,

sA16d

and

E3sx,qy,qzd =E
0

`

dqx sinsqxxdfRsqx,qy,qzd − Rs− qx,qy,qzdg.

sA17d

Finally, A4sx,y,zd is given by

A4sx,y,zd =E
0

`

dqz cosqzzfF4sx,y,qzd + F4sx,y,− qzdg,

sA18d

F4sx,y,qzd =E
0

`

dqy sinqyyfE4sx,qy,qzd − E4sx,− qy,qzdg,

sA19d

and

E4sx,qy,qzd =E
0

`

dqx sinqxxfRsqx,qy,qzd − Rs− qx,qy,qzdg.

sA20d

The right-hand sides of the above equations(A9)–(A20) are
now in the form of the sine and cosine integrals of Eqs.(A4)
and (A5), for which standard FFT subroutines can be ap-
plied. With the above relations, the folding functionSsr d can
be easily evaluated using subroutines in standard fast Fourier
transform packages.

Incidentally, we have shown how we can obtain the three-
dimensional Fourier transform for a function that is symmet-
ric with respect to the inversion of its coordinates, for which
the imaginary part of the Fourier transform vanishes. For
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other general functions without such a symmetry, the imagi-
nary Fourier component involving sinsq ·r d does not vanish.
We can expand the function sinsqxx+qyy+qzzd as in Eq.(A3)
and use techniques similar to those in Eqs.(A8)–(A20) to get
the imaginary part of the Fourier transform.

APPENDIX B: SOLUTION OF THE DISCRETIZED
INTEGRAL EQUATION

We wish to obtain an iterative solution of the discretized
integral equation(55) for rsr d, with a given Ssr d. As the
density function rsr d is zero outside the box ofhi , j ,k
=1 to Nj the summation in Eq.(55) can be limited to density
functions inside the box. Consequently, Eq.(55) contains
fewer and fewer numbers of unknown variables ofr as the
indices i, j , or k of Ssi , j ,kd increases. We can choose our
starting point to be the linear equation containing only one
variable. The equation can be easily solved. The variables in
the subsequent set of linear equation can be solved in se-
quence. Similar procedures can be carried out in two and
three dimensions. We shall give the detail procedures below
for the one-dimensional case to indicate how the iterative
solution can be obtained.

We seek an iterative solution ofrsid satisfying

Ssid/Dx = o
i8=1

N

rsi + i8drs0dsi8d, sB1d

wherers0dsi8d is either a guessed solution or the solution of
the previous iteration.

Because the density function is zero outside the region of
i ,1 andi .N, the set of equations of(B1) are

SsNd = 0, sB2d

SsN − 1d/Dx = rsNdrs0ds1d, sB3d

SsN − 2d/Dx = rsN − 1drs0ds1d + rsNdrs0ds2d, sB4d

SsN − 3d/Dx = rsN − 2drs0ds1d + rsN − 1drs0ds2d

+ rsNdrs0ds3d, . . . , sB5d

Ss1d/Dx = rs1drs0ds1d + rs2drs0ds2d + ¯ + rsNdrs0dsNd.

sB6d

Equation(B3) contains only a single unknownrsNd and can
be solved in terms of the other known quantities. Knowing
the value ofrsNd, Eq.(B4) can be solved forrsN−1d, and so
on. In this way, the whole array ofrsid can be determined.
The above method can be easily generalized to calculate the
iterative solution of the three-dimensional density function
rsr d from Ssr d. It will be necessary to normalize the density
solutionrsr d after each iterative step to ensure that the final
solution has the proper normalization.
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